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Abstract—The unit root tests based on the robust estimator for 

the first-order autoregressive process are proposed and compared 
with the unit root tests based on the ordinary least squares (OLS) 
estimator. The percentiles of the null distributions of the unit root test 
are also reported. The empirical probabilities of Type I error and 
powers of the unit root tests are estimated via Monte Carlo 
simulation. Simulation results show that all unit root tests can control 
the probability of Type I error for all situations. The empirical power 
of the unit root tests based on the robust estimator are higher than the 
unit root tests based on the OLS estimator. 
 

Keywords—Autoregressive, Ordinary least squares, Type I error, 
Power of the test, Monte Carlo simulation. 

I. INTRODUCTION 
AMINTON [1] described the econometric applications 
for the first-order autoregressive process in time series 

analysis. He also discussed the necessity of using the unit root 
test in order to find the correct model for the nominal interest 
rate and real GNP of the United States from the period of 1947 
to 1989. Hamilton [1] indicated that there are no guarantees in 
economic theory to suggest that nominal interest rates should 
exhibit a deterministic time trend, although the time series 
data display an upward trend over the sample data. 
Consequently, the model for these time series may be a 
random walk process without trend or a stationary process 
with a constant term. In order to answer this question, the unit 
root test can be applied to select between these two processes. 
The unit root test has drawn much attention over the past three 
decades, especially in economics and other related fields. 
Statisticians and econometricians are interested in the unit root 
test since economic time series data may be non-stationary. 
Contributions to the unit root literature include the works of 
Fuller [2], Dickey and Fuller [3], [4], Said and Dickey [5], [6], 
Phillips [7], Phillips and Perron [8], Hall [9], Pantula and Hall 
[10], Lucas [11], Park [12], Paparoditis and Politis [13], 
among others.  

The first-order autoregressive process { , 1, 2,..., }ty t n=  
denoted as AR (1) is given by 

 

1 ,t t ty y eδ ρ −= + +                       (1) 
 

where (1 ),δ μ ρ= −  μ  is the mean of the process, ρ  is the 
autoregressive coefficient and te  are a sequence of 
independent and identically random variables from a normal 
distribution with zero mean and variance 2 .eσ  Defining the 
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AR polynomial by ( ) 1z zρ ρ= − , we can rewrite the process 
as 
 

( )( ) ,t tB y eρ μ− =  
 

where B  is the backward shift operator such that 
.k

t t kB y y −=  Equation (1) is called a stationary AR(1) process 
if and only if the root of the AR characteristic equation 
( ( ) 0)zρ =  exceeds 1 in absolute value, i.e., 1,ρ < otherwise 
it is called a non-stationary process or random walk process. 
In the case of a near non-stationary process, i.e., 1,ρ →  the 
mean and variance of this process change over time. 

The null hypothesis; 0H  and the alternative hypothesis; aH  
for the unit root tests are as follows:  

 

0 : 1H ρ =  and : 1.aH ρ <  
 

A common feature of almost all unit root tests is that they 
make use of the ordinary least squares (OLS) estimator. 
Although the OLS estimator has asymptotic normality for 

1ρ <  (see [14]; [15], it has long been known that the OLS 
estimator can have large bias and is sensitive to the occurrence 
of outliers in the data; see, for example, [16]-[18]. There have 
been useful improvements in parameter estimation so as to 
reduce the bias of the OLS estimator. Denby and Martin [19] 
presented the robust estimator for an autoregressive model. 
Gonzalez-Farias and Dickey [20] considered maximum 
likelihood (ML) estimation for the parameters of the 
autoregressive process and suggested tests for unit roots on the 
basis of these estimators. Park and Fuller [21] proposed the 
weighted symmetric estimator of an autoregressive parameter. 
Fuller [2] presented a modification of the weighted symmetric 
estimator. Shin and So [22] developed an adaptive maximum 
likelihood procedure. Guo [23] developed the simple and 
robust estimator for an AR(1) model. However, Guo [23] and 
others do not develop the testing for a unit root based on the 
robust estimator proposed by Guo [23]. Thus, the main 
objective of this paper is to develop a unit root test based on 
the estimator presented by Guo [23] and to evaluate the 
efficiency of the unit root test based on OLS estimator. 

The organization of the paper is as follows. In the next 
section, we explain the details of the estimators and unit root 
tests. The performance of the unit root tests based on the 
robust estimator is examined and compared with those of the 
unit root tests based on the OLS estimator through Monte 
Carlo experiments in Section III. Section IV is devoted to 
conclusions. 
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II. DETAILED DESCRIPTION OF THE ESTIMATORS AND UNIT 
ROOT TESTS 

The ordinary least square (OLS) estimator for ( , ),δ ρ  can 
be obtained by regressing ty  on 1ty −  as in (1). So, these 
estimators are given by 
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The simple and robust estimator of ρ  is proposed by Guo 

[23], which is denoted by ˆ .rρ  The robust estimator is defined 
as follows 

 
ˆ median( ), 2,3,..., ,r ia i nρ = =        (4) 

 
where 1/ .i i ia y y −=  Guo [23] also showed that the estimator 
ˆrρ  is unbiased. 

The Dickey and Fuller unit root tests associated with ˆolsρ  

are ˆolsκ  and ˆolsτ  where 
 

ˆ ˆ( 1),ols olsnκ ρ= −                (5) 
 

and 
1/ 2ˆ ˆˆ ( 1),ˆ( )ols olsolsVτ ρρ

−
⎡ ⎤= −⎣ ⎦                (6) 

 

and ˆ ˆ( )olsV ρ

 

is the estimated variance of ˆolsρ defined as 
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Equivalent ˆolsκ  and ˆ ,olsτ  unit root tests based on the robust 

estimator are ˆrκ  and ˆrτ  where 
 

ˆ ˆ( 1),r rnκ ρ= −               (7) 
 
and 

1/ 2ˆ ˆˆ ( 1),ˆ( )r rrVτ ρρ
−

⎡ ⎤= −⎣ ⎦            (8) 
 

and ˆ ˆ( )rV ρ

 

is the estimated variance of ˆrρ defined as 
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The percentiles of the null distributions of the unit root tests 

are shown in Tables I and II. These values are based on the 
average of percentiles of the 100 sets of percentiles from 
10,000 independent simulated test statistics. 
 

TABLE I 
PERCENTILES OF THE NULL DISTRIBUTIONS OF THE ˆolsκ AND ˆrκ  TESTS 

n  Probability that ˆolsκ  is less than entry 
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 -17.17 -14.59 -12.49 -10.24 -0.75 0.00 0.64 1.40 
50 -18.75 -15.67 -13.23 -10.71 -0.80 -0.07 0.52 1.22 
100 -19.66 -16.29 -13.66 -10.98 -0.83 -0.11 0.46 1.12 
250 -20.15 -16.63 -13.90 -11.15 -0.84 -0.14 0.43 1.07 
500 -20.41 -16.77 -13.99 -11.20 -0.84 -0.14 0.43 1.07 

n  Probability that ˆrκ  is less than entry 
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 -9.33 -6.29 -4.17 -2.35 1.12 1.64 2.17 2.91 
50 -10.73 -7.45 -5.16 -3.11 1.35 1.89 2.42 3.15 
100 -12.02 -8.54 -6.07 -3.80 1.55 2.08 2.61 3.32 
250 -13.56 -9.85 -7.18 -4.67 1.78 2.33 2.86 3.56 
500 -14.49 -10.65 -7.84 -5.18 1.93 2.48 3.02 3.75 

The probability shown at the head of the column is the area in the left-hand 
tail. 
 

TABLE II 
PERCENTILES OF THE NULL DISTRIBUTIONS OF THE ôlsτ AND r̂τ  TESTS 

n  Probability that ôlsτ  is less than entry 

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 
25 -3.73 -3.32 -2.99 -2.63 -0.37 0.01 0.33 0.72 
50 -3.57 -3.22 -2.92 -2.60 -0.41 -0.04 0.28 0.65 
100 -3.50 -3.17 -2.89 -2.58 -0.42 -0.06 0.26 0.63 
250 -3.46 -3.14 -2.87 -2.57 -0.44 -0.07 0.25 0.61 
500 -3.44 -3.13 -2.87 -2.57 -0.44 -0.08 0.24 0.61 

n  Probability that r̂τ  is less than entry 
0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99 

25 -2.82 -2.13 -1.54 -0.91 0.44 0.68 0.92 1.24 
50 -3.02 -2.35 -1.78 -1.15 0.56 0.83 1.10 1.44 
100 -3.17 -2.50 -1.94 -1.33 0.66 0.95 1.23 1.59 
250 -3.28 -2.63 -2.08 -1.48 0.79 1.09 1.38 1.75 
500 -3.32 -2.69 -2.15 -1.55 0.87 1.18 1.47 1.85 

The probability shown at the head of the column is the area in the left-hand 
tail. 

III. MONTE CARLO EXPERIMENTS 
In this section, we describe the results of several Monte 

Carlo experiments carried out to evaluate the performance of 
the unit root tests, ˆ ˆ ˆ, ,ols r olsκ κ τ  and ˆ .rτ  The first-order 
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autoregressive process in (1) with parameters ( , )eμ σ = (0, 1) 
is generated under the null hypothesis 0H  by setting 

( )2
0 ~ 0,1/(1 )y N ρ−  and the initial one hundred observations 

are generated and discarded in order to eliminate the effect of 
the initial value. The scope of the simulations is set under the 
autoregressive parameter values ρ = 0.7, 0.8, 0.85, 0.9, 0.93, 
0.95, 0.97, 0.98, 0.99 and 1.00; the sample sizes n  = 25, 50, 
100 and 250. The random variables te  are generated from a 
normal distribution with a mean of zero and variance of one. 
Five hundred thousand time series were simulated by using R 
statistical software [24]. The significance levels α  for the unit 
root tests are equal to 0.05 and 0.10. The simulations 
compared the empirical probability of Type I error and power 
of the unit root tests. Simulation results are summarized in 
Tables III and IV. 

 
TABLE III 

PROBABILITIES OF TYPE I ERROR OF THE ˆ ˆ ˆ, ,ols r olsκ κ τ  AND r̂τ  

α  n  ˆolsκ  ˆrκ  ôlsτ  ˆrτ  
0.05 25 0.0511 0.0498 0.0489 0.0490 

 50 0.0508 0.0487 0.0492 0.0498 
 100 0.0512 0.0498 0.0514 0.0508 
 250 0.0519 0.0505 0.0501 0.0491 

0.10 25 0.1044 0.0999 0.1001 0.0996 
 50 0.1025 0.1013 0.1009 0.0973 
 100 0.1004 0.0978 0.1010 0.1013 
 250 0.1001 0.0982 0.1008 0.1000 

 
We begin with the results for the probability of Type I error 

of the unit root test (Table III). Bradley’s [25] criterion was 
considered. This criterion is that if the empirical probability of 
Type I error of any unit root test is within the interval 0.5α  
and 1.5 ,α  then that unit root test can control the probability of 
Type I error. For the significance level 0.05,α =  the empirical 
probability of Type I error should be between 0.025 and 0.075. 
It can be seen from Table III that all unit root tests can control 
the probability of Type I error for all sample sizes and all 
levels of significance. The empirical probability of Type I 
error for all unit root tests gets closer to the significance level 
with increasing sample sizes .n  This is intuitive in nature 
because as n  increases it is possible to estimate the 
autoregressive coefficients more accurately. Table IV shows 
that the empirical power of the ˆrκ  test is higher than the ˆolsκ  
test. Furthermore, The ˆrτ  test provides the higher empirical 
power. Apart from that, the empirical power of the tests tends 
to increase as the sample size gets larger. On the other hand, 
the empirical power of the tests decreases when ρ  approaches 
unity as the AR(1) process becomes less distinguishable from 
random walks. 

IV. CONCLUSIONS 
This paper proposes new unit root tests based on the robust 

estimator of Guo [23]. The proposed testing for a unit root and 

the unit root test based on the ordinary least squares (OLS) 
estimator were studied and compared by examining the 
empirical probabilities of Type I error and powers of the tests. 
The tables of critical values for testing of the unit root are 
created by setting 1.ρ =  Based on simulation studies, all unit 
root tests can control the probability of Type I error for all 
situations. The empirical power of the unit root tests based on 
the robust estimator ( ˆrκ  and ˆrτ ) are higher than the unit root 
tests based on the OLS estimator ( ˆolsκ  and ôlsτ ).  
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TABLE IV 
EMPIRICAL POWERS OF THE ˆ ˆ ˆ, ,ols r olsκ κ τ  AND r̂τ  

n  ρ  
0.05α = 0.10α =  

ˆolsκ  ˆrκ  ˆolsτ  ˆrτ  ˆolsκ  ˆrκ  ˆolsτ  ˆrτ  
25 0.70 0.312 0.736 0.235 0.583 0.501 0.852 0.404 0.772 

0.80 0.174 0.572 0.136 0.435 0.312 0.726 0.254 0.640 
0.85 0.130 0.464 0.106 0.353 0.240 0.637 0.199 0.556 
0.90 0.093 0.339 0.080 0.267 0.174 0.514 0.154 0.449 
0.93 0.076 0.260 0.069 0.213 0.146 0.423 0.136 0.373 
0.95 0.065 0.203 0.063 0.174 0.131 0.352 0.125 0.316 
0.97 0.059 0.149 0.059 0.133 0.117 0.268 0.117 0.252 
0.98 0.055 0.114 0.058 0.108 0.112 0.217 0.112 0.208 
0.99 0.052 0.078 0.054 0.077 0.106 0.154 0.111 0.154 

50 0.70 0.807 0.918 0.676 0.775 0.928 0.954 0.845 0.895 
0.80 0.472 0.784 0.354 0.599 0.676 0.873 0.546 0.777 
0.85 0.304 0.659 0.222 0.484 0.485 0.788 0.375 0.683 
0.90 0.176 0.491 0.131 0.354 0.309 0.651 0.240 0.553 
0.93 0.120 0.360 0.096 0.266 0.221 0.525 0.180 0.447 
0.95 0.092 0.270 0.078 0.208 0.180 0.423 0.151 0.371 
0.97 0.071 0.177 0.063 0.149 0.141 0.306 0.125 0.281 
0.98 0.065 0.134 0.060 0.120 0.125 0.240 0.117 0.229 
0.99 0.058 0.086 0.055 0.085 0.113 0.165 0.111 0.167 

100 0.70 1.000 0.993 0.997 0.945 1.000 0.997 1.000 0.982 
 0.80 0.954 0.955 0.885 0.824 0.992 0.978 0.967 0.925 
 0.85 0.783 0.887 0.642 0.706 0.921 0.942 0.829 0.851 
 0.90 0.459 0.731 0.342 0.530 0.664 0.848 0.530 0.718 
 0.93 0.271 0.566 0.197 0.399 0.444 0.725 0.343 0.591 
 0.95 0.174 0.422 0.130 0.300 0.310 0.597 0.242 0.480 
 0.97 0.107 0.255 0.085 0.199 0.202 0.427 0.165 0.356 
 0.98 0.080 0.176 0.069 0.150 0.158 0.317 0.136 0.277 
 0.99 0.063 0.106 0.058 0.100 0.126 0.203 0.116 0.192 

250 0.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
 0.80 1.000 1.000 1.000 0.991 1.000 1.000 1.000 0.998 
 0.85 1.000 0.997 1.000 0.964 1.000 0.999 1.000 0.988 
 0.90 0.994 0.973 0.974 0.860 1.000 0.988 0.996 0.945 
 0.93 0.884 0.899 0.767 0.718 0.968 0.951 0.909 0.860 
 0.95 0.627 0.773 0.481 0.568 0.812 0.874 0.688 0.745 
 0.97 0.300 0.522 0.214 0.375 0.477 0.691 0.366 0.561 
 0.98 0.171 0.346 0.126 0.260 0.307 0.525 0.237 0.430 
 0.99 0.091 0.170 0.074 0.150 0.175 0.306 0.148 0.277 
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