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Effects of Reversible Watermarking on Iris
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Abstract—Fragile watermarking has been proposed as a means
of adding additional security or functionality to biometric systems,
particularly for authentication and tamper detection. In this paper
we describe an experimental study on the effect of watermarking
iris images with a particular class of fragile algorithm, reversible
algorithms, and the ability to correctly perform iris recognition.
We investigate two scenarios, matching watermarked images
to unmodified images, and matching watermarked images to
watermarked images. We show that different watermarking schemes
give very different results for a given capacity, highlighting the
importance of investigation. At high embedding rates most algorithms
cause significant reduction in recognition performance. However,
in many cases, for low embedding rates, recognition accuracy is
improved by the watermarking process.
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I. INTRODUCTION

traditional authentication mediums as they resolve many issues
associated with token or password-based systems. However,
many works identify threats to biometric systems such as
spoofing, mimicry and man in the middle attacks [1], [2].
Watermarking has been suggested as one possible means to
reduce the security vulnerabilities of biometrics, and in some
cases to enhance their functionality [3].

All watermarking methods alter the host image to some
extent, though the perceptibility of this modification varies
with the watermarking scheme and the capacity – the quantity
of data embedded. The acceptability of the distortion depends
on the particular application. The effect of watermarking
methods on biometrics, in particular iris detection, has been
investigated for robust techniques [4], [5]. However, the effect
of fragile algorithms has not been studied.

In this paper, we investigate the effect fragile watermarking
algorithms, specifically reversible or lossless algorithms, have
on iris recognition accuracy. We aim to address whether
particular watermarking techniques are more suited to this
application than others, and the impact that capacity has on
iris recognition performance.

Section II provides an overview of watermarking in
the context of biometric systems. Section III describes
experiments in which we test the impact of seven
watermarking algorithms on iris recognition accuracy over a

and Section V concludes the paper.
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II. WATERMARKING AND BIOMETRICS

A. Watermarking

Watermarking is a technique of hiding data within a host
image by modifying the image such that the data can be
extracted later. By definition, watermarking modifies the cover
work, introducing distortion. The level to which this distortion
is permissible depends on the particular application, but is
often required to be imperceptible [6]. If modifications of the
watermarked image prevent recovery of the embedded data,
the watermark is termed fragile, otherwise it is robust.

In some fields, for example in the medical or military
domain, even slight distortions of the original image are
not permissible. Consequently many watermarking algorithms
have been proposed that allow recovery of the original image
during the extraction process. These are termed reversible
or lossless algorithms. While these have the additional
capabilities of allowing recovery of the original image,
they retain all other characteristics of normal watermarking
schemes. In this paper, we focus on this area of fragile
reversible watermarking algorithms. Reversibility is not
essential for most biometric applications; however its presence
does not affect the conclusions that may be drawn from
studying the effect of fragile watermarking on iris recognition.

In [3] multiple scenarios are suggested where watermarking
can improve the security of biometrics. The first is purely
steganographic, in which biometric data is embedded within
an arbitrary host image, with the aim of concealing the
embedded data from a potential attacker. This technique is
suggested by Jain and Uludag in [7], in which facial data is
hidden in an artificial fingerprint image. Hassanien describes
a watermarking method using the discrete wavelet transform
in [8] to embed iris images into a host image. Dong and Tan
explore the effect of embedding iris templates into host images
using robust watermarking in [5], and the extent to which
attacks on the host image reduce the ability to extract and
match the embedded iris template. Although the majority of
algorithms proposed for biometric steganography are robust,
it is suggested in [3] that robust watermarking should not be
used for steganographic purposes, as the robustness typically
implies an increase in perceptibility, the key feature in this
scenario [6].

Watermarking can also be used to authenticate the sample
and sensor by embedding a fragile watermark containing an
identifier unique to the camera and a cryptographic hash of

BIOMETRICS are proving an increasingly popular alternative to

range of embedding capacities. Section IV discusses the results
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the original, creating a ‘secure camera’. On verification, if the
watermark cannot be extracted and verified, then the image
has been tampered with and cannot be authenticated. Blythe
and Fridrich use this approach in [9] to create a secure digital
camera for securing iris images, while Yeung and Pankanti
use a fragile watermark to secure fingerprint data in [10].
It is important that the watermark is fragile so that any
attack results in failure to authenticate [3]. This contrasts with
liveness detection schemes, whereby detection of a watermark
indicates the data has been previously acquired and is being
presented again. In this case, the watermark must be highly
robust against attempts to remove it.

An alternative scenario, multi-modal biometric verification,
in which biometric data is embedded into a biometric image
and recovered during verification to improve recognition
performance, has been the subject of many works.
Bartlow et al. [11] propose a framework that embeds
voice feature descriptors in iris images, using robust
watermarking to provide added authentication, data integrity
and non-repudiation of origin. Hoang et al. [12] propose using
fragile watermarking to embed biometric data in facial images,
while Jain et al. [13] and Noore et al. [14] propose using robust
watermarking to embed facial data in a fingerprint image.
Vatsa et al. demonstrate the improved recognition accuracy
of multi-modal biometrics using robust watermarking in [15].

A variation of this approach is two-factor authentication, in
which a token must be presented along with biometric data
for verification. The token is used to partially authenticate
the user, and is subsequently embedded into the biometric
sample, which can be transferred to a central database for
verification, providing data integrity as well as two-factor
authentication. Huber et al. suggest such a method in [16] in
which a semi-fragile watermark is embedded into iris images.
In [17], Jain and Uludag propose embedding face data in
fingerprint images stored on a smart card, while Satonaka
proposes to embed a traditional password token in face data
in [18]. Whilst robust watermarks are often suggested for two
factor and multi-modal authentication, it is suggested in [3]
that fragile techniques should be preferred, to provide security
against tampering along with improved capacity.

As described, many application scenarios call for fragile
watermarks. While the impact of robust schemes on iris
recognition was described in [4], the impact of fragile
watermarking on recognition accuracy is hardly discussed.

C. Iris Detection

The majority of iris recognition algorithms follow the
well-known work of Daugman [19], including the OSIRIS
(Open Source for IRIS) [20] implementation used for this
study.

After image acquisition, the pupil is located, and from
here the iris is localized using a circular Hough transform
followed by an active contour approach [21], to identify the
two approximately concentric circles of the pupil and iris.
The identified iris is unwrapped and normalized using polar
coordinates to a rectangular texture of 512×64 pixels. A mask

of the same size is generated that identifies regions which
should be excluded from the feature detection, e.g. eyelids.
Finally, the iris code is generated by applying 2D Gabor filters
to the masked image at selected points and coding the output
coefficients to produce a binary sequence. Matching of iris
codes is performed by finding the minimum Hamming distance
between two codes at multiple shifted positions.

III. EXPERIMENTAL METHOD

Experiments were performed using the ICE-Right database
[22] released by the National Institute of Standards and
Technology (NIST) in 2005. It contains 1425 monochrome
8-bit images, from 124 subjects’ right eyes. In order to focus
the watermarking effect on the iris itself, all images were
cropped to 320× 320 pixels, centred on the iris.

Seven watermarking algorithms were implemented for the
study and are briefly described below. They were selected
to investigate a variety of different watermarking techniques,
including state-of-the art approaches.

Celik et al. [23] proposed a generalized form of least
significant bit embedding. An image is quantized and the
difference in images is compressed and embedded with the
payload in the quantized image. The capacity is highly image
dependent as it depends on the compressibility of features.
The method is herein denoted as ‘LSB’.

Tian [24] proposed a spatial domain algorithm (herein
denoted as ‘DIFF’) that expands the difference between
adjacent pixels to create space for embedding. As well as
the data embedded, a location map indicating which locations
were selected must be embedded as overhead.

Sachnev et al. [25] used sorting and prediction to
extend this approach (herein denoted as ‘SP’) by expanding
prediction-error differences rather than raw pixel differences.
This allowed a greater capacity with reduced distortion.

Weng et al. [26] use an alternative transform for difference
expansion. They extend the method to reduce the magnitude of
pixel modification by using pairwise difference adjustment and
creating a highly compressible location map (herein denoted
as ‘PDA’).

Li et al. [27] proposed shifting the histogram of adjacent
pixel differences, such that each pixel was shifted by at most
one intensity value (herein denoted as ‘APD’). The capacity
is highly image dependent and comparatively small compared
to the other algorithms presented.

Yang et al. [28] propose applying an integer version of
the 8 × 8 discrete cosine transform and using bit-shifting in
the transform domain to provide capacity for the watermark
(herein denoted as ‘DCT’). Due to the relatively large number
of blocks that cause overflow during watermarking, the
capacity of the scheme was relatively small for the iris images
compared to natural images.

Lee et al. [29] propose a similar approach to that of Yang
et al. by using bit-shifting on the coefficients of the integer
5/3 discrete wavelet transform. The resulting scheme (herein
denoted as ‘DWT’) has a high capacity with a relatively low
distortion rate.
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TABLE I
MEAN PSNR AND SSIM OF WATERMARKED. AREA OVER THE DET CURVE (AOC), p-VALUE AND EQUAL ERROR RATE (EER) FOR ORIG-WMK AND

Orig-Wmk Wmk-Wmk
Watermark & bpp PSNR (dB) SSIM AOC p-value EER (%) AOC p-value EER (%)

Originals 0.988 4.93 0.988 4.93
APD 0.25 41.6 0.95 0.988 0.183 5.08 0.988 0.683 5.17

0.50 36.1 0.90 0.987 0.152 5.10 0.987 0.226 5.21
DCT 0.25 39.0 0.96 0.988 0.259 4.93 0.988 0.327 4.78

0.50 35.5 0.92 0.988 0.161 5.13 0.988 0.514 4.90
DIFF 0.25 40.6 0.97 0.987 0.842 4.78 0.989 0.494 4.50

0.50 33.6 0.88 0.990 0.544 4.91 0.991 0.007 4.40
0.75 31.3 0.84 0.988 0.425 5.09 0.989 0.825 5.26
1.00 25.9 0.64 0.985 0.000 5.91 0.982 0.000 6.58

DWT 0.25 41.3 0.97 0.988 0.918 5.07 0.989 0.905 4.96
0.50 36.5 0.93 0.989 0.694 4.98 0.989 0.465 4.90
0.75 31.3 0.84 0.989 0.264 4.82 0.990 0.086 4.43
1.00 27.7 0.73 0.987 0.034 5.16 0.988 0.755 4.80

LSB 0.25 49.5 0.99 0.989 0.048 4.83 0.991 0.014 4.44
0.50 46.5 0.98 0.990 0.039 4.68 0.991 0.016 4.59
0.75 35.7 0.85 0.989 0.240 4.85 0.990 0.164 4.87

PDA 0.25 41.4 0.97 0.990 0.000 4.55 0.993 0.000 4.06
0.50 34.9 0.91 0.989 0.187 4.80 0.990 0.116 4.87
0.75 31.2 0.83 0.989 0.397 5.03 0.990 0.111 4.92
1.00 26.1 0.65 0.987 0.027 5.34 0.985 0.008 5.86

SP 0.25 43.1 0.98 0.989 0.056 4.79 0.991 0.001 4.58
0.50 37.8 0.94 0.989 0.498 4.90 0.990 0.114 4.96
0.75 33.6 0.88 0.987 0.041 5.02 0.986 0.111 4.96
1.00 28.4 0.72 0.987 0.048 5.02 0.985 0.012 5.40

Watermarking was performed using the seven algorithms
discussed with a randomly generated payload at four
embedding capacities: 0.25, 0.50, 0.75 and 1.00 bits per pixel
(bpp). Where the required capacity could not be achieved with
an algorithm natively, as was the case for APD at all levels,
and DIFF, PDA and SP at and above 0.50 bpp, the image
was recursively watermarked until the total required payload
capacity was reached. Due to the nature of the algorithms, not
all schemes could watermark all the images at all capacities,
even using recursion. Where the number of images that could
be watermarked by an algorithm at a given capacity was less
than half the total number of images, the algorithm/capacity
pair was excluded from the group comparison. Consequently
LSB at 1.00 bpp, and both APD and DCT at 0.75 and 1.00 bpp
were excluded. A total of 608 images were successfully
watermarked at all of the selected capacities by all algorithms
to create 23 sets of 608 watermarked images, plus the original
images set.

All of the image sets were processed with OSIRIS
to generate the iris codes. Two matching scenarios were
investigated: matching of original images to watermarked
images (Orig-Wmk), and matching of watermarked images
to watermarked images (Wmk-Wmk). The former scenario
describes the situation where an unwatermarked template is
compared to a sensor image which has been watermarked to
create a ‘secure camera’. The later represents the case where
the stored template was also generated from a watermarked
sensor image.

For Wmk-Wmk matching, each watermarked code in a
set was matched with every other watermarked code in the
set, for a total of 181,302 inter-class and 3,226 intra-class

comparisons within each set. For Orig-Wmk matching, all
original images were matched to all other watermarked
images, for a total of 362,604 inter-class comparisons and
6,452 intra-class comparisons. Given the computational cost
of performing over 500,000 comparisons in total for each set,
it was not possible to investigate more than one iris recognition
algorithm. Hmmerle-Uhl et al. [4] found that the specific
recognition algorithm used made no difference in results for
robust watermarking, suggesting the use of a single algorithm
should not affect the conclusions that may be drawn. However,
extension to further iris algorithms is a clearly desirable area
of further work.

IV. EXPERIMENTAL RESULTS

The mean quality of the watermarked images compared to
the originals is shown in Table I. The PSNR ranges from
25.9 to 49.5 dB, while the SSIM [30] ranges from 0.64 to
0.99. This level of degradation is approximately comparable
to the PSNR of 30 dB and 45 dB used by Hmmerle-Uhl et
al. [4] when investigating robust watermarking, although in
that case two embedding capacities were used, approximately
0.001 bpp and 0.010 bpp. The considerable additional payload
capacity achieved thanks to the use of fragile watermarking
could facilitate additional applications.

Fig. 1 shows the detection error trade-off (DET) curves
for Wmk-Wmk matching. They show the trade-off between
the false accept rate (FAR) and false reject rate (FRR) along
with the equal error rate (EER) for each matching case. The
match rate for the original images, where no watermarking has
been applied, is shown for reference in each plot. The optimal
DET curve would be positioned to the bottom left of each

WMK-WMK MATCHING.STATISTICALLY SIGNIFICANT DIFFERENCES ARE EMBOLDENED
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plot. In general, it can be seen that for lower embedding rates
the DET curve for each algorithm closely follows that of the
reference curve, in some cases outperforming it. At the highest
embedding level, 1.00 bpp, the curve deviates significantly
for SP, PDA and particularly DIFF. These large deviations
are associated with an observable increase in EER. Space
considerations prevent displaying DET curves for Orig-Wmk
matching, however the watermarked curves broadly follow
those of Wmk-Wmk matching.

scenario by providing the area over the DET curve (AOC)

and the EER. The larger the AOC, the better the performance,
with the optimal area being 1.0. Also shown is the p-value
found when testing for significant difference in AOC between
each watermarked DET curve and the reference curve, using
the method of DeLong et al. [31].

The precise behaviour of the DET curves is different for
each watermarking algorithm, varying with embedded capacity
and matching scenario. APD shows no significant difference
to the original curve in terms of AOC, however the EER is
larger in all cases. As may be expected, the EER for 0.50 bpp is
greater than for 0.25 bpp. Also, Wmk-Wmk matching produces

Fig. 1 DET plots of iris matching for Wmk-Wmk matching

Table I summarizes the DET curves for each matching
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higher EERs than Orig-Wmk matching.
DCT also shows no significant difference in terms of

AOC, however the EER is not larger than the originals in
all cases. While the EER for 0.50 bpp is greater than for
0.25 bpp in both matching scenarios, Wmk-Wmk matching
actually outperforms both Orig-Wmk and the original EER.
Watermarking in this case results in an improvement in the
segmentation stage of the iris recognition algorithm compared
to the original images, giving a slight improvement in EER.
This may be due to increased high frequency content in the
watermarked image allowing easier delineation of boundaries.

This effect is also observed for DIFF watermarking at lower
embedding levels, with the improvement in segmentation
resulting in an AOC that is significantly improved compared
to the original (p < 0.05) at 0.50 bpp for Wmk-Wmk
matching. However at the highest embedding level, the AOC
is significantly worse than the original curve and the EER
significantly larger. This is due to the effect of watermarking
on the template generation stage of the recognition algorithm.
Although watermarking can improve the segmentation, the
effect of watermarking is always found to be negative on the
template generation stage, with the negative effects larger for
Wmk-Wmk matching. Consequently the overall DET curve at
a given capacity is the interaction between the improvement
in segmentation and deterioration of template generation.

This trade-off between segmentation and template
generation is responsible for the trends seen in the remaining
algorithms. For DWT, the improvement relative to the original

1.00 bpp, the adverse effect on template generation results in
a significantly poorer curve for Orig-Wmk matching.

The comparatively high image quality of LSB results in
significant improvements over the original images for both
scenarios at 0.25 and 0.50 bpp. The watermarking distortion
allows improved segmentation but is insufficient to cause
disruption to the template generation process. Improvements
in EER can also be seen across all embedding capacities.

PDA shows a significant improvement in AOC at 0.25 bpp,
and a significant decrease in performance of AOC at 1.00 bpp.
This is again typical of the segmentation improvement and
template generation detriment trade-off described previously.

SP shows slightly better performance in Wmk-Wmk
matching than in Orig-Wmk matching. The AOC is
significantly improved for Wmk-Wmk at 0.25 bpp but not for
Orig-Wmk, while at 0.75 bpp the performance is significantly
worse for Orig-Wmk but not for Wmk-Wmk. In both cases
1.00 bpp causes a significant reduction in performance.

The experiments presented demonstrate some unexpected
consequences of fragile watermarking when applied to iris
recognition. Firstly, the impact of watermarking is not
always negative, but rather was found to improve recognition
performance in several cases. This is due to an improvement
in the segmentation stage of the recognition algorithm. The
level of this effect varied between watermarkers.

In contrast to this improvement, the template generation
stage of the recognition algorithm was always adversely

affected by watermarking. The interplay of these two
factors leads to the second observation, that increasing the
capacity does not always result in a reduction in recognition
performance. The capacity of the optimum performing DET
curve varies with the particular watermarking scheme.

Finally, Orig-Wmk matching does not always outperform
Wmk-Wmk matching. Again related to the the described
trade-off, Wmk-Wmk matching tends to outperform
Orig-Wmk at lower capacities where the improvement
due to segmentation is large. It is typically outperformed
by Orig-Wmk at high capacities where the detriment due to
template generation dominates.

The levels of embedding, and hence degradation, used in
this study are significantly higher than would be expected
for many scenarios. For example, iris template data typically
requires only 2048 bits; in this case equivalent to 0.02bpp of
data. However, the additional capacity allows embedding of
multiple biometrics, along with further security data such as
image hashes etc., creating the possibility of more powerful
security applications.

While reversible algorithms were used in the study, they
were treated simply as fragile watermarking algorithms.
Although reconstructing the original image prior to iris
matching would give unaffected results, it is the effect of
watermarking, without the security risks and computational
overhead of original image extraction, that is of interest.
Also removing the watermark would leave the image
unprotected, and hence would offer little advantage over
purely cryptographic methods. The real value of watermarking
lies in the direct replacement of an original image with its
watermarked version.

V. CONCLUSION

This study showed that fragile watermarking significantly
affects iris recognition performance in many cases. The extent
to which iris recognition is affected, and whether the effect
is positive or negative, depends highly on the watermarking
scheme, the level of embedding, and the matching scenario,
i.e. whether watermarked images are matched to watermarked
or original images.

No significant decrease in AOC was found for any
algorithm at rates of 0.50 bpp or less, with many algorithms
showing a significant improvement. This suggests that for the
watermarking algorithms studied, rates of embedding less than
0.50 bpp would be acceptable.

While this study shows promising results for the reversible
watermarking algorithms studied, it is by no means conclusive
in determining the best algorithm for the scenario, with
many different approaches proving successful at low rates.
However at the highest embedding rate, the error expansion
techniques of DIFF, PDA and SP show the largest errors,
suggesting they are not suited to applications with large
capacity requirements. A more extensive study with a wider
variety of capacities, alternative iris recognition algorithms and
additional iris databases may clarify this effect.

images peaks at 0.75 bpp for both scenarios. However, at
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