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Abstract—These SOAP project Pacific Ocean measurements 

reveal that phytoplankton blooms with sunny conditions make 
possible secondary organic contribution to ultrafine particles size and 
composition, and thus on cloud formation ability, and finally on 
climate. This is in agreement with other biologically active region 
observations about the presence of secondary organics even the exact 
fraction is also depending on the local marine life (e.g. plankton 
blooms, seaweeds, corals). An organic contribution is clearly needed 
to add to CLAW hypothesis. 
 

Keywords—Climate, marine aerosols, phytoplankton, secondary 
organics, CLAW hypothesis. 

I. INTRODUCTION 
ARINE biologically active regions (e.g., coasts, ice 
edges, frontal regions and open water areas with 

plankton blooms) are known to produce a range of compounds 
that interact with atmosphere affecting directly and indirectly 
particle production, composition, and wider properties of the 
marine atmosphere. Whilst the CLAW (Charlson, Lovelock, 
Andreae and Warren) hypothesis [1] supports the idea of the 
importance of marine biological activity on ultrafine 
(d<100nm) particle composition and effects through 
secondary sulphate production via DMS, this hypothesis does 
not take into account the secondary organic fraction in the 
composition of the ultrafine particles even though the aerosols 
are elsewhere typically known to consist of both organic and 
inorganic compounds whose relative ratios strongly depend on 
the environmental conditions, where the emissions of various 
gases and particles define the overall compositions and 
properties of ultrafine particles. 

So far, recent observations about the presence of a 
remarkable marine-origin secondary organic fraction in 
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ultrafine particles have been identified down to nucleation 
mode size particles (d<15nm) over Irish coastal waters of the 
Atlantic Ocean [2], and Arctic Ocean close to ice edges [3], 
and Australian sub-tropical Pacific Ocean waters [4]. In spite 
of the importance of a secondary fraction to the properties of 
radiatively active sizes in marine environments, marine 
produced particle composition is unknown in various other 
marine biologically active locations around the world. 

II. METHODS 

A. The Measurement Location 
This Surface Ocean Particle Production (SOAP) project 

study about the composition of nucleation (d<15nm) and the 
lower end of Aitken (20nm<d<60nm) modes particles was 
focused on particle production in one such remote open ocean 
region on the Chatham Rise (New Zealand; latitude 41oS-
45oS, longitude 173oE-177oW) during austral summer 2011 
(1.2.2011 to 12.2.2011) and austral summer 2012 (13.2.2012-
5.3.2012) expeditions on the board of New Zealander R. V. 
Tangaroa.  

The location was in the southern Pacific Ocean over the 
Sub-Tropical Convergence (STC) to the east of New Zealand. 
The region experiences intensive austral summer 
phytoplankton blooms. Fig. 1 shows the measurement route 
with observed plankton blooms during the summer 2011 
expedition. 
 

 
Fig. 1The measurement route with observed plankton blooms during 

the summer 2011 expedition 
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B. The Instruments 
The ultrafine particle composition was studied using the 

Ultra Fine Organic Tandem Differential Mobility Analyser 
(UFO-TDMA, Fig. 2; [5]) and the Volatility Humidity 
Tandem Differential Humidity Analyser (VH-TDMA; [6]) 
methods on board of RV Tangaroa (New Zealand). Auxiliary 
data were collected from the ships weather station, underway 
instrument suite and marine information observations, SMPS 
(Scanning Mobility Particle Sizer) particle size distribution 
measurements, total particle count CPC (Condensation 
Particle Counter) measurements with 5nm and 10nm cut-off 
sizes, and black carbon measurements. Marine biological 
activity was checked with MODIS (Moderate Resolution 
Imaging Spectroradiometer)Terra and Aqua satellite data and 
supported by in situ chlorophyll and dissolved DMS 
measurements. Marine air mass origin was followed with 
HYSPLIT (HYbrid Single-Particle Lagrangian Integrated 
Trajectory; [7] and [8] trajectories.  
 

 
Fig. 2 A schematic picture of UFO-TDMA system 

 
The ultrafine organic tandem differential mobility analyzer 

(UFO-TDMA, Fig. 2; [5], [9]) was used to determine the 
contribution of sulphate and organic components to nucleation 
mode size (d<15nm) particles composition. The main 
principle of operation of the DMA (differential mobility 
analyzer; [10], [11]) is to select a narrow band of an aerosol 
size distribution by applying high voltage to its central rod 
thus selecting particles with a particular electrical mobility. 
Thisway, a monodisperse aerosol distribution is allowed to 
pass through the instrument. The UFO-TDMA uses ethanol 
vapor as the working fluid. The first DMA selects a 
monodisperse aerosol distribution which is brought to a 
selected sub-saturated ethanol vapor environment where they 
can grow to a new size in accordance their composition and 
size. The second DMA measures the final size then. The ratio 
between the measured size in the second DMA and the size 
selected in the first DMA is called organic growth factor 
(OGF). Depending on the chemical composition of the 
particles, different amounts of ethanol are consumed at a given 
saturation ratio by the particles. We applied the UFO-TDMA 
to ultrafine 10-15nm particles. The saturation ratio was 
82±2%. 

The basic analysis principle is based on the fact that 
inorganic particles such as sodium chloride and the 
ammonium sulphate do not grow (i.e. OGF is 1) in the sub-

saturated (S = 84%) ethanol vapor when the particle diameter 
is 20nm or smaller. Ammonium bisulphate would grow in 
20nm size to the OGF of 1.02–1.03 but no growth at 10nm 
size at 82–84% [12]. Importantly, the sulfuric acid is expected 
to be neutralized to ammonium sulphate in particle phase 
atmospheric conditions [13]. Indeed, [13] recently studied in 
CLOUD (Cosmics Leaving Outdoor Droplets) chamber 
nanoparticle formation and growth experiments that sulfuric 
acid was transformed to pure ammonium sulphate form since 
2nm size. Furthermore, iodine compounds do not grow 
[12].On the other hand, particles composed of biogenic 
organics (e.g. citric acid or tartaric acid; [5]) or 10 nm 
secondary organics [14] do grow (i.e. OGF is clearly over 1). 
Generally, moderately oxidized organic do grow very well 
[14]. It is also notable that if organic compounds are 
composed of non-polar compounds or if they are highly aged, 
they do grow less. 

The organic volume fraction (OVF) was calculated based 
on the principle introduced in [2]. The OVF is got from the 
following comparison: the volume corresponding to the 
measured size OGF value compared with the volume 
corresponding to the OGF value of a very high ethanol affinity 
compound (i.e. ca maximum OGF). The maximum OGF of 15 
nm particles was interpolated from 10nm and 20nm OGF 
values. Typically, freshly formed secondary organics are 
moderately oxidized and they have very high ethanol affinity. 
However, the presence of sulphate and oxidized organics 
make also low OGF organosulphates possible [14]. Therefore, 
the calculated OVF values are minimum estimates. 

III. RESULTS AND DISCUSSION 
Instances of particle nucleation were observed, with 

nucleation (10nm and 15nm) and Aitken mode sized particles 
(50nm) typically including a significant (i.e. up to volume 
fraction of 50%) secondary organic component (UFO-TDMA 
data) during sunny conditions (e.g., 4.2., 6.2., 9.2., and 10.2. 
of the summer 2011 expedition) on biologically active region 
with planktons whereas the ammonium sulphate fraction (VH-
TDMA data supported by UFO-TDMA data) was strongly 
dominating during cloudy conditions (e.g. 15.2, 26.2. and 2.3 
of the summer 2012 expedition). Furthermore, the comparison 
between in situ bubble burst chamber and atmospheric 
particles composition measurements reveal that even during 
windy conditions the measurements strongly support the 
presence of secondary compounds in the atmospherically 
observed ultrafine particles. 

Sunlight is required for nanoparticle formation from VOC 
(volatile organic compound) such as DMS (dimethyl sulphide) 
or alkenes (e.g. isoprene). Photochemically mediated 
oxidation of DMS results mainly in the formation of sulfur 
dioxide (SO2), although lesser amounts of methanesulfonic 
acid (MSA) are also produced [15]. Oxidation of SO2 leads to 
sulfuric acid which may undergo nucleation with other gases 
such as neutralizing ammonia and oxidized organics to 
produce thermodynamically stable clusters of nanoparticles. 
These may grow to larger radiatively important sizes with 
other VOC oxidation products and halogen (e.g. iodine) 
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