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Abstract—One of the most important issues about the structural 

damages caused by earthquake is the evaluating of the spectral 
response of the site on which the construction is built. This fact has 
demonstrated during many earlier earthquakes and many researchers’ 
reports have concerned with it. According to these reports, features of 
the site materials and geometry of the ground surface are considered 
the main factors. This study concentrates on the specific form of 
topographies like hills. Assessing of spectral responses of different 
points on the hills and beside demonstrates considerable differences 
between 1D and 2D methods of geotechnical analyses. A general 
trend of amplifications on the top of the hills and de-amplifications 
near the toe of the hills has been appeared within the acceleration, 
velocity and displacement response spectrums of horizontal motion. 
Evaluating of spectral responses of different sizes of the hills 
revealed that as much as the hill-size enlarges differences between 
spectral responses of 1D and 2D analyses transfers to longer range of 
periods and becomes wider. 
 

Keywords—Topography effect, Amplification ratio, Response 
spectrum. 

I. INTRODUCTION 
ECENTLY recorded ground motions and construction 
damages during the earthquakes have illustrated 

significant effects of surface irregularities on patterns of 
surface wave propagation. Researchers’ observations during 
1983 Coalinga earthquake, 1985 Chile earthquake, 1987 
Superstition hill earthquake, 1999 Greece earthquake, and 
recorded accelerations in Pacoima dam during 1971 San 
Fernando Earthquake and Tarzana Hill (1.78g) during 1994 
Northridge earthquake are some samples of the earthquake 
events in which topography have had an effective role in 
damage distributions [1]-[7]. 

The concept of a response spectrum was first introduced by 
Housner and Biot [8], and [9]. Spectra have been widely used 
for the purposes of differentiating between the significant 
characteristics of accelerograph records and providing a 
simple method of evaluating the response of all types of 
structures to ground shaking. After, Housner (1959), Hayashi 
et al. (1971), Mohraz et al. (1972), Blume et al. (1973), 
Newmark et al. (1973), Seed et al. (1976) and many others 
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conducted wide studies on response spectrum of different type 
of sites induced by different earthquake records [10]-[15]. All 
these investigations were based on results of one-dimensional 
analysis. The extensive experimental studies conducted by 
Borcherdt et al. (1991) and Borcherdt (1994) which showed 
the short period site coefficient could be approximated as the 
spectral amplification averaged over the period interval 0.1 to 
0.5 sec, whereas the moderately long period site coefficient 
could be approximated as the spectral amplification averaged 
over the period interval 0.4 to 2.0 sec [16], and [17]. 

Assimaki et al. (2005) introduced the concept of 2D / 1D 
response spectral ratio to describe the effects of topography as 
a function of local soil conditions, and suggested a frequency 
and location-dependent topographic aggravation factor to be 
introduced for the modification of design spectra in a seismic 
code [18]. Kamalian et al. (2008) Estimated the seismic site 
coefficients for the crest of the semi-elliptical shaped hills 
with various shape that were period dependent and therefore 
more representative of the amplification pattern of 2D hills, 
whereas the constant topography factors proposed by AFPS 
(1990) and Euro code 8 (1998) do not take this important 
controlling factor into account [19]-[21]. 

In this study, seismic behavior of different sizes of the 
trapezoidal shaped hills analyzed by vertically propagation of 
the earthquake recorded waves. Then, acceleration, velocity 
and displacement spectral responses at different points on the 
hills and besides compared with each other’s. Those 
comparisons performed properly between 1D and 2D methods 
of analyses. 

II. METHODOLOGY AND OUTLINE 
FLAC software applied to the numerical modeling of both 

the one-dimensional site profiles at different points on the 
ground surface and two-dimensional hills with different sizes 
as shown in Fig. 1 [22]. Relative verification has been shown 
in previous studies [23]. In order to the parametric evaluation 
of the trapezoidal shaped hills, shape ratio of 0.7 has 
considered for 200, 400 & 600m hill-widths and slope of 45 
degrees. The results are presented for specific case of uniform 
site material with VS = 760 m/s, Poisson’s ratio υ = 0.4, mass 
density ρ = 2400 kg/m3, elasticity modulus E = 4 GPa, induced 
by vertically propagating of different earthquake recorded 
waves. A detailed illustration of the 2D analytical model and 
its boundary conditions is provided in Fig. 2. 
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TABLE I 
 FAR-FAULT EARTHQUAKE RECORDS AND STATION DETAILS ADAPTED FROM PEER STRONG MOTION DATABASE [33] 

Earthquake event - Date Station / Component (deg) Site classification 
 (USGS) 

Magnitude 
(M) 

Distance 
(km) 

PGA 
(m / s2) 

PGV 
(cm / s) 

PGD 
(cm) 

Landers - 1992/06/28  Amboy / 90 A > 750 m / s 7.3 69.2 1.40 18.59 6.81 
Loma Prieta - 1989/10/18  San Francisco, Sierra Pt. / 205 A > 750 m / s 6.9 68.2 0.80 9.41 1.96 
Northridge - 1994/01/17  Lake Hughes #9 / 0 A > 750 m / s 6.7 26.8 1.70 5.99 1.95 
Northridge - 1994/01/17  LA - Wonderland Ave. / 185 A > 750 m / s 6.7 22.7 1.70 13.71 2.03 
Northridge - 1994/01/17  Mt Wilson - CIT SeisSta. / 0 A > 750 m / s 6.7 36.1 1.86 7.80 0.55 
Northridge - 1994/01/17  Leona Valley #3 / 90 A > 750 m / s 6.7 37.8 0.83 6.89 1.88 
Northridge - 1994/01/17  San Gabriel - Grand Ave. / 180 A > 750 m / s 6.7 41.7 1.43 7.33 1.33 
N. Palm Springs - 1986/07/08 Anza - Red Mountain / 360 A > 750 m / s 6.0 45.6 1.05 3.37 0.43 
N. Palm Springs - 1986/07/08 Silent Valley - Poppet F. / 0 A > 750 m / s 6.0 25.8 0.96 2.83 0.47 
San Fernando - 1971/02/09 Lake Hughes #9 / 21 A > 750 m / s 6.6 23.5 0.88 5.49 0.62 
Whittier Narrows - 1987/10/01 Mt Wilson - CIT SeisSta. / 10 A > 750 m / s 6.1 (ML) 58.3 1.10 6.19 1.41 
Victoria, Mexico - 1980/06/09 SAHOP Casa Flores / 90 A > 750 m / s 6.0 21.2 1.46 4.73 0.23 

 

(a) 
 

(b) 

Fig. 3 Acceleration response spectra curves resulted from 1D 
analyses (a) and 2D analyses (b) on center of the crest of a 

trapezoidal shaped hill with a shape ratio of 0.7 and a hill-width of 
200 m for far-fault earthquake records 

 
Fig. 5 shows the mean velocity responses spectrum curves 

for 1D and 2D analyses induced by far-fault earthquake 
records at points A to D for a shape ratio of 0.7 and the 
various widths of the hill. Due to the aggregative effect of the 

hill for points on the crest, the mean velocity response spectra 
of results of 2D analyses at points A and B were higher than 
those were related to 1D analyses as well as the mean 
acceleration response spectrums. while, because of the 
depreciatory effect of the hill for the points on the toe of the 
hill, the mean velocity response spectrums of results of 2D 
analyses at points C and D were lower than those were related 
to 1D analyses. These amplifications (at points A & B) and 
de-amplifications (at points C & D) happened for 
displacement response spectrums as shown in Fig. 6. 

The Fourier amplitude spectrum shows how the amplitude 
of an earthquake records distributed with respect to period. 
Comparing the Fourier amplitude spectrums of acceleration, 
velocity and displacement illustrated that Fourier amplitude of 
an earthquake record in term of acceleration, velocity and 
displacement distributed over short, moderately long and long 
period intervals, respectively. Thus, they excited 
corresponding period intervals in term of response spectrums, 
but this matter observed for both 1D and 2D modeling and it’s 
already hard to distinguish the topography effect (see Figs. 4-
6). 

In order to concentrate on difference of the 1D and 2D 
analyses response spectrums at the specified points (A to D) 
for various hill-size, their spectral amplification ratios 
prepared in Fig. 7. By this way it could be found more clearly 
that by enlarging the size of the hill, from 200 m to 600 m, 
differences between results of two methods of modeling 
transferred to the longer period intervals and also became 
wider. In other words, by enlarging the hill, amplification at 
the points on the crest of the hill and de-amplification at the 
points of the hill occur within longer period intervals. By 
increasing the hill-width, natural period of the hill increased 
and the differences caused by the hills occurred within the 
longer periods of earthquake records. So, it is possible to 
express spectral amplification ratios for the topographies 
irrelevant to their sizes. 
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Fig. 4 Acceleration response spectrums at points A, B, C and D resulted of 1D and 2D analyses; for a shape ratio of 0.7 and various width of the 
trapezoidal shaped hill; averaged for 12 far-fault earthquake records 
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Fig. 5 Velocity response spectrums at points A, B, C and D resulted of 1D and 2D analyses; for a shape ratio of 0.7 and various width of the 
trapezoidal shaped hill; averaged for 12 far-fault earthquake records 
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Fig. 6 Displacement response spectrums at points A, B, C and D resulted 1D and 2D analyses; for 0.7 shape ratio and various hill-widths; 
averaged for 12 far-fault earthquake records
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Fig. 7 Acceleration, velocity and displacement response spectra ratios resulted of 2D over 1D analyses at points A, B, C and D; for 0.7 shape 
ratio and various hill-widths; averaged for 12 far-fault earthquake records 
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IV. CONCLUSION 
In this study, seismic behavior of different sizes of the 

trapezoidal shaped hills (B = 200, 400 & 600m) evaluated 
under far-fault earthquake records and their results compared 
in the terms of acceleration and velocity response spectrums. 
Evaluating the response spectrums in term of acceleration, 
velocity and displacement at the specified points revealed that 
as much as the size of the hill enlarged, it excited longer range 
of periods so that the amplification on the top of the hill and 
the de-amplification on the toe of the hill occurred within the 
longer period intervals and over the wider band. Also, surface 
irregularities influence similarly on the all ground motion 
parameters such as acceleration, velocity and displacement in 
term of response spectrum. 
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