
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

750

Abstract—Traditional software engineering allows engineers to

propose to their clients multiple specialized software distributions
assembled from a shared set of software assets. The management of
these assets however requires a trade-off between client satisfaction
and software engineering process. Clients have more and more
difficult to find a distribution or components based on their needs
from all of distributed repositories.

This paper proposes a software engineering for a user-driven
software product line in which engineers define a Feature Model but
users drive the actual software distribution on demand. This approach
makes the user become final actor as a release manager in software
engineering process, increasing user product satisfaction and
simplifying user operations to find required components. In addition,
it provides a way for engineers to manage and assembly large
software families.

As a proof of concept, a user-driven software product line is
implemented for Eclipse, an integrated development environment. An
Eclipse feature model is defined, which is exposed to users on a
cloud-based built platform from which clients can download
individualized Eclipse distributions.

Keywords—Software Product Line, Model-driven Development,
Reverse Engineering and Refactoring, Agile Method

I. INTRODUCTION
ITH the increasing number of components in software
production, strong coupling is likely to occur more

often, thus increasing software complexity. Users are proposed
a set of predefined products, the list of available variants being
updated at the only editor initiative. Variability becomes
harder to maintain and to evolve, and users end up installing
products containing a majority of features irrelevant for their
actual needs.

To mitigate this issue and to help software developers
strengthen their ability to increase product variability for
satisfying users real needs, users will set their own product
configurations as release managers that can be shared, then
trigger the build-up process and download the automatically
packaged software distribution closely meeting their needs.
This approach will help adopting organizations enhance their
software engineering discipline, get a valuable and deeper
insight into their users’ actual needs, thus complementing
efficiently the software usage logs, and convert more users. By
having customized software building process triggered from
users configurations, smaller, and less resource-hungry
installable packages may occur more often, which can then be

Zhaopeng Xuan is student with the ECE Paris Engineering School (phone:

0033-770527208; e-mail: xuan@ece.fr).
Yuan Bian, C. Cailleaux, Jing Qin and S. Traore are students with the ECE

Paris Engineering School (e-mail:bian@ece.fr).

run on commodity hardware they could not work on
otherwise.

In this paper, the proposed approach uses User-Driven
Software Product Line Engineering (UDSPLE) as a means to
include the user into software development life cycle. The first
impact is that Feature-Oriented Domain Analysis (FODA) [1]
must be extensively performed in order to create the Feature
Model of software domain. Features of the domain model are
created from user perspective and exposed to him, so the
model may not display the same level of details and
granularity as developers would have if they were the only
users of the feature model. Assets are then associated to each
feature, but this is handled by engineers. The user then
chooses the set of features he wants to use in the software and
submit the configuration that triggers the build process. To
make such a process successful, dependency must be
automatically solved and model should be designed from user
perspective. This puts a constraint on having a well defined
and up-to-date build up infrastructure and dependency
resolution framework. Finally the user will be proposed the
customized built up software for download.

In the remainder of this paper, Section II details concept
and background on which the proposed solution is built upon.
Section III illustrates the current problems. Section IV details
the conceptual solution and its architecture and workflow.
Section V reports the case study performed on Eclipse
distribution platform to assess the proposed solution, and
Section VI makes the conclusions based on UDPSLE and
summary of UBSPLE-Based Eclipse Distribution Platform.

II. CONCEPTUAL BACKGROUND

A. Software Product Line Engineering (SPLE)
SPLE is a paradigm to develop software applications

(software-intensive systems and software products) using
platforms and mass customization [2]. The combination of
mass customization and a common platform allows the reuse
of a technology common base and, at the same time, to bring
out products in close accordance with customer requirements
[2]. There are four different parts in SPLE:
• Software asset inputs: a collection of software assets [7];
• Decision model: it could be FM or domain-specific

languages (DSLs) [8], [9];
• Production mechanism and process: the means for

composing and configuring products from the software
assets ;

• Software output: The final industrial software
distributions

Zhaopeng Xuan, Yuan Bian, C. Cailleaux, Jing Qin, S. Traore

User-Driven Product Line Engineering for Assembling
Large Families of Software

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

751

In addition, SPLE process consists of two main lines of
activities:
• Domain Engineering, focusing on development of the

core assets for reuse
• Application Engineering, focusing on final products

development using the core assets according to customer
requirements

Variability management is the distinctive feature of SPLE.
This concept holds two dimensions [2]:
• Variability in time, in which a software artifact evolves

through different versions.
• Variability in space, in which the artifact takes different

shapes at the same time.
SPLE is mostly concerned with variability in space. To

model variability, FODA must be performed in order to
capture commonalities and variability during the requirements
analysis phase. It defines a feature as “a prominent or
distinctive user-visible aspect, quality, or characteristic of a
software system or systems” [14]. In this respect, a Feature
Model captures the commonalities and manages the variable
features of systems, in a family of systems or in a product line
[10].

According to [5], SPLE is not widely spread in open source
community. Although this has been a long-time preoccupation
[7], [8], reports of successful cases of product line engineering
practice in open source community do not abound.

B. Component-Based Software Engineering (CBSE)
The primary role of CBSE is to address the development of

systems as an assembly of parts (components), the
development of parts as reusable entities, and the maintenance
and upgrading of systems by customizing and replacing such
parts. This requires established methodologies and tool
support covering the entire component and system lifecycle
including technological, organizational, marketing, legal, and
other aspects [3]. Known software implementing the CBSE
paradigm is Eclipse IDE, NetBeans and modern web-browsers
(Chrome, Firefox, and Safari).

As mentioned above, Eclipse IDE is a platform based on
CBSE with a large family of components, which support 12
distributions with fixed version of components. In this paper,
Eclipse will be used as a case study to illustrate present
proposed concept.

III. PROBLEM STATEMENT
From CBSE perspective, core conception is to identify

components and dependencies. CBSE describes the product
from component level and developer perspective. As a
consequence, a user cannot customize its own production.
Such as the color of their car, users could choose red or black
color, but the manufacturers just provide some chemical
materials which are composition of these two colors for users
to choose, and nearly no one could get the expected final
product. This analogy describes the main problem of CBSE.
With rising number of components for large families of
software, not only the clients do not understand the way to
build, but also for manufacturers, it will be more difficult to

manage them and the dependencies. Thus there are four
obvious problems for CBSE-based product:
• Engineers have difficulty to manage all components in

distributed repositories, especially for third-party
components.

• Some functions in CBSE-based product are rarely used by
users.

• Users can hardly find a required component from scratch
on demand.

• The product with all components requires high
performance of disk and memory of computer.

Thus for CBSE-based Eclipse, with rapidly rising number
of components dispatched in a fixed and limited set of
distributions, users with specific needs often do not find a
suitable Eclipse distribution from the official website. They
are even at a loss trying to figure out which distribution best
suits their needs. Building a customized Eclipse distribution
from scratch is not an option for most users, so they end up
downloading the distribution that matches the most their
profile, to the best of their judgment. More than often this is
followed by a long, confusing and sometimes frustrating
upgrading procedure by installing missing features from
Eclipse or third-party repositories. So this paper is aimed at
explaining the conception of UDSPLE proposed by the
Eclipse case.

IV. EFFECTIVE SOLUTION
Solution due to FM was proposed as a part of the FODA

method. Meanwhile, based on the conception of SPLE, FM is
suggested as a method to describe the problem space [8], [11].
Since then, SPLE has been suggested, and as FM could adapt
most part of industrial software, the proposed solution could
be applied in most domains, as explained below.

Fig. 1 Software product line process

The UDSPLE process is displayed in Fig. 1, where are

described the four parts of Software Product Line (SPL) [6],
defined in Section II A. It is proposed that at early stages of
software development, FM provides the basis for scoping the
system family by recording and assessing information such as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

752

what features are important to enter a new market, or to
remain in an existing market, what features incur a
technological risk, what is the projected development cost of
each feature, and so forth [8], [11]. Besides, FM proposes a
standard interface shared with developers and users, and
provides better knowledge for dependencies, not only for
official development group, but also for third part
development ones. The following sub-sections explain how
SPL works in Eclipse Distribution system.

A. Automatic Dependency Derivation
Very simple Eclipse FM has been built up, in Fig. 2, it is

described by Eclipse Feature IDE and presents Eclipse FM as
a Feature Diagram (FD), a family of popular modeling
languages used for engineering requirements in SPL [12].

Fig. 2 Eclipse features diagram

Each block in Fig. 2 is a feature in FM, and the FM process

will automatically make the following derivation group to
create FM constraints [4], [13].
ݐ݋݋ܴ ฻ ݁ݏ݌݈݅ܿܧ
݁ݏܽܤ ֞ ݁ݏ݌݈݅ܿܧ
ܶ݁ܽ݉ ֜ ݁ݏ݌݈݅ܿܧ
݁݃ܽݑ݃݊ܽܮ ֜ ݁ݏ݌݈݅ܿܧ
ሺש ܶܫܩ ܸܵܰ ֜ ܶ݁ܽ݉ሻ ֋ר ሺܶܫܩ ר ܸܵܰሻ
ܽݒܽܬ ש ܥ ש ݕܾݑܴ

From now, a benchmark has been defined without assets for
Eclipse that provides a basis for scoping system family.
Meanwhile, FM has proposed dependencies and constraints
among all user-viable aspects.

B. Integration and Configuration of Software Assets
In Fig. 3, Eclipse bundles or components are pro-vided

from multiple repository clouds. In Eclipse embedded
provisioning system (P2), it is only needed to select one
remote repository each time for installing or updating some
bundles into Eclipse. Also users need to find the URL of
repository by themselves, as Eclipse organization does not
know about existence of other third part group repositories. To
simplify users operation and to improve components
management, an approach is here proposed to integrate all
software input assets from multiple official or non-official
repositories at first, which are presented as Standard Asset
Interface in Fig. 3. Eclipse repository is constructed by P2
layout which is a specified format. So a particular tool called
Repository Analysis System (RAS) is created to analyze and
collect resources from multiple repositories at the same time
with a given repository URL list. It is proposed for each
development team to register its repository URL before

publishing new components.

Fig. 3 Architecture for integration of software input assets

After integration of software input assets in Eclipse

distribution system, a Web interface is proposed for
administrators to configure the assets for each Feature
presented in Fig. 3. Until now, this paper has explained the
UDSPLE for Eclipse Distribution Platform. It could be noticed
that UDSPLEA indirectly expose the build-up process to users
to lead a building process. Meanwhile, the development plan
and scope are described by FM, the development artifacts are
in fact still located in remote clouds, created and maintained
by multiple distributed teams. On another hand, through a web
interface, the users become final actors as release managers to
assembly the production based on their individual needs.

C. Assembling Process for Users
As noticed in Section III A and Fig. 3, in SPL, one import

part is Production mechanism and process, which is presented
as FM constraints and User Feature Selections. The former is
defined by FM in Section III A, and the User Feature
Selections could be defined as a file which includes all
selected and dependent Features. The selection of Feature
means that UDSPL will automatically expose the functions of
selected features and corresponding dependent ones. For
instance, if user selects Feature GIT in Fig. 2, based on actual
FM constraints, User Feature Selection actually contains
Feature Eclipse, Feature Base, Feature Team and Feature GIT.
Since then, UDSPL composer will compose the assets of
selected Features to produce a customized Eclipse distribution.
This means the user will drive the build-up process and build
components by selecting Features from FD, and then FM will
valid users selection based on the constraints to add or to
remove dependent Features, or show up a warning when user
selection violates FM constraints.

Thus, upon Features selection by the user, Eclipse
distribution system has already a record of requirements
before using the software. It provides a much earlier step for
analyzing the value of each Feature in the market and for
optimizing FM to provide more suitable architecture.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

753

At last the composer of SPL is changed by the type of input
assets. So in this paper, attention will be given the technical
aspect of composer for Eclipse artifacts which will be
explained in next part.

V. CASE STUDY AND DISCUSSION
Based on UDSPLE and relevant technologies, an Eclipse

distribution platform has been successfully implemented
where the user can find features and get customized Eclipse
distributions easily. This implementation expresses author’s
idea, and also reflects the value of UDSPLE.

Fig. 4 Comparison of methods to get customized eclipse

After implementation and tests, the two ways of having

customized Eclipse distribution by traditional Eclipse
components and by UDSPL are compared, see Fig. 4. There
are some advantages and progress from user perspective.
Before, a user might spend hours searching online and fix
compatibility problem to get some specified Eclipse features.
With UDSPL platform, the user can select features and
download his Eclipse directly and save considerable time and
efforts while ensuring software high quality, because the
platform solves all compatibility problems for the user.
Moreover, UDSPL is of great potential because by using the
latest architecture and data science technologies such as
HDFS, performance could be much better quality.

VI. CONCLUSION
In order to both catch up with the high speed of software

development and satisfy user requirement, easy-to-run user-
driven software product line engineering has been presented in
which end users can define and trigger actual software
distribution build-up on demand. The main idea is to build up

this distribution with a small set of actually needed features
running on commodity hardware, instead of directly
distributing software with fixed bundles. By enabling the user
to choose the needed features according to his profile or
preferences before actual distribution building, one can
significantly decrease the time wasted on slowly running
update software and simplify the choice amongst various
features. Also in this way, software resources can be
efficiently managed and highly reused.

The case implementation of Eclipse platform based on
presented fashionable user-driven software product line
strongly supports the feasibility of proposed idea. With less
difficulties and troubles, Eclipse users could get their expected
distribution from Eclipse Distribution System instead of
downloading the official version from Eclipse Website. In
other words, the Eclipse Distribution System could replace the
function of Eclipse official downloads, and Eclipse
organization does not need to maintain the distribution of 14
fixed versions anymore. Finally, from business perspective,
the Software Product Line extends the range of users by
letting those select or buys their actually needed features,
rather than force them to buy all features together no matter
whether they are really necessary for their specific purpose.

As a final conclusion, by adopting this approach, software
development organizations will further reduce maintenance
cost of multiple pre-defined software distributions. So they
will spend less time and effort in releasing trains, leaving more
time for improving the quality of proposed features and for
such a process more frequent releases of innovative features.

ACKNOWLEDGMENT
The authors are very much indebted to ECE Paris School of

Engineering for having provided the environment where the
work has been performed, to Drs L.M. Hillah and T.Ziadi,
CNRS UMR 7606 - LIP6, Univ. Paris Ouest and Sorbonne
Univ. Paris 06, for their constant help in the research, to DrJ.
Templemore for guidance, and Pr. M. Cotsaftis for preparation
of the manuscript.

REFERENCES
[1] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson: Feature-Oriented

Domain Analysis (FODA) Feasibility Study, Software Engineering
Institute (SEI), Tech. Rep. CMU/SEI-90-TR-21, Nov. 1990.

[2] K. Pohl, G. Bockle, F. J. VdLinden: Software Product Line Engineering:
Foundations, Principles and Techniques, 2000.

[3] I. Crnkovic, “Component-based software engineering - new challenges
in software development,” in Information Technology Interfaces, 2003.
ITI 2003. Proceedings of the 25th International Conference on, June
2003, pp. 9–18.

[4] D. Batory, “Feature models, grammars, and propositional formulas.
[5] J. van Gurp, C. Prehofer, and J. Bosch, “Comparing Practices for Reuse

in Integration-oriented Software Product Lines and Large Open Source
Software Projects,” Softw. Pract. Exper., vol. 40, no. 4, pp. 285–312,
Apr. 2010.

[6] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2001.

[7] K. Czarnecki, Th.Bednasch, P. Unger, U.Eisenecker: Generative
Programming for Embedded Software: An Industrial Experience Report,
Proc.ACM SIGPLAN/SIG- SOFT Conf. on Generative Programming
and Component Engineering (GPCE’02), pp. 156 –172, 2002; K.

Download basic
Eclipse

Search Features

Copy features link
to Eclipse

Choose version
and components

Download
features and

install

Choose features

Download
customized

Eclipse

Traditional way UDSPL

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

754

Czarnecki, U. Eisenecker :Generative Programming – Methods, Tools,
and Applications. Addison-Wesley, Boston, MA, 2000.

[8] M.Dalgamo, Danilo Beuche :Software Product Line Engineering with
FeatureModels, Proc. Intern. Software Product Line Conf. Tutorial
SPLC 2013, Tokyo, August 26-30, 2013; A. Hein, M. Schlick, R. Vinga-
Martins : Applying Feature Models in Industrial Settings,in Software
Product Lines: Experience and Research Directions, Proc. 1st Software
Product Line Conference - SPLC1, P.Donohoe, Kluwer Academic
Publishers, pp.47-70, 2000;O.Spinczyk, DaniloBeuche: Modeling and
Building Software Product Lines with Eclipse,OOPSLA Companion,
pp.18-19, 2004.

[9] C.W. Krueger: New Methods in Software Product Line Development,
Proc. 10thIntern. Software Product Line Conf., pp.95-99, 2006.

[10] K.Czarnecki: Staged Configuration Using Feature Models, Springer,
Berlin, 2004.

[11] S.K. DeBaud, J.M: A Systematic Approach to Derive the Scope of
Software Product Lines, Proc. 21st Intern. Conf. on Software
Engineering (ICSE), pp. 34 – 43, 1999.

[12] P.-Y.Schobbens, P. Heymans, J.-C.Trigaux : Feature Diagrams:A
Survey and Formal Semantics, Requirements Engineering, Proc. 14th
IEEE Intern. Conf. , pp.139-148, 2006.

[13] Batory: Feature Models, Grammars, and Propositional Formulas, Proc.
SPLC 9th Intern. Conf. on Software Product Lines, pp.7-20, Springer-
Verlag, Berlin, 2005.

[14] P. Clements, L. Northrop: Software Product Lines: Practices and
Patterns, Addison-Wesley, 2001.

