International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:5, 2014

Unsupervised Feature Learning by Pre-Route
Simulation of Auto-Encoder Behavior Model

Youngjae Jin, Daeshik Kim

Abstract—This paper describes a cycle accurate simulation results
of weight values learned by an auto-encoder behavior model in terms
of pre-route simulation. Given the results we visualized the first layer
representations with natural images. Many common deep learning
threads have focused on learning high-level abstraction of unlabeled
raw data by unsupervised feature learning. However, in the process of
handling such a huge amount of data, the learning method’s
computation complexity and time limited advanced research. These
limitations came from the fact these algorithms were computed by
using only single core CPUs. For this reason, parallel-based hardware,
FPGAs, was seen as a possible solution to overcome these limitations.
We adopted and simulated the ready-made auto-encoder to design a
behavior model in VerilogHDL' before designing hardware. With the
auto-encoder behavior model pre-route simulation, we obtained the
cycle accurate results of the parameter of each hidden layer by using
MODELSIMZ. The cycle accurate results are very important factor in
designing a parallel-based digital hardware. Finally this paper shows

an appropriate operation of behavior model based pre-route simulation.

Moreover, we visualized learning latent representations of the first
hidden layer with Kyoto natural image dataset.

Keywords—Auto-encoder, Behavior model simulation, Digital
hardware design, Pre-route simulation, Unsupervised feature learning.

[. INTRODUCTION

HE performance of the deep learning algorithm is very
dependent on input data. This explains that much of the
practical effort in exploiting the algorithms start into a design
strategy of representation learning of input [16]. That is to say,
the learning strategy, called unsupervised feature learning,
extracts and organizes the underlying explanatory factors latent
in the observed milieu of low-level sensory data [1]. This
pre-training internal distributed representations of the raw data
mostly helps initializing parameters of the deep architectures in
an optimal conditions to be trained well. Then after the
pre-training, the deep networks can be fine-tuned with not
randomized but the appropriate learned weight values [2], [3].
On the other hand, there has been notable approach in
increasing performance of the deep learning algorithms,
especially for training procedure by using FPGAs[4], [5],[17].

Youngjae Jin is with the Brain Reverse Engineering and Imaging
Laboratory, Department of Electrical Engineering Korea Advanced Institute of
Science, 291, Dachak-ro, Yuseong-gu, Daejeon, Korea (phone:
82-42-350-8174; e-mail:yj.jin@kaist.ac.kr).

Daeshik Kim is with the Brain Reverse Engineering and Imaging
Laboratory, Department of Electrical Engineering Korea Advanced Institute of
Science, 291, Dachak-ro, Yuseong-gu, Daejeon, Korea (phone:
82-42-350-3490; e-mail: daeshik@kaist.ac.kr).

"VerilogHDL is a hardware description language used to model digital
circuit systems.

MODELSIM is a verification and simulation tool for Verilog Hardware
Description Language.

A reconfigurability and inherent parallelism are important
features of the FPGAs. The deep learning algorithms can be
designed through the original and useful hardware architecture.

With this low-level structure, the algorithms have been
shown to reduce the whole training time, increase performance
of real time classification tasks, and discover high-level
abstract features in more complex deep algorithms [4], [5],
[17], [18]. Despite of these several advantageous parts,
designing such high-level algorithms on FPGAs is still very
intractable and it can be very stubborn work since it makes
many researchers complicate to directly modify the designed
algorithm [6]. For this reason, we proposed a pre-route
simulation regarded as a bridge between an inflexible hardware
and a software relatively changeable on modification of
designed algorithm. The simulation can be quite essential to
design the high-level systems, such as deep learning or
unsupervised pre-training algorithms, based on complex digital
hardware.

This paper highlighted making use of our own designed a
pre-route simulation model of the sparse auto-encoder
algorithm. Throughout result of utilizing the simulation, we
presented a feasibility of greedy layer-wise unsupervised
pre-training digital hardware circuit, FPGAs [8]. In other
words, we applied a novel digital hardware simulation
framework to the auto-encoder to discover very generic
features of the input. We used a Kyoto natural image dataset.

The algorithm’s simulation composed of the low-level
behavior model in VerilogHDL. Using the designed behavior
model, we pre-trained the auto-encoder architecture with
L-BFGS optimization method [7] which is our own designed in
VerilogHDL, on MODELSIM simulator. Given the extracted
unknown structure from the input distribution, we showed
significant results by using MATLAB. We visualized the
high-level abstraction of the input natural images, from the
behavior model simulation [20].

The main objective of this paper, first, is to describe the
feasibility of high-level algorithm, unsupervised auto-encoder
learning algorithm on digital hardware circuits. To show the
possibility, we introduced the pre-routing simulation
methodology with showing the cycle accurate result of the
algorithm. It is possible to fast and accurate modify the revised
algorithm through the procedure of an intractable hardware
design. Also, case study of designing the auto-encoder learning
structure with the pre-route simulation platform can be of help
to who want to implement pre-route simulation before
designing the synthesizable RTL* model.

*Register-Transfer Level

711

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:5, 2014

II. UNSUPERVISED FEATURE LEARNING

A.Unsupervised Feature Learning

An unsupervised feature learning method is to capture the
unknown factors of latent variation that underlie the input
distribution. Such unsupervised learning of representations
often learns the posterior distribution P(y|x) of the underlying
features for the raw input distribution P(x) [8].

According to Tesauro [9], deep learning architectures was
too difficult to train, since a gradient descent optimization
method might get stuck in poor solutions, such as local
minimum, with randomly initialized starting parameters. In
other words, it was a quite difficult task to search the parameter
space of deep architectures. However, Hinton et al. [1]
published a greedy layer-wise unsupervised learning method to
address the training problem. By using this unsupervised
feature training strategy, we can initialize the parameters in a
region near an optimal local minimum for fast and accurate
optimization process. With the optimal loaded parameters, it
shows better performance of generalization or classification
with learned high-level abstractions of the input. Considering
the learning method from a different point of view,
unsupervised pre-training acts as a regularizer, by adding an
infinite penalty term on the cost function of auto-encoder [10].
More intuitively, we can consider the optimal initialization
parameters as inherently imposing penalty on the parameters of
the networks. Each layer trained in unsupervised learning
method corresponds with sparse auto-encoder, we will describe
in next section.

B. Auto-Encoder with Sparsity

An auto-encoder is a sort of unsupervised learning algorithm
which applies back-propagation algorithm for training
architecture [11], [12]. There are three layers, input, hidden and
output layers, in the single auto-encoder. First two layers, input
and hidden, represent an encoder part. Next two layers, hidden
and output, act as a decoder. Setting identical number of units in
the input and the output layers can make output values same as
an input values.

output -

hidden - - -

input *- -

Fig. 1 Auto-encoder structure

It seems like useless arranging the units to reconstruct the
input data similar as identity function. However, by limiting the
number of hidden units in a constraint, we can extract
significant features about input data. As mentioned above, the
latent features of the input data are critical for recognition and
classification of the input one.

Besides, we used the logistic sigmoid function for activation
function of each unit, applied element wise of the vector z.

8(z) = 14+e72

Cost function has a sparse constraint which imposes on the
hidden layer. Overall cost function of auto-encoder is as
follows.

Or Si Si41

DM

1=1i=1j=1

1< o
JW,b) = [ﬁZ(”hw,b(xl) - }’l”z)
i=1

The notation of hyy, ;,(x) is a nonlinear form of hypothesis,
i.e. the output of each computational hidden unit. The first term
is an average of sum of squared error term. The second one is a
regularization term which tends to prevent over-fitting by
decreasing the magnitude of the weight. The A is a weight decay
hyper-parameter which controls the balance between two
terms.

To reduce the complexity of computation, we enforce a
sparse constraint on the hidden units. An average activation of
each hidden unit j would be close to specific sparsity parameter
(p) as below.

1 m
pj= ;Z‘ (aj'(z)(x(i)))
=

To satisfy this restraint, we choose a KL divergencc::4 for
hidden unit activation penalty term as follows [20]:

S, S,
~ p 1-p

D KL(plg) =) <P1097+ (1 - p)log — A)

j=1 j=1 Py 1=p

Notations of above two formulas are descripted in footnote5.
Thus, to minimize the above penalty term, we add it to our cost
function.

S

JsparseW,b) = JOW,b) + B)" KL(plI5))
=1

J

The hyper-parameter § is control parameter for sparsity
penalty term. Now, to complete the pre-training of
auto-encoder, we have only to optimize the objective function
by using optimization method. We chose the L-BFGS
optimization method with exponentially decreasing step length
[13] instead of any other adaptive learning methods, such as
Armijo or Wolfe conditions. The simple procedure of the
back-propagation algorithm for auto-encoder is as follows.

First step is to perform a “feed forward pass” to compute all
the activations from input layer to output layer, the output value

“*Kullback-Leibler divergence: non-symmetric measure of the difference
between two probability distributions.

° Notation i and j are the index of input and hidden unit. s;is the index of
layer. mis the number of input data. O,is the output layer.

712

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:5, 2014

is the hypothesis, hy, ,(x). Second, computing an “error term
for each node in each layer” which is regarded as criteria of
how much the node has responsibility for error in the last layer.
Finally, the simple auto-encoder ends up learning a reductive
representation closely akin to PCAs.

III. OPTIMIZATION METHOD

We chose the L-BFGS optimization method, which is a
limited-memory quasi-Newton method for unconstrained
non-linear optimization [14]. It minimizes the auto-encoder’s
cost function without line search [15]. Because of the
implementation issue of the auto-encoder behavior model in
VerilogHDL, we selected such exponentially decreasing
learning step [19].

IV. PRE-ROUTE SIMULATION

To design the specific algorithm through the digital hardware
circuits, one should clarify the cycle accurate results
synchronized on clock. However, it is hard to change the
algorithm after routing on the hardware platform. To be more
concrete, modifying the algorithm on hardware design level has
alot of risks and it is an intractable process. Of course, someone
can use the reconfigurable FPGAs to adjust the algorithm and
these are an attractive platform to design high-level system.
However, design effort for FPGAs implementation remains
quite high [16]. For these reasons, digital clock synchronized
pre-route simulation is very important. The simulation is coded
by any hardware description languages, such as VerilogHDL,
VHDL and SystemC. It shows that a cycle accurate results of
the algorithm to be designed on a digital circuit.

V. DATASET AND EXPERIMENT

We used the Kyoto natural image dataset and randomly
downloaded natural images from Google image search. We
used the VerilogHDL to design behavior model of an
unsupervised feature learning, auto-encoder. In the first
experiment, we tried to verify results from the behavior model
operation on MODELSIM and MATLAB as same as possible.
Since MODELSIM has no mathematical functions, such as
exponential, square root and natural logarithm, we should have
designed and verified each function. Then, to verify the cycle
accurate results of the behavior model simulation synchronized
by clock, we set the same input data and same initial weight
values. Secondly, we inputted the same sensory data, but
different initial parameters between both simulators. It is
expected that same representation values of the first hidden
layer comes from the both simulators. We reported Fig.7,
which is similar distribution of learning completed parameters
started from very different initial values.After the both
pre-trainings on the MODELSIM simulator, we plotted the
extracted representation values. Also, we traced the difference
of weight and bias of the two results in every 100 iterations, as
depicted in Fig. 6. The visible units are 196 and a hidden layer
size is 100 for auto-encoder structure. The synchronized clock
speed on behavior model is 10ns. The size of the input and
output data is 64bit, in binary form. We designed the model by

using the FSM® to describe process of the auto-encoder.

VI. RESULT AND ANALYSIS

The result of the first experiment which is to verify the cycle
accurate simulation results of the auto-encoder is in Figs. 2-4
below.

Cost correlation:0.992900 numPatches: 10000 maxIter:1000
1.4 p -
—— Cost by verilog
12 Cost by matlab ||
2
= 1
-‘51
Zos
0.6
0'4{] 200 4(&[' ((}[I |00 1000
0.03 = ; ! ! ;
3
5 0.02
2
% 0,01
£°
-
0
0 200 400 600 800 1000

number of iterations

Fig. 2 Cost value and cost difference

Since we designed our own mathematical function, there was
difference of parameter between both simulators. The
converged cost values are shown in Fig. 2 with the difference.
The difference converges to the value smaller than 0.01 with a
bounce point at around 200 iteration. Fig. 3 also shows the
aspect values of the each parameter in every 100 iterations.

s
N 8 7, 1
(d) : s N N]
= g T— T
H

Mumber of eraton

Fig. 3 Difference of parameters between the MATLAB and

MODELSIM (a) Weight of encoder layer (b) Weight of decoder layer

(c) Bias of encoder layer (d) Bias of decoder layer.

It was observed that correlation between results was varied
across a scale of 0 to 0.9, with the greatest iteration of 1000, in

®Finite State Machine

713

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:5, 2014

terms of every 200 iterations, as seen in Fig. 4. The higher
correlation they get, the more two weight sets become similar.
It is important to focus on the diagonal direction of the
correlation plot because each weight set should be compared in
the same iteration.

o B =

o

)
-

=3
=
&

A TRRt) .
<]
]

gt
"
=
o
w
=

@)

=3
g

2
6

a
Le

I‘h i

3

L
%

ne
O
i

y
'

[N
o
o
=

T —— = T
X XNE 1F NUMDER Of patiin Amaton ¥ @X05 15 AMDEr OF Yo derEior

Fig. 4 Correlation of parameter from verification experiment (a)
Weight of encoder layer (b) Weight of decoder layer (c) bias of
encoder layer (d) Bias of decoder layer

Fig. 5 shows the plot of the learned feature of the
auto-encoder with natural image. In addition, the contrast of
white and black edge shaped is much clear in results of
MODELSIM rather than MATLAB’s. It means that
MODELSIM optimized the parameter sets better than
MATLAB. Finally, this edge filter showed that the results from
both simulations are almost the same.

Raciilt ~f AMANNMFI SIRA

Racuilt nf NMAATI AR

Fig. 5 Weight of encoder plot

Secondly, we tested the behavior model with same input
patches and randomly selected initial parameters. Although the
initial weight values were different, results from the weight
values became very similar (See Figs. 6-8.) Fig. 6shows the
cost values and cost difference. We observed that the cost
values became almost equal after 200 iterations. The weight
distributionwe obtained after the pre-training is plotted in the
graph of Fig. 7. The distribution from both simulators verifies

that the first layer feature becomes very similar after whole
training process. It means that the designed behavior model and
MATLAB code of auto-encoder, finally, reached to almost
similar point of the weight space. Fig. 8 shows the process of
change of the weight representation in every 100 iterations. The
visualized features were changed from randomly selected
weight space to edge shaped representation in the both plots.

(a)

Cost value

o 100 2(‘!(] 300 4000 500

—
fay
o
Cost difference
&

0 100 200 300 400 500
number of iterations

Fig. 6 The cost values and difference (a) blue line is cost from
MODELSIM and red one from MATLAB (b) The difference value of
two cost values

- N
o .I-.II||‘ | |

pr E E E # E
im

n

- I
==

(a) (b)
Fig. 7 Weight distributions of same patches input and different initial

weight value Blue stick is from MODELSIM and Red one is from
MATLAB (a) Weight of encoder part (b)Weight of decoder part

VII. CONCLUSION

In this paper, we emphasized how pre-route simulation
improves the way of designing a hardware with high-level deep
learning algorithm, such as unsupervised learning auto-encoder
algorithm. This may be a significant finding, because, with
pre-route simulation, we could obtain the cycle accurate result
of deep networks that is an essential factor in designing a digital
hardware. The cycle accurate result of algorithms can serve as
indicator for designing and modifying deep learning hardware
in the digital method.

714

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:5, 2014

(a)

(bj

Fig. 8 Visualization of the process of change of auto-encoder architecture’s first layer representations (a) Evolution of the first layer’s feature
representation from MATLAB in every 200 iteration (b) Evolution of the first layer’s feature representation from MODELSIM (behavior model)
in every 200 iteration.

First of all, we attempted to show the whole process by
verifying the appropriate operation of the auto-encoder’s
behavior model in terms of pre-route simulation. We compared
the weight space with the same input patches and initialized
weight values between two simulators. We observed the
similarity of extracted weights by plotting the difference and

correlation between MATLAB’s result and MODELSIM’s one.

Also, we found the high similarity of the latent representations
by observing the visualized filter set. These results proved that
the behavior model of unsupervised feature learning
auto-encoder algorithm works well. Then, we tested the
behavior model simulation with same input patches and
different initial weight parameters. The result of the
experiments showed that almost equal optimized cost values
and the same weight distribution.

In addition, the verified behavior model of single
auto-encoder can be extended to stacked auto-encoder’s
behavior model. With stacking our new-made single
auto-encoder behavior model, it is possible to the greedy
layer-wise unsupervised pre-training followed by fine-tuned in
supervised learning through pre-route simulation. This was,
moreover, a case study of designing the auto-encoder on the
pre-route simulation.

REFERENCES

[1] Hinton, G. E., Osindero, S., Teh, Y., (2006). “A fast learning algorithm
for deep belief nets”, Neural Computation, 18, 1527~1554.

[2] Ranzato, Marc’ Aurelio, et al. "Unsupervised learning of invariant feature
hierarchies with applications to object recognition." Computer Vision and
Pattern Recognition, 2007. CVPR'07. IEEE Conference on. IEEE, 2007.

[3] Ranzato, Marc'Aurelio, and Yann Adviser-Lecun. "Unsupervised
learning of feature hierarchies." (2009).

[4] Sang Kyun Kim, Lawrence C. McAfee, Peter L. McMahon, Kunle
Olukotun, “A highly scalable Restricted Boltzmann Machine FPGA
implementation”, FPL2009.

[5] Farabet, Clément, et al. "Hardware accelerated convolutional neural
networks for synthetic vision systems." Circuits and Systems (ISCAS),
Proceedings of 2010 TEEE International Symposium on. IEEE, 2010.

[6] Liang, Yun, et al. "High-level synthesis: Productivity, performance, and
software constraints." Journal of Electrical and Computer Engineering
2012.

[7] Liu, Dong C., and Jorge Nocedal. "On the limited memory BFGS method
for large scale optimization." Mathematical programming 45.1-3 (1989):
503-528.

[8]
[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Bengio, Yoshua, et al. "Greedy layer-wise training of deep networks."
Advances in neural information processing systems 19 (2007): 153.

G. Tesauro(1992), “Practical issues in temporal difference learning.
Machine Learning, 8, 257~277",

Erhan, Dumitru, et al. "Why does unsupervised pre-training help deep
learning?." The Journal of Machine Learning Research 11 (2010):
625-660.

Andrew Ng, “Sparse autoencoder”, Stanford CS294A Lecture notes.
Coates, Adam, Andrew Y. Ng, and Honglak Lee. "An analysis of
single-layer networks in unsupervised feature learning." International
Conference on Artificial Intelligence and Statistics. 2011.

Ritter, Helge J., Thomas M. Martinetz, and Klaus J. Schulten.
"Topology-conserving maps for learning visuo-motor-coordination."
Neural networks 2.3 (1989): 159-168.

Bottou, Léon. "Large-scale machine learning with stochastic gradient
descent." Proceedings of COMPSTAT'2010. Physica-Verlag HD, 2010.
177-186.

Ngiam, Jiquan, et al. "On optimization methods for deep learning."
Proceedings of the 28th International Conference on Machine Learning.
Bengio, Yoshua. "Deep Learning of Representations for Unsupervised
and Transfer Learning." Journal of Machine Learning
Research-Proceedings Track 27 (2012): 17-36.

Farabet, Clément, et al. Large-scale FPGA-based convolutional networks.
Cambridge, UK: Cambridge University Press, 2011.

Omondi, Amos R., and JagathChandanaRajapakse, eds. FPGA
implementations of neural networks. Vol. 365. New York, NY, USA::
Springer, 2006.

Erhan, Dumitru, et al. Visualizing higher-layer features of a deep
network. Technical report, University of Montreal, 2009.

Kullback, “Information theory and statistics”, John Wiley and sons, NY,
1959.

715

