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Abstract—This paper describes a new efficient blind source 

separation method; in this method we uses a non-uniform filter bank 
and a new structure with different sub-bands. This method provides a 
reduced permutation and increased convergence speed comparing to 
the full-band algorithm. Recently, some structures have been 
suggested to deal with two problems: reducing permutation and 
increasing the speed of convergence of the adaptive algorithm for 
correlated input signals. The permutation problem is avoided with the 
use of adaptive filters of orders less than the full-band adaptive filter, 
which operate at a sampling rate lower than the sampling rate of the 
input signal. The decomposed signals by analysis bank filter are less 
correlated in each sub-band than the input signal at full-band, and can 
promote better rates of convergence. 
 

Keywords—Blind source separation (BSS), estimates, full-band, 
mixtures, Sub-band.  

I. INTRODUCTION 
HE blind separation separates different signal sources 
statistically. The work of this paper is based on the 

structure in [1]. In the real world, due to reverberant 
environment, the signals of the original sources are filtered by 
a linear Multiple Input Multiple Output (MIMO) system 
before being captured by the microphones. The second order 
statistics (SOS) is used where we use the same number of 
sources and microphones [2]. 

In BSS problem, we are interested in the system that 
dissolves the mixture, it is described by 

 
௡௦ሺ݊ሻݕ    ൌ ∑ ∑ ߱௡௠,௡௦ሺ݇ሻݔ௡௠ሺ݊ െ ݇ሻௌିଵ

௞ୀ଴
ே௠
௡௠ୀଵ             (1) 

 
Extending the formulation of the output signals into a 

matrix form, we can describe the signal of the (ns)th output at 
time n as.  

 
௡௦ሺ݊ሻݕ             ൌ ∑ ௡௠ݔ

்ே௠
௡௠ୀଵ ሺ݊ሻ߱௡௠,௡௦                         (2) 

 
where ݔ௡௠ሺ݊ሻ is with 2S updated samples captured by pth   
microphones and ߱௡௠.௡௦ሺ݊ሻ ൌ ሾ߱௡௠.௡௦ሺ0ሻ, ߱௡௠.௡௦ሺ1ሻ, … , ߱௡௠.௡௦ሺ2ܵ െ
1ሻሿ் is the vector containing 2S coefficients of the FIR filter 
that models the route of the (nm)th sensor and the (ns)th output. 
Two new parameters are needed for generalization of the 
formulation, are the delays in time (lag) taken into 
consideration the calculation of the correlation (1 ≤ lag ≤ 2S) 
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and 2N size block output signal. From (2) it can be described 
that the vector that contains a block of 2N samples of size 
(ns)th output at time k as 

 
௡௦ሺ݇ሻݕ                 ൌ ∑ ෠ܺ௡௠

் ሺ݇ሻ ෭߱௡௠,௡௦
ଶே௠
௠௡                     (3) 

 
where 
             ෠ܺ௡௦ሺ݇ሻ ൌ ሾݔ௡௠ሺ2݇ܵሻ ڮ ௡௠ሺ2݇ܵݔ ൅ 2ܰ െ 1ሻሿ்      (4) 

 
is Toeplitz matrix of dimension 2S × 2N containing the 2S 
blocks with delayed versions of the samples of the signal 
captured by the (nm)th sensor. 

Then, (3) can be extended to include samples of (lag) 
blocks of times. Thus, the matrix with the data of (ns)th output 
of dimension 2N × 2D, is given by 

 
                     ௡ܻ௦ሺ݇ሻ ൌ ∑ ܺ௡௠

் ሺ݇ሻ ෡ܹ௡௠,௡௦
ଵே௠
௡௠ୀଵ                    (5) 

 
To ensure the linear convolution of Yns(m) the delay time 

should be: lag = S [3], it takes four input blocks of ܺ௡௠
் . 

Therefore, the dimensions of Xnm(m) is 2N × 4S and ෡ܹ௡௠,௡௦  is 
4S x lag. Xnm(k) matrices are attained by doubling ෠ܺ௡௠,  

 
                            ܺ௣ሺ݇ሻ ൌ ൣ ෠ܺ௣

்ሺ݇ሻ, ෠ܺ௣
்ሺ݇ െ 1ሻ൧                    (6) 

 
where ෠ܺ௡௠

் ሺ݇ െ 1ሻ represents also Toeplitz matrix, so that the 
first row of the matrix Xnm(k) contains 4S samples of  nmth 
input signal and each subsequent row is obtained by shifting 
the previous row to the right a sample containing a new 
sample per row. The Sylvester matrix ෡ܹ௡௠,௡௦  is of dimension 
4S x lag, defined as 

            

෡ܹ௡௠,௡௦ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

෭߱௡௠,௡௦ሺ0ሻ 0 ڮ 0
෭߱௡௠,௡௦ሺ1ሻ ෭߱௡௠,௡௦ሺ0ሻ ڰ ڭ

ڭ ෭߱௡௠,௡௦ሺ1ሻ ڰ 0
෭߱௡௠,௡௦ሺ2ܵ െ 1ሻ ڭ ڰ ෭߱௡௠,௡௦ሺ0ሻ

0 ෭߱௡௠,௡௦ሺ2ܵ െ 1ሻ ڰ ෭߱௡௠,௡௦ሺ1ሻ
ڭ 0 ڰ ڭ
0 ڮ 0 ෭߱௡௠,௡௦ሺ2ܵ െ 1ሻ
0 ڮ 0 0
ڭ ڮ ڰ ڭ
0 ڮ 0 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

(7) 

 
which has the latest 2S - lag + 1 rows padded by zeroes in 
order to be deal mathematically with the  Xnm(k).  The general 
case is 1 ≤ lag ≤ 2S. We can rewrite (5) for a more compact 
form, i.e. 
 
                                      ܻሺ݇ሻ ൌ ܺሺ݇ሻ ෡ܹ                                 (8) 
 
 
where 
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                                ܻሺ݇ሻ ൌ ൣ ଵܻሺ݇ሻ ڮ ௣ܻሺ݇ሻ൧                        (9) 
 
is a matrix of 2N × (P)(lag) dimension containing the building 
blocks of the output signals of all channels, 
 
                              ܺሺ݇ሻ ൌ  ሾ ଵܺሺ݇ሻ ڮ ܺே௠ሺ݇ሻሿ                   (10) 
 
is a matrix of order 2N × 4SP containing all the blocks behind 
the times of all sensors, and 
 

෡ܹ ൌ ቎
෡ܹଵଵ ڮ ෡ܹଵ,ே௠
ڭ ڰ ڭ

෡ܹே௠,ଵ ڮ ෡ܹே௠,ே௠

቏                    (11) 

 
is a matrix of dimension 4SP x lagP containing all coefficients 
of all filters of separation. 

II. COST FUNCTION AND UPDATING 
Similar to the separation system described by (8), the 

mixing system can be modeled as ܺሺ݉ሻ ൌ ܵሺ݉ሻܩ෨, where S(k) 
is a matrix of 2N ×(Nm) (U + 2S −1) dimension  containing 
the backward versions of the sources signals and ܩ෨ is the 
mixing matrix of Sylvester type of order (Nm)(U + 2S- 1) × 
4(Nm)S containing the coefficients of the impulse response of 
all filters. These dimensions result, again, the condition of 
linearity of convolutions performed. It is therefore possible to 
obtain a block diagonal matrix ܤ ൌ ෨ܩ ෡ܹ , such that B – bdiag B 
=  0.  

The Bdiag operator operates on a matrix formed by sub-
matrices, zeroing all sub-matrices that do not belong to the 
main diagonal. 

We can define 
 

ܴ௫௫ሺ݇ሻ ൌ ܺுሺ݇ሻܺሺ݇ሻ                      (12) 
 
and 

ܴ௬௬ሺ݇ሻ ൌ ܻுሺ݇ሻܻሺ݇ሻ                      (13) 
 

having dimensions 2(Nm)S x 2(Nm)S and (Nm)(lag) x (Nm) 
(lag), respectively. For (13) has full rank, it is necessary the 
size of the output block to be N ≥ (lag).  

The objective function is given by [2] 
 

           
߫ሺ݇ሻ ൌ ∑ ,ሺ݅ߚ ݇ሻሼ݈݃݋ሾܾ݀݅ܽ݃ሺܻுሺ݅ሻܻሺ݅ሻሻሿ െ ሾdet ሺܻுሺ݅ሻܻሺ݅ሻሻሿሽஶ݃݋݈ 

௜ୀ଴ (14) 
 
where β represents a normalized constant according to 
∑ ,ሺ݅ߚ ݇ሻ ൌ 1ஶ

௜ୀ଴ . Using the matrix formulation of (8) to 
calculate the reduced temporal correlation matrices of (13), the 
objective function contains lag time delays of autocorrelations 
and cross-correlations of output signals.  

Considering an algorithm based on gradient method, the 
recursive equation for updating the coefficients of the filters 
that extract the mixture is written as 

 
                      ෡ܹ ሺ݇ ൅ 1ሻ ൌ  ෡ܹ ሺ݇ሻ െ ௐഥ׏ߤ ߫ሺ݈ሻ                    (15) 

Using the formulation of the natural gradient [4] which is 

more robust and less computationally complexity, we obtain 
the following recursive equation for updating the coefficients: 
 
                      ෡ܹ ሺ݇ ൅ 1ሻ ൌ  ෡ܹ ሺ݇ሻ െ ௐഥ׏ߤ

ேீ߫ሺ݇ሻ                  (16) 
 
where the natural gradient of the objective function (14): 

 
ௐഥ׏                        

ேீ߫ሺ݇ሻ ൌ ෡ܹ ෡ܹ ு׏ௐഥ ߫ሺ݇ሻ                       (17) 
 
ൌ 2 ∑ ,ሺ݅ߚ ݇ሻ ෡ܹ ൛ܴ௬௬ሺ݅ሻ െ ܾܴ݀݅ܽ݃௬௬ሺ݅ሻൟܾ݀݅ܽ݃ିଵஶ

௜ୀ଴ ܴ௬௬ሺ݅ሻ (18)                   
 

and ߤ is the step of adapting the algorithm. 
The operator bdiag(•) interprets the matrix to which is 

applied as a composition of sub-matrices, zeroing all sub-
matrices that do not belong to its main diagonal. To illustrate 
this operator, assume a system with 3 sources. 

The array Ryy(k) is written as: 
 

ܴ௬௬ሺ݇ሻ ൌ ቎
ଵܻ
ுሺ݇ሻ ଵܻሺ݇ሻ ଵܻ

ுሺ݇ሻ ଶܻሺ݇ሻ ଵܻ
ுሺ݇ሻ ଷܻሺ݇ሻ

ଶܻ
ுሺ݇ሻ ଵܻሺ݇ሻ ଶܻ

ுሺ݇ሻ ଶܻሺ݇ሻ ଶܻ
ுሺ݇ሻ ଷܻሺ݇ሻ

ଷܻ
ுሺ݇ሻ ଵܻሺ݇ሻ ଷܻ

ுሺ݇ሻ ଶܻሺ݇ሻ ଷܻ
ுሺ݇ሻ ଷܻሺ݇ሻ

቏   (19) 

 
where ௜ܻ

ுሺ݇ሻ ௜ܻሺ݇ሻare matrices (with i = 1, 2 and 3) are the 
autocorrelation matrices of the ith output, while the matrices 

௜ܻ
ுሺ݇ሻ ௝ܻሺ݇ሻ, with ݅ ് ݆, are the matrices of cross-correlation 

between the ith and jth output. It is natural to subdivide Ryy(k) 
matrix into sub-matrices, and the autocorrelation sub-matrices 
belonging to the main diagonal of the matrix of sub-matrices. 
So bdiag Ryy(k) yields the following result [5]: 

                   

ܾܴ݀݅ܽ݃௬௬ሺ݇ሻ ൌ ቎
ଵܻ
ுሺ݇ሻ ଵܻሺ݇ሻ 0 0

0 ଶܻ
ுሺ݇ሻ ଶܻሺ݇ሻ 0

0 0 ଷܻ
ுሺ݇ሻ ଷܻሺ݇ሻ

቏  (20) 

 
where zero is a matrix that has dimension as  ௜ܻ

ுሺ݇ሻ ௝ܻሺ݇ሻ ൌ
 ܴ௬೔௬ೕ ሺ݇ሻ. 

During updating the coefficients it is necessary to ensure 
the structure of Sylvester matrix ෡ܹ ሺ݇ ൅ 1ሻ. The 
indiscriminate use of a gradient that acts on the entire array 
can destroy this characteristic by removing the redundancy 
that allows a two-way relationship between the matrices ෡ܹ௣௤ 
and the corresponding filters ሺ ෡ܹ௡௠,௡௦ሻ [6]. This is easily 
imposed by selecting one of the columns of matrices ෡ܹ௡௠,௡௦ 
which contains all coefficients of the filters ෥߱௡௠,௡௦ሺ݇݇ሻ (for 
kk = 0, ..., 2S - 1) and generate ׏ௐ෡

ேீ߫ሺ݇ሻ    according to (7). In 
[2] it is shown that the choice of the first S elements of column 
෩ܹ௡௠,௡௦ is the best choice for optimization purposes. Consider 
a system with two sources and two sensors (TITO, Two Input 
Two Output): 

                    

෡ܹ ሺ݅ሻ ൌ ෡ܹ ሺ݅ െ 1ሻ െ ଶఓ
௕

∑ ቈ
෡ܹଵଶܴ௬ଶ௬ଵܴ௬ଵ௬ଵ

ିଵ ෡ܹଵଵܴ௬ଵ௬ଶܴ௬ଶ௬ଶ
ିଵ

෡ܹଶଶܴ௬ଶ௬ଵܴ௬ଵ௬ଵ
ିଵ ෡ܹଶଵܴ௬ଵ௬ଶܴ௬ଶ௬ଶ

ିଵ ቉௕
௠ୀଵ  (21) 

 
where Rnm,ns, of dimension lag × lag, a sub-matrix of Ryy (13), 
i is the number of iterations and μ is the step-size. 
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III. CONVOLUTIVE MIXTURES PROBLEM 
The algorithms described in the previous section do not 

perform well due to the reverberant environment. A simple 
way to improve the source separation to diagonalize the 
correlation matrix of outputs RYY [7], which for a linear 
MIMO system (Nm) × Q with (Nm) = Q is given by 

 

ܴ௒௒ ൌ

ۏ
ێ
ێ
ێ
ێ
Φሺۃۍ ଵܻሻ ଵܻ

ுۄ Φሺۃ ଵܻሻ ଶܻ
ுۄ ڮ Φሺۃ ଵܻሻ ௣ܻ

ுۄ
Φሺۃ ଶܻሻ ଵܻ

ுۄ Φሺۃ ଶܻሻ ଶܻ
ுۄ ڮ Φሺۃ ଶܻሻ ௣ܻ

ுۄ
ڭ ڰ ڰ ڭ
ڭ ڰ ڰ ڭ

Φሺۃ ௣ܻሻ ଵܻ
ுۄ Φሺۃ ௣ܻሻ ଶܻ

ுۄ ڮ Φሺۃ ௣ܻሻ ௣ܻ
ுےۄ

ۑ
ۑ
ۑ
ۑ
ې

          (22) 

 
where ۄ.ۃ is the statistical average operator. The coefficients of 
the filters, ߱௡௦,௡௠ሺ݊ሻ, that extract the mixture should converge 
to values that minimize the mutual information between 
outputs, which correspond to elements that are outside the 
main diagonal of the correlation matrix, i.e. 
 

Φሺۃ                          ௜ܻሻ ௝ܻ
ுۄ ൌ ݅  ݎ݋݂    0 ് ݆                    (23) 

 
Already the main diagonal elements, which control the 

scaling of the outputs, must be restricted to appropriate 
constants bi, i.e.: 

 
Φሺۃ                                     ௜ܻሻ ௝ܻ

ுۄ ൌ ܾ௜                            (24) 
 
The iterative equation for updating the filter coefficients 

based on the method of separation of the gradient is given by 
 
                                 ௜ܹାଵ ൌ ௜ܹ ൅ Δߤ ௜ܹ                         (25) 

 
where  
 

Δ ௜ܹ ൌ

ۏ
ێ
ێ
ێ
ଵܾۍ െ Φሺۃ ଵܻሻ ଵܻ

ுۄ Φሺۃ ଵܻሻ ଶܻ
ுۄ ڮ Φሺۃ ଵܻሻ ௡ܻ௠

ு ۄ
Φሺۃ ଶܻሻ ଵܻ

ுۄ ܾଶ െ Φሺۃ ଶܻሻ ଶܻ
ுۄ ڮ Φሺۃ ଶܻሻ ௡ܻ௠

ு ۄ
ڭ ڰ ڰ ڭ
ڭ ڰ ڰ ڭ

Φሺۃ ௡ܻ௠ሻ ଵܻ
ுۄ Φሺۃ ௡ܻ௠ሻ ଶܻ

ுۄ ڮ ܾ௣ െ Φሺۃ ௡ܻ௠ሻ ௡ܻ௠
ு ےۄ

ۑ
ۑ
ۑ
ې

(26) 

 
We can use second order statistics (SOS) considering 

several blocks of samples of the output signals. This method is 
known as non-stationary decorrelation [8]. There is another 
method for colored sources, which also considers using SOS 
and Time-Delayed Decorrelation, i.e. 

 
Φሺۃ                ௜ܻሻ ௝ܻ

ுۄ ൌ ۃ ௜ܻሺ݇ሻ ௝ܻሺ݇ ൅ ߬௜ሻுۄ ൌ 0              (27) 
 
It can also solve the problem of BSS. Using these types of 

decorrelation has fair enough information for estimating the 
separating filter; there is no need for higher orders statistical 
information to ensure the independence between the sample 
estimates of the sources [9]. 

On the other hand, when we consider Φሺ ௜ܻሻ ൌ tanh ሺ ௜ܻሻ we 
have 

 
Φሺۃ                       ௜ܻሻ ௝ܻ

ுۄ ൌ tanh ሺۃ ௜ܻሻ ௝ܻ
ுۄ ൌ 0               (28) 

 

which can be seen as a case of non-linear decorrelation. 

IV. RESULTS 
In these experiments we used two speech signals with 

duration ranging from 15 to 30 seconds. The mixtures were 
carried out considering different reverberation conditions. The 
separating filter length is equal to the mixing filters, Ls = S. 
We have used the signal-to-interference ratio (SIR) in [2] 

 

௜௝ܴܫܵ                            ൌ
∑ ห௕ೕ೔כ௦೔ሺ௡ሻหమ

೙

∑ ∑ ห௕ೕೝכ௦ೝሺ௡ሻหమ
೙

ಿ
ೝసభ,ೝಯ೔

                  (29) 

 
where bjr(n) is the sum of the convolutions of the filters of the 
jth row of the matrix W with the filters of rth column of the 
matrix H, i.e., B = W * H. 

In these experiments we compare the performance of the 
algorithm presented in full-band [2] with the subbands 
algorithm proposed in this paper:  Ls = 256, 512 and 1024, see 
Fig. 1. 

Cosine modulated maximally decimated is used with M 
from one to sixteen. Table I shows the size of K separation 
sub-filters ݓ௡௠,௡௦

௜ (k) and the steps in full band (M = 1) for 
different mixtures.  

Table II contains the final SIR algorithms for the full-band 
and sub-band, and Table III shows the amount of 
multiplications each block according to (30), (31) [1], [5]. 

 

                   ܰெሺܾܾܵ݀݊ܽݑሻ ൌ ௉మሺଵଶெ௄యି଼௄యሻ
ெ

                   (30)  
 
and 

                            ܰெሺܾ݈݈݀݊ܽݑܨሻ ൌ 8ܲଶܵଷ                     (31) 
 
Looking at Tables II and III we can see that with increasing 

order of the mixing scheme corresponds to longer echo. The 
benefits of sub-band configuration on full band come to be 
more apparent, causing considerably higher signal-to-interface 
ratio. 

 
TABLE I 

DIFFERENT MS WITH DIFFERENT LS FOR THE FULL-BAND AND SUB-BANDS 
ALGORITHMS 

 K subfilters length of Step size 
M Ls=256 Ls =512 Ls=1024 (10-4*) ߤ 
2 132 260 516 5 
4 68 132 260 10 
8 36 68 132 20 
16 20 36 68 30 
32 12 20 36 40 

 
TABLE II 

FINAL SIR (DB) 
 SIR Final 

S = Ls M = 1 M = 2 M = 4 M = 8 M = 16 
256 13.03 13.71 13.92 13.27 15.99 
512 9.74 9.03 9.97 10.00 11.94 
1024 7.25 6.59 7.45 7.51 8.84 
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TABLE III 

NUMBER OF MULTIPLICATIONS PER BLOCK 
S = U M = 1 M = 2 M = 4 M = 8 M = 16 
256 2.68 x 108 9.56 x 107 2.05 x 107 4.87 x 106 1.51 x 106 
512 2.15 x 109 6.44 x 108 1.19 x 108 2.25 x 107 5.09 x 106 
1024 1.72 x 1010 4.71 x 109 8.05 x 108 1.31 x 108 2.35 x 107 

 

 
Fig. 1 Proposed configuration for two input-two output sub-band BSS 

 
V. CONCLUSION 

A new sub-band configuration is proposed for separation of 
sources, non-uniform structure that employs non-uniform 
decomposition of the signals observed by the sensors. We first 
tested K filter separators with different lengths. Second, the 
adaptation is performed by algorithms based on natural 
gradient with measures of the signal-to-interface ratios for 
different values of S. Finally we tested different number of 
blocks. 

We observed the correlation between the outputs of 
different sub-bands to avoid problems of permutation, but the 
algorithms were very robust, not requiring any correction. 
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