
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

728

Deadline Missing Prediction for Mobile Robots
through the Use of Historical Data

Abstract—Mobile robotics is gaining an increasingly important
role in modern society. Several potentially dangerous or laborious
tasks for human are assigned to mobile robots, which are increasingly
capable. Many of these tasks need to be performed within a specified
period, i.e, meet a deadline. Missing the deadline can result in
financial and/or material losses. Mechanisms for predicting the
missing of deadlines are fundamental because corrective actions can
be taken to avoid or minimize the losses resulting from missing the
deadline. In this work we propose a simple but reliable deadline
missing prediction mechanism for mobile robots through the use of
historical data and we use the Pioneer 3-DX robot for experiments
and simulations, one of the most popular robots in academia.

prediction mechanism.

I. INTRODUCTION

IN today’s society there is an increasing need to perform
tasks very efficiently and accurately. Many of these tasks

must be performed in hazardous and remote locations, such
as the sea or space. This need has stimulated the creation of
devices, called robots, which perform these tasks without risk
to human life. A robot is an electromechanical agent able to
perform various tasks with human assistance or independently.
In recent years, we have noticed a large growth in the potential
of these robots, gaining an increasingly important role in our
daily lives. They are widespread in the industry, where they
perform difficult and elaborate tasks with great precision and
speed. In this case, they are called industrial robots.

Mobile robotics has been the focus of much study and has
become an area of great importance and interest to researchers
and engineers. Mobile robots are robots that have the ability
to move in a given environment, not limited to a fixed
location like the industrial robot manipulators. Autonomous
mobile robots are able to perform tasks without assistance
or human interaction and have various applications in the
military, industry, medicine, entertainment, research and so
on. One of the main aspects to consider in mobile robotics
is the environment where the robot will move around. To
navigate in a known environment, the robot typically uses
a map of this environment. The environment may contain
unknown objects, prohibited areas and moving obstacles. The
robot uses the map information, along with data obtained from
its sensors to navigate safely. Another important aspect is the

the Programa de Pos-Graduaçao em Ciencia da Computaçao
(PPGCC) of the Federal University of Santa Catarina (UFSC),

´

Edson R. De Pieri is with the Automation and Systems Departament (DAS)
of the Federal University of Santa Catarina (UFSC), Florianóplis SC, Brazil

path planning, which allows a safe path to be defined from the
initial position of the robot to the final destination, avoiding
known and unknown obstacles during the navigation.

Real-time systems are computational systems where the
execution time of a given task is crucial. These systems
demand logically correct results but also require that their
responses to the environment should be given in a timely
manner so that the system does not come in an inconsistent
or invalid state. The system must be able to perform the
task within a given deadline or inform the task cannot be
executed, if its completion is undesirable after the deadline
missing. Thus, the correctness of the system depends not
only on the results of the computation, but also on the time
at which these results are produced. Commonly, real-time
systems are wrongly associated with systems that produce
fast results. However, what defines a system as a real-time is
essentially the time constraint, e.g., it must meet deadlines.
The real-time systems can be classified as hard or soft
depending on the consequences of missing a deadline. In Hard
Real-Time Systems, deadline misses are not tolerable and can
result in irreversible consequences. On the other hand, in Soft
Real-Time Systems, time remains crucial for the application,
but the system can miss some deadlines. However, eventually
performance will degrade if too many deadlines are missed.

Mobile robots are an example of a real-time system. They
consist of a set of subsystems - actuators, sensors and a
software subsystem. These subsystems work together so that
the robot can meet the deadlines of the low-level tasks, such as
detecting the presence of an unknown obstacle and avoiding
a collision. It is essential that these subsystems work properly
so the robot can perform high-level tasks, such as moving
from an initial position to a final position. Disregarding
possible failures in the subsystems mentioned above and
considering they can perform low-level tasks (reading sensors,
motor drive, etc.) within the given deadline, we can also
apply timing constraints in the robot high-level tasks. These
tasks, in addition to being logically correct, they must meet
a certain deadline. The ability to predict the missing of a
deadline is important in various scenarios. For example, in
an automated oil platform, if a task is not completed within
the given deadline, it can cause delays and serious material
and financial losses. In this sense, it is important to develop
reliable mechanisms that can predict a deadline missing while
the robot is performing tasks, so that corrective actions can be
taken to avoid or minimize the losses resulting from missing
the deadline.

This paper proposes a simple but reliable deadline missing
forecast mechanism for mobile robots performing high-level
tasks through the use of data from previous executions of

Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Keywords—Deadline missing, historical data, mobile robots,

´ ˜ ˆ ˜
Edwaldo R. B. Monteiro and Patricia D. M. Plentz are with

Florianoplis SC, Brazil (e-mail: dymont@inf.ufsc.br and
patricia.plentz@ufsc.br).

(e-mail: edson@das.ufsc.br).



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

729

similar tasks. These tasks consist in moving the robot from
an initial position to another position and back to the original
position. While performing these tasks, the robot can carry
loads, provide assistance to other robots, etc, within a partially
known and predictable environment, such as a warehouse or a
factory. In these environments, the robot can find unknown
fixed and moving obstacles, but such obstacles are mostly
predictable, like people, boxes, other robots, etc.

II. RELATED WORK

This section presents some forecast algorithms and
mechanisms related to mobile robotics. There are also several
studies that propose prediction algorithms for tasks response
times and systems performance. Some of these works are also
presented in this section.

A. Prediction Mechanisms in Mobile Robotics

Some mechanisms have been proposed to predict the best
possible path for the robot with a specific purpose, such as
to minimize battery consumption, navigate safely in unknown
environments, intercept moving targets, etc.

There are studies that address the problem of navigating
a robot in an environment with multiple moving obstacles.
These works propose mechanisms that attempt to predict a
possible path to avoid moving obstacles, through a heuristic
method [1], [2]. The movement of each obstacle is initially
predicted assuming they have a constant speed. The algorithm
is iterated frequently to accommodate the actual changes in
the speed of the obstacles. Based on the movement of the
obstacles, the mechanism tries to forecast the robot best
navigation speed and then stores the state of the obstacles
and the robot speed predicted. If the robot is again faced
with a situation previously stored, the corresponding speed
is then used. Another mechanism is proposed in [3] and is
suitable for environments with static and moving obstacles.
The mechanism tries to predict the future movement of the
moving obstacles and then plan a safe and efficient path for
the robot. To achieve prediction, the mechanism considers the
uncertainty in motion planning and uses a probabilistic model
of the uncertainty and select the motion which minimizes
the expected time of reaching the destination. A method
for autonomous mobile robots to avoid moving obstacles by
predicting the movement of the obstacles is shown in [4].

An algorithm to intercept moving targets is proposed in [5].
The robot can intercept a target by following many short and
straight paths. A point of intersection is initially predicted
assuming that the robot and the target move along straight
paths. The algorithm then tries to plan a path to the intersection
point predicted before. The robot navigates along the planned
path, while continuously monitors the target. When the robot
detects that the target is in a new position, the mechanism
predicts a new intersection point and plans a new navigation
path. This process is repeated until the robot intercepts the
moving target.

A mechanism to find energy efficient paths for mobile robots
is presented in [6]. The mechanism tries to forecast the best
paths and finds the recommended speeds for the robot. The

relationship between the speed of the motor and its power
consumption is modeled through polynomials. The speed of
the robot is related to the speed of its wheels through a linear
transformation. The algorithm makes a comparison between
the energy consumption of different paths at different speeds.
Thus, the mechanism can predict the best path that the robot
should follow and the recommended speed to minimize energy
consumption. A similar mechanism is presented in [7]. An
approach to explore unknown environments by a robot in
a energy-efficient manner is presented in [8]. The proposed
algorithm determines the next target that the robot should
reach. The mechanism then finds a path from the current
position of the robot to the next target efficiently in terms of
energy consumption and avoiding repeated targets. In the end,
the mechanism can predict the best combination of paths and
the correct order of targets to explore the entire environment,
consuming minimal power. In [9] is shown a case study of
the major energy consumers in a mobile robot and a method
is proposed to estimate the battery life and predict energy
consumption moving the robot from an initial position to
a final one. In [10] is presented a mechanism to minimize
the energy consumption of a mobile robot, simultaneously
predicting the best speed to move the robot and the frequency
of its board processor. In [11] a mechanism is shown to predict
the energy needed for unmanned ground vehicle missions and
update the forecast during mission execution through real-time
measurements of energy consumption, vehicle speed and other
parameters.

B. Prediction Mechanisms for Other Computational Systems
Mechanisms to predict the response time and systems

performance are widely studied in computer science. The
following are some of these mechanisms.

Three deadline missing prediction mechanisms for real-time
systems based on distributed threads are presented in [12].
The first mechanism, is based on the concept of Milestones
and uses known information of past activations to define
Milestones statically in the source node, before the execution
of the distributed thread. The second mechanism considers all
possible paths that a distributed thread can execute as well
as information from previous executions. The prediction is
made at runtime, by querying a data structure, which is loaded
by the thread as it visits the nodes. The third mechanism
relates known information of past activations with information
known at runtime, using linear regression. The mechanism also
queries a data structure to make the prediction.

A service management system that can predict the response
time of transaction-oriented web applications is shown in [13].
The prediction service is initiated by a client which requests
to the service manager the response time of a given service.
The manager interacts with the system, predicts the response
time based on the current system conditions and returns this
information to the customer.

A self-prediction mechanism for distributed storage systems
is proposed in [14]. The algorithm can predict the performance
of a given load if its data are moved from device A to device
B. The system generates information used by administrators
for the purpose of performance analysis.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

730

In [15] is presented a deadline missing mechanism for
embedded systems running several different applications. An
application consists of a set of services. Tasks with non-critical
deadlines require a service from the application. The algorithm
determines the probability of a task meet its deadline, joining
all possible states of the system in only two: normal or
overloaded. A data structure stores the average response
time of each application service. When the task finishes its
execution, its response time is compared with the average
response time of the corresponding service.

An algorithm to predict the execution time of parallel
applications is presented in [16]. The prediction is based
on past execution times of similar parallel applications. The
algorithm considers applications that do not have temporal
limitations.

In the field of distributed real-time systems, functions to
predict the response time of periodic processes are shown
in [17]. The prediction is made offline and it considers the
execution time spent on each activity of the process. The
functions used to estimate the response time are based on
the period of the processes. In [18] different aproaches are
proposed to predict the response time of a real-time distributed
application in a node. The proposed methods use Profiling to
determine the execution time of the application.

III. THE PREDICTION MECHANISM

This paper proposes a deadline missing prediction
mechanism for mobile robots performing high-level tasks.
These tasks consist in moving the robot from an initial position
to another position and back to the original position. Given a
particular task and a deadline, the mechanism should be able
to predict in a timely manner if the robot is able to complete
the task within the given deadline, with a success rate of at
least 90%. The mechanism is suitable for any robot with a
hybrid paradigm and doesn’t depend on the implementation
of the path planning and navigation algorithms.

The mechanism predicts if the deadline will be missed when
the robot reaches the goal position, before returning to the
initial position. This is important because if the mechanism
predicts a deadline missing, the task can be canceled or other
actions can be executed before the completion of the task.

The proposed mechanism works by collecting information
during the execution of tasks and comparing these with other
stored information from previous tasks. A history containing
information from previous executions is stored and then
consulted during the prediction process. The mechanism works
in two distinct modes: the learning mode and the prediction
mode. The learning mode is used when the history size is not
large enough to produce reliable results. In this case, the robot
must perform tasks while information is stored in the history
until it reaches the size needed for reliable predictions. The
prediction mode is the main mode and is used when there
are already enough information stored in the history. During
navigation, data are collected by the mechanism and compared
with the data stored in the history from previous executions.

In the end, the result of the deadline missing prediction
algorithm will be based on a formula whose result will indicate

whether or not certain task will be completed within a given
deadline.

A. The History

As mentioned before, the mechanism uses historical data,
represented by a data structure which is consulted during
the forecasting process. The history has a defined maximum
size and when this size is reached, the oldest information is
replaced by newer information. The history stores information
such as the initial position of the robot, the goal position,
the partial time (time to reach the goal position), the total
execution time of the task, the number of known obstacles
in the environment and their positions and the average robot
speed. Whenever a task is completed, the history is updated
with its information if no unknown obstacle was found along
the robot’s path.

The history is consulted when the robot receives the
indication of a new task, before it starts moving. Important
data for the prediction algorithm are obtained from the history
and then the task is started. The data are used to predict
the deadline missing, as soon as the robot reaches the goal
position. It is important to note that the data stored in the
history at the end of a task, are available for subsequent
executions of other tasks. An example of a history is shown
in Table I. ”Home” is the initial position of the robot, ”Goal”
is the goal position, ”PT” is the partial time in seconds, ”TT”
is the total execution time of the task in seconds, ”NKO” is
the number of known obstacles in the environment, ”Vel” is
the average speed of the robot while performing the task in
milimeters per second and ”Obstacles” are the positions of the
known obstacles in the environment.

TABLE I
AN EXAMPLE OF THE HISTORY

Home Goal PT TT NKO Vel Obstacles

(123,664) (987,1245) 47.1 105.6 5 256 (873,232)...

(435,344) (667,-7463) 52.8 120.2 6 340 (987,-456)...

(123,664) (987,1245) 46.8 106.2 5 253 (873,232)...

(435,344) (667,-7463) 53.4 121.5 6 335 (987,-456)...

(123,664) (667,-7463) 56.8 134.2 7 283 (873,232)...

... ... ... ... ... ... ...

B. The Prediction Formula

The deadline missing prediction is calculated as soon
as the robot reaches the halfway point (the goal position)
through the result of a formula. To this end, some important
data are obtained from the history, immediately before the
beginning of the task. As mentioned before, the history stores
information related to tasks in which the robot did not find
any unknown obstacle in its way. A search is performed to
return the historical records of executions of tasks with the
same initial position, goal position and the arrangement of
known obstacles. With these records, the algorithm calculates
the average partial and final time of execution, which are
the average time the robot takes to reach halfway (the goal
position) and the average time it takes to complete the task and
return to the original position without finding any unknown



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

731

obstacle, respectively. This shows that the history size has a
direct influence on the result of the prediction, as the more
records are returned, the greater the precision of the calculated
average times. The influence of the history size is shown later
in this paper.

During the execution of a task, some data are constantly
monitored, such as the execution time and the robot velocity.
At the prediction time, the mechanism assumes that the fixed
unknown obstacles found on the way to the goal position
will also be found on the way back to the initial position.
The mechanism also assumes that the moving obstacles found
along the robot’s path to the goal position, will not be found
on the way back, but reserves a portion of time, in case
any of those obstacles has not completely left the way. The
mechanism uses the sensors of the robot (preferably laser, if
available) to detect whether unknown obstacles are fixed or
not.

Once the robot reaches the goal position, the mechanism
uses the partial execution time as well as the estimated time
to avoid uknown obstacled and the average times retrieved
from history to calculate the deadline prediction as shown in
(1). ”DL” is the deadline and ”CET” is the current execution
time. ”TAT” and ”PAT” are the total and partial average
times retrieved from the history, respectively. ”TAFO” is the
estimated time for the robot to avoid fixed unknown obstacles
while returning to the initial position and ”TMO” is the amount
of time reserved to compensate in case the moving obstacles
have not completely left the path of the robot.

DL− CET >= TAT − PAT + TAFO + TMO (1)

The idea of the formula is to check whether there is
enough time for the robot to return to the initial position
without missing the given deadline, basing the decision on
past executions. The left side of the formula calculates the
remaining time of the deadline by subtracting the current
execution time from the deadline. The right side of the formula
calculates the estimated time for the robot to go back to the
initial position. To make this calculation, the mechanism first
calculates the average time it takes the robot to return to the
initial position without the presence of unknown obstacles
along the way (TAT - PAT). The mechanism considers that the
time it took the robot to avoid fixed unknown obstacles from
the initial position to the goal position will be approximately
the same as the time required to avoid these same obstacles
on the way back and adds this time to the previous result.
This time is calculated by subtracting the average time the
robot takes to reach the goal position without finding unkonwn
obstacles from the current execution time, as shown in (2).

TAFO = CET − PAT (2)

Finally, the algorithm adds the time reserved to compensate
for the presence of moving obstacles on the way back to the
initial position. The time reserved for each moving obstacle
may have a small predetermined and fixed value or calculated
at runtime. ”TMO” is the sum of all those times. If the robot
reaches the goal position without encountering any unknown

obstacle, the values of TAFO and TMO will be zero and the
prediction formula is simplified as shown in (3).

DL− CET >= TAT − PAT (3)

If the result of the prediction formula is true, it means
that the robot will most likely be able to meet the deadline.
Otherwise, the deadline will be missed and corrective actions
can be executed to avoid or minimize possible losses.

IV. THE AUXILIARY MECHANISM

As mentioned before, the prediction mechanism supposes
that the same fixed unknown obstacles found during the
way to the goal position will be found again on the way
back to the initial position. As the tasks performed by the
robot usually take little time, this scenario is more common
to happen. However, in some cases, there may be sudden
changes in the environment and the robot can find a different
number of obstacles during the way back to the initial
position, which may lead to some erroneous predictions. To
compensate for possible sudden change in the environment
and improve the predictions, we developed an auxiliary
mechanism. This mechanism uses a different history which
stores some information from past tasks. Every known and
mapped environment has a corresponding history which can
be consulted to notice changes in the environment and correct
predictions.

The history stores a few information at the end of each task
in which unknown obstacles were found by the robot. Table
II shows the structure of the auxiliary mechanism’s history.

TABLE II
AN EXAMPLE OF THE HISTORY USED BY THE AUXILIARY MECHANISM

Date/Time Home Goal DifObstacles DifTime
Mon Mar 10

09:04 pm
(425, -8778) (6255, 766) +1 +7,2 s

Mon Mar 10
07:23 pm

(-234, 678) (6255, 766) -1 -9,3 s

Mon Mar 10
10:04 pm

(425, -8778) (6255, 766) 0 +0,3 s

Mon Mar 10
10:14 pm

(425, -8778) (6255, 766) +1 +8,6 s

Tue Mar 11
09:02 am

(-234, 678) (-444, 234) 0 -0,4 s

Tue Mar 11
12:15 pm

(425, -8778) (6255, 766) +1 +8,4 s

Wed Mar 12
11:04 pm

(425, -8778) (-444, 234) +2 +15,3 s

... ... ... ... ...

”Date/Time” represents the date and time the task was
started. ”Home” is the initial position of the robot and ”Goal”
is the goal position. ”DifObstacles” is the difference between
the number of unknown fixed obstacles encountered by the
robot on the way to the goal position and back to the initial
position. The value is zero if there was no difference, +k if the
robot found k more obstacles then expected while returning to
the initial position and -k if the robot found k less obstacles.
”DifTime” is the difference between the estimated time for the
robot to return to the initial position from the goal position



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

732

(the right side of the prediction formula) and the actual time
the robot took to make it. The idea is to store the difference
between the estimated time and the actual execution time,
caused by the obstacles found while returning to the initial
position.

The history of the auxiliary mechanism can be consulted
with different criteria. The mechanism selects the history
which corresponds to the environment in which the task is
being executed and performs a search considering only the
records related to similar tasks (same home position and same
goal position). The criteria for the search are the following:

• Latest N performed tasks: The mechanism searches
for the latest N executions of the task. The idea is
that the environment is probably similar to what it was
in the latest task executions. If N=10 for example, the
mechanism verifies the lastest 10 executions of the task.
If N = 1, the mechanism only selects the last execution
and relies on it.

• All the performed tasks: All similar tasks to the current
one are retrieved from the history.

• Tasks performed on a time interval: The mechanism
selects specific task executions considering the date/time
they were started. In a factory or warehouse, there are
peak times when the environment changes frequently and
times of little or no activity. This information is important
because it can directly influence the results of the deadline
missing prediction. So the mechanism can consider only
executions of a task in a given time range. The filter
can be further restricted and only consider executions of
tasks in a time range on a specific week day or a specific
month, if the month is relevant.

A query to the history returns a set of records with relevant
information from similar tasks. These records are used to
update the value of TAFO (estimated time for the robot to
avoid fixed unknown obstacles) in (1). The mechanism verifies
what happened in the majority of the tasks and updates the
value of TAFO according to the result. If in the majority of
the executions, the robot encountered the same obstacles while
going to the goal position and returning to the initial position,
then probably in the current task, the same will happen and
the prediction mechanism is likely to succeed. Otherwise, the
TAFO value is updated with the average ”DifTime”, i.e, the
mechanism adds to TAFO the average time that differs from
the estimated time calculated by the prediction formula. The
average time calculated can have a negative or positive value,
depending on whether the robot reached the initial position
before or after the estimated time, respectively, in the majority
of the executions. In the example shown in Table II, if in the
current task the home position has coordinates (425,-8778)
and the goal position has coordinates (6255,766) and if the
search criterion is the first one with N=4, we find that in 3
of the latest 4 executions, the robot found an extra obstacle
that was not expected, while returning to the initial position.
The mechanism considers that the robot will probably find an
extra obstacle again and adds 8.06 seconds to TAFO [(7.2s +
8.6s + 8.4s) / 3].

The auxiliary mechanism can be enabled and disabled

as needed to correct erroneous predictions due to frequent
changes in the environment.

V. SIMULATIONS

To validate the mechanism, several simulations were
performed in different conditions, with different arrangement
of obstacles and different history sizes. First we made several
simulations in a static and simulated environment using
the robot simulator. After confirming that the mechanism
works correctly in simulated environments, we used a real
environment and the actual robot for testing.

The Pioneer 3-DX is a fast, smart and versatile mobile robot,
widely used for research and experiments in the field of mobile
robotics. It has become an increasingly reference platform
to implement and compare different algorithms. The P3-DX
has a rigid aluminum body and offers an embedded computer
(with Linux Operational System) that has many components
that a user can program according to his application needs.
Some of these components are resources for vision processing,
communication via Ethernet (wired and wireless), sixteen
sonars to detect objects located between 15 cm and 7 meters
away, four big wheels coupled with powerful engines capable
of a maximum speed of 1.6 meters/second and carry a weight
of up to 23 kg, bumpers with touch sensors and 3 batteries
that guarantee an autonomy of 8-10 hours.

There are a variety of accessories and sensors that can be
coupled to increase the versatility of the robot. One of the
most important sensors for precise localization of the robot
and path planning is the laser sensor.

There are different software platforms used for the
simulations. These platforms are used to control and simulate
the Pioneer 3-DX robot and attached sensors. The main
platform used to control and program the robot is ARIA.
ARIA provides several classes and functions for various
operations and provides simple commands for controlling
various complex maneuvers of the robot. Another software
used is ARNL, which is an extension of ARIA for localization,
navigation, path planning and communication across the
network.

MobileSim, the Pioneer robot simulator is also used to test
the proposed mechanism before testing on the actual robot.
It can simulate the behavior of the robot and its sensors,
such as the laser. The Mapper3 software is used to generate
the map of the environment. Finally, MobileEyes platform
provides an easy to use graphical interface for path planning
and localization tasks. Fig. 1 shows a simulation running on
MobileSim.

A. Simulated Environment

In this case, the simulated environment is static, i.e, contains
only known and fixed obstacles. We used three different
configurations of the environment, with five obstacles in
different positions.

In each configuration of the environment, we performed
100 different simulations, varying the history size. We used
histories with 50, 200, 600 and 1000 records. For every history
size we executed 100 simulations, totaling 400 simulations



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

733

for each configuration of the environment and 1200 total
simulations. Besides showing that the mechanism works, we
wanted to show that the history size has influence on the
quality of the prediction. Fig. 2, Fig. 3 and Fig. 4 show
the three different configurations used. First, we executed
the mechanism in learning mode repeatedly until the history
reached the desired size. Then we enabled the prediction mode
and performed simulations.

The simulations were performed using MobileSim. The
deadline used in the simulations is the final average execution
time, calculated from the history immediately before each task
execution.

1) Results: The simulations results illustrate the main
features of the proposed mechanism. They showed that the
mechanism works, is reliable and ensures a correct prediction
rate greater than 90%. Table III shows the minimum, average
and maximum execution times (in seconds) in simulations with

1000 records in the history.

TABLE III
SIMULATION RESULTS. HISTORY SIZE = 1000

Minimum Average Maximum

C1
Partial Execution Time 40.97 42.56 45.12
Total Execution Time 99.95 102.24 104.73

C2
Partial Execution Time 41.22 44.23 45.78
Total Execution Time 102.23 104.32 106.23

C3
Partial Execution Time 43.83 46.33 48.56
Total Execution Time 105.34 108.77 110.97

As expected, the quality of the deadline missing predictions
depends on the size of the history. With only 50 entries in
the history, we obtained a correct prediction rate ranging
from 52% to 62%. With 200 and 600 entries, the rate
ranged from 72% to 77% and from 84% to 87%, repectively.
Finally, with 1000 records in the history, the correct prediction
rate exceeded 90%. Fig. 5 shows the correct prediction rate
resulting from all the simulations in each configuration of the
environment. Fig. 6 shows the influence of the history size on

Fig. 1 Simulation running on MobileSim

Fig. 3 Second Configuration of the environment

Fig. 2 First Configuration of the environment

Fig. 4 Third Configuration of the environment



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

734

the rate. Since we could exceed 90%, it was not necessary to
further increase the size of the history, but this can be done to
improve the correct prediction rate, if necessary. We believe
that 1000 is a number that brings a good balance between
performance and accuracy.

B. Real Environment

After the tests in the simulated environments we could
verify that the mechanism works and is effective. So, we
decided to make simulations in the real world, using the real
robot. The first step before executing the simulations was to
create the map of the desired environment. The environment
chosen is the corridor of one of the floors of a building in
our university. To create the map, the Pioneer 3-DX robot was
teleoperated with a joystick around the corridor while the laser
scanned the environment. This process resulted in the creation
of a log file, which was opened in the Mapper3 to generate

the real map of the environment. Fig. 7 shows the resulting
map.

After creating the map, we created a history with size=100.
Our environment contains only one home position and one
goal position so a history with size=100 is enough for a high
rate of correct predictions.

Then we executed the mechanism in learning mode 100
times to fully populate the history. Once the history was full,
we decided that for each simulation the deadline would be
a random value varying in the range [TAT-30s, TAT+30s].
As mentioned previously, TAT is the total average time
retrieved from the history, i.e, the average time that the robot
usualy takes to complete the task without finding any unkown
obstacle. Then we disabled the auxiliary mechanism and we
executed the mechanism in the prediction mode 100 more
times. During these simulations, we placed unknown obstacles
like chairs along the robot’s path and we walked in front of
the robot a few times to simulate moving obstacles.

We checked the results and we made the mechanism fail
a few times deliberately by putting extra unknown obstacles
in the robot’s path to the initial position. Finally, we enabled
the auxiliary mechanism with the first search criterion and
N=5 and we checked the prediction results after executing
the prediction mechanism a few more times. Fig. 8 and Fig.
9 show the robot performing tasks and avoiding unknown
obstacles.

1) Results: The simulation results showed that the
mechanism also works in real environments with unknown
obsctacles, is reliable and ensures a correct prediction rate
greater than 90%.

After the 100 executions of the mechanism in prediction
mode, we managed to get a correct prediction rate exceeding
90%, as intended. The results are shown in Fig. 10.

By placing various unexpected obstacles in the robot’s way
back to the initial position, we managed to force a few wrong
predictions, as intended.

After we enabled the auxiliary mechanism with N=5 and run
the forecast mechanism a few more times, the results were as
expected. The mechanism realized that the robot was finding
two more obstacles than expected. The mechanism started to
adjust the value of TAFO with the data obtained by consulting

Fig. 5 The correct prediction rate in sumulations

Fig. 7 The map of the environment

Fig. 6 The influence of history on the correct prediction rate



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

735

the history and the main mechanism started to produce correct
predictions again.

VI. CONCLUSIONS AND FUTURE WORK

Nowadays, mobile robotics is gaining an increasingly
important role in modern society. Mobile robots are
increasingly useful in many areas of our lives such as
entertainment, medicine, industry, military, research, etc.
Human labor is being replaced by intelligent and autonomous
robots that can easily perform dangerous and stressful tasks for
humans. Many robots are designed to perform useful services
to humans and they assist in several tasks such as rescue,
domestic assistance (vacuum cleaners, lawn mowers, etc.),

entertainment, assistance to persons with disabilities, among
others. The practical application of mobile robots in different
activities in our society, has shown how promising is the future
of mobile robotics.

We live in a tech society, and it is estimated that in
the future, human being will be responsible only for tasks
that require essentially human functions such as thinking,
imagining, reasoning, creating, designing, etc. Robots will not
be able to perform these tasks autonomously, for a while.

Real-time system’s temporal constraints can be applied to
high-level tasks of mobile robots in the situations where tight
deadlines are required for proper system operation. Missing
a deadline can result in material and financial losses. The
environment in which a robot moves around and performs
tasks can be dynamic and not always predictable. This means
that it is not always possible to predict statically whether a
robot can perform a task within a given deadline. In this sense,
it is necessary to develop mechanisms to predict deadline
missing at runtime.

This paper presented a simple and reliable deadline missing
prediction mechanism for mobile robots and demonstrated its
effectiveness when used both in simulated environments and
real environments.

While performing tasks, the robot can find unknown
obstacles along the path to the target position. On the way
back to the initial position, if the robot find those same fixed
obstacles, the mechanism hardly makes a wrong prediction.
An auxiliary mechanism was developed to compensate for
possible failures resulting from the sudden changes in the
environment. So far, the user is responsible for enabling
the auxiliary mechanism when needed and for selecting the
criterion that should be used in the search. The next step in this
work is to improve the auxiliary mechanism and automate its
use. The prediction mechanism itself can enable the auxiliary
mechanism when needed (e.g, when there are several wrong
predictions) and select the best criteria as well as disable it if
not needed. Unexpected moving obstacles encountered on the
way back to the initial position tend not to have much influence

Fig. 8 Robot Pionner 3-dx performing a task

Fig. 10 The correct prediction rate in a real environment

Fig. 9 Robot Pionner 3-dx avoiding an unknown obstacle



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:5, 2014

736

on the result of the prediction, because in general, the time that
the robot takes to avoid these obstacles is considerably smaller
than in the case of fixed obstacles.

Some information stored in the history such as the velocity
were not used in this work, but may be used later, as well
as any other information that might be relevant to improve
the mechanism. The proposed prediction mechanism uses
the localization, navigation and path planning algorithms
developed by the robot manufacturer. These algorithms are
proprietary, but are fast and efficient. The mechanism can be
adapted to work with any robot or development environment,
but its efficiency depends on the sensors used by the robot
to detect obstacles and the quality of the localization and
path planning algorithms. The laser sensor offers far greater
precision in the localization and detection of obstacles than
sonar.

REFERENCES

[1] T. Tsubouchi and S. Arimoto, “Behavior of a mobile robot navigated
by an ldquo;iterated forecast and planning rdquo; scheme in the
presence of multiple moving obstacles,” in Robotics and Automation,
1994. Proceedings., 1994 IEEE International Conference on, 1994, pp.
2470–2475 vol.3.

[2] T. Tsubouchi, A. Hirose, and S. Arimoto, “A navigation scheme with
learning for a mobile robot among multiple moving obstacles,” in
Intelligent Robots and Systems ’93, IROS ’93. Proceedings of the 1993
IEEE/RSJ International Conference on, vol. 3, 1993, pp. 2234–2240
vol.3.

[3] J. Miura, H. Uozumi, and Y. Shirai, “Mobile robot motion planning
considering the motion uncertainty of moving obstacles,” in Proceedings.
1999 IEEE International Conference on Systems, Man, and Cybernetics,
1999, pp. 692–697.

[4] C. Shi, Y. Wang, and J. Yang, “A local obstacle avoidance method
for mobile robots in partially known environment,” Robot. Auton. Syst.,
vol. 58, no. 5, pp. 425–434, May 2010.

[5] Q. Zhu, J. Hu, and L. Henschen, “A new moving target interception
algorithm for mobile robots based on sub-goal forecasting and an
improved scout ant algorithm,” Applied Soft Computing, vol. 13, no. 1,
pp. 539 – 549, 2013.

[6] Y. Mei, Y.-H. Lu, Y. Hu, and C. S. G. Lee, “Energy-efficient motion
planning for mobile robots,” in Robotics and Automation, 2004.
Proceedings. ICRA ’04. 2004 IEEE International Conference on, vol. 5,
2004, pp. 4344–4349 Vol.5.

[7] M. Jia, G. Zhou, and Z. Chen, “An efficient strategy integrating grid and
topological information for robot exploration,” in Robotics, Automation
and Mechatronics, 2004 IEEE Conference on, vol. 2, 2004, pp. 667–672
vol.2.

[8] Y. Mei, Y.-H. Lu, C. S. G. Lee, and Y. Hu, “Energy-efficient
mobile robot exploration,” in Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, 2006, pp.
505–511.

[9] Y. Mei, Y.-H. Lu, Y. Hu, and C. S. G. Lee, “A case study of mobile
robot’s energy consumption and conservation techniques,” in Advanced
Robotics, 2005. ICAR ’05. Proceedings., 12th International Conference
on, 2005, pp. 492–497.

[10] W. Zhang, Y.-H. Lu, and J. Hu, “Optimal solutions to a class of power
management problems in mobile robots,” Automatica, vol. 45, no. 4, pp.
989 – 996, 2009.

[11] A. Sadrpour, J. Jin, and A. Ulsoy, “Mission energy prediction for
unmanned ground vehicles,” in Robotics and Automation (ICRA), 2012
IEEE International Conference on, 2012, pp. 2229–2234.

[12] P. Plentz, “Mecanismos de previsão de perda de deadline para sistemas
baseados em threads distribuı́das tempo real,” Doutorado, UFSC,
Florianopólis - SC, 2008.

[13] S. Kirtane and J. Martin, “Application performance prediction in
autonomic systems,” in Proceedings of the 44th annual Southeast
regional conference, ser. ACM-SE 44. New York, NY, USA: ACM,
2006, pp. 566–572.

[14] E. Thereska, M. Abd-El-Malek, J. Wylie, D. Narayanan, and G. Ganger,
“Informed data distribution selection in a self-predicting storage
system,” in Autonomic Computing, 2006. ICAC ’06. IEEE International
Conference on, 2006, pp. 187–198.

[15] C. Tatibana, C. Montez, and R. Oliveira, “Soft real-time task
response time prediction in dynamic embedded systems,” in Software
Technologies for Embedded and Ubiquitous Systems, ser. Lecture Notes
in Computer Science, R. Obermaisser, Y. Nah, P. Puschner, and
F. Rammig, Eds. Springer Berlin Heidelberg, 2007, vol. 4761, pp.
273–282.

[16] W. Smith, I. Foster, and V. Taylor, “Predicting application run times
with historical information,” J. Parallel Distrib. Comput., vol. 64, no. 9,
pp. 1007–1016, Sept. 2004.

[17] L. Welch, A. Stoyenko, and T. Marlowe, “Response time prediction
for distributed processes specified in cart-spec,” Control Engineering
Practice, vol. 3, no. 5, pp. 651 – 664, 1995.

[18] E.-N. Huh and L. R. Welch, “Adaptive resource management for
dynamic distributed real-time applications,” J. Supercomput., vol. 38,
no. 2, pp. 127–142, Nov. 2006.


