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Development of Material Analyzing Software
Using X-Ray Diffraction
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Abstract—X-ray diffraction is an effective mean for analyzing
material properties. This paper developed a new computational
software for determining the properties of crystalline materials such
as elastic constants, residual stresses, surface hardness, phase
components, and etc. The results computed from the X-ray
diffraction method were compared to those from the traditional
methods and they are in the 95% confidential limits, showing that the
newly developed software has high reproducibility, opening a
possibility of its commercialization.
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[. INTRODUCTION

MONG many methods of material analyzing as magnetic,

ultrasonic [1], microscopic [2], laser, X-ray diffraction
methods [1], [3] etc.; X-ray diffraction method has many
advantages over the other methods, because it can
nondestructively and accurately determine the material
properties such as residual stress [4], [5], crystalline grain size
[6], phase quantitative [7], hardness [8], thin layer thickness
[9] etc. A previous research has developed automated
computational software on stress of polycrystalline material
[10]. However, many computations on the correction for
absorption factor for various materials having different have
not been totally integrated into the software.

This research develops a new X-ray material analyzing
software for determining material properties, called X-Pro 1.0.
The programming language used was C#, which is a strong
language, widely supported by the programming experts. It is
also capable for users having little programming experience to
revise or add the source for a proper computation.

II. MATERIAL ANALYZING SOFTWARE X-PRO 1.0

A. Selection of Development Language

Two common programming methods are currently used,
including structured programming (SP) and object-oriented
programming (OOP). The SP languages, which are Assembly,
Basic, C, and Pascal, have common features such as “Program
= Data structure + Algorithm” [11]. Besides the advantage of
ease to follow, SP has disadvantages that it does not allow to
reuse the resource code, the algorithm strictly depends on the
data structure; as the structure changes, the algorithm must
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change, thus make it difficult to develop, especially for a large
project. Instead, OOP uses a group of functions and variables
to solve the task of the objects, thus save the resources, reuse
the code and is suitable for a large project. Among the OOP
languages as Turbo Pascal, C++, and C#, C# is a strong
language, developed from the .NET Framework background
and supporting many libraries for utilizing rapid programming
[12], [13]. The newly developed computational software X-
Pro 1.0 was programmed using C# has functions of analyzing
material properties as stress computation, phase quantitative

determination.
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Fig. 1 Flow chart of X-Pro 1.0

B. Data analysis

The measurement data files are read from the X-ray
diffraction system Panalytical XPert or from a text file and
then plotted into the diffraction lines as shown in Fig. 2. The
peak position p and line broadness B is shown directly on the
diffraction line for preliminary evaluation. The absorption
factor of many measurement methods used for correcting X-
ray intensities are listed in Table 1. The diffraction planes (/k7)
are also analyzed together with the wave length and the type of
Bravais lattice of the measured material. Table I shows the
absorption factor for correcting the X-ray intensity in the case
of measuring many diffraction methods.
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Fig. 2 Main window of data analysis

TABLE 1
ABSORPTION FACTORS FOR ISO-INCLINATION AND SIDE-INCLINATION
METHODS [ 14]

Inclinatio Fixed- Limination of irradiated area
n method Without With
Vo 1-cot(d -y, )cot & cosy, [1-cot(d -y, )cot 6]
fso- v 1—tany cotd sin(y + 0)[1- tany cot 6]
. Mo 1+ tan(@ - ) cot & cospsing,[1+ tan(6 — 6,)cot 6]
Side- n 1 cosgsiné

C.Smoothing

To smooth the rough measured X-ray counts, the data is
calculated from three data (x1,y1), (x;):), and (x,,),), having an
internal of nc, where n is an integer and c is the step size. The
slope of the line (1, 2) is:

tana = R @))]
X, —X

For most normal measurement, the angle o is preset at 10°
to get distinction between the diffraction peak and the
background diffraction. The value of n can be preset from 1 to
10 to change the smoothing level. Fig. 2 is the diffraction line
for CeO,.
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Fig. 3 Determination of slop in smoothing technique

D. Stress Determination

The stresses, both residual stresses and loading stresses, on
the surface of crystalline materials can be determined by X-ray
diffraction measurement data. The dialog box shown in Fig. 4
allows calculating the material elastic constants as Young’s
modulus and Poisson ratio used for stress computation. This

also makes it possible to revise a material or add a newly
measured material and then save to the program library. By
clicking “OK”, the dialog box for selecting methods of peak
position determination, the correction factors used for stress
computation is shown as Fig. 5. The corrected X-ray
diffraction line, peak positions, stress together with their 95%
confidential limits representing the reproducibility of the
calculated value are shown.
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Fig. 5 Dialog box of stress determination

Four common methods for stress calculation including the
Gaussian curve, the parabola, the half-width and the centroid
methods [5]. In the Gaussian curve and parabola methods, the
peak positions are determined by fitting a curve to the
measurement data points above R% of the maximum X-ray
counts. The centroid method determines the peak position
from the integral area under the diffraction line, so it strongly
depends on the scanning, thus lead to low accuracy of
computation. In the half-width method, the peak positions are
determined from six data points around half of maximum X-
ray counts.
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TABLE II
RESIDUAL STRESS OF ALUMINA ALLOY 1060
Origin Pro
X-Pro 1.0 ( MPa
Zones ( ) 8.5.1
Gaussian Parabola Half width Centroid  Gaussian
1 -173+2.8 -17.3+£02 54+19.7 7.5+94 -25.3
2 -260+£89 260+04 -32+183 -24+72 -30.4
3 13.2+3.1 13.2+04 11.6+42.8 8.7=+8.5 10.1
4 -29546.0 -294+0.6 -198+27.7 -23+9.6 -28.3

Table II shows the residual stresses in a butt-weld of
aluminum alloy 1060 using the friction stir welding technique,
calculated from XPro v1.0 by using four methods of peak
position determination: Parabola, Gaussian, Half-Width,
Centroid, together with 95% confidential limits [15]. It is
observed that the Gaussian curve and parabola methods give
closer value than the other methods. On the other hand, the
half-width and the centroid methods have large variation of the
calculated value. This shows that the Gaussian curve and
parabola methods should be used for stress determination
using X-ray diffraction.

E. Phase Quantitative Determination

X-Pro 1.0 can determine the phase component for double
phase materials. Choosing “Phase quantitative” on the menu
bar, then choosing “Open file”, the dialog box as indicated in
Fig. 6 for selecting diffraction peak for each phase is shown.
The diffraction parameters for determining diffraction plane
such as wave length, lattice type and parameters are shown.
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Fig. 6 Dialog box for phase quantitative determination

In the case of high background diffraction of more than 10%
of maximum X-ray intensity, background should be subtracted.
Otherwise, the background diffraction should be treated as
extraneous matter component. In those cases, the button
“Background separation” should be chosen for each phase.

Choosing “Phase Quantitative Determination” on the menu
bar, the dialog box for phase determination is shown as in Fig.
6. The method of computation has been published as [7]:

q. - ZE(‘Z/(I),”Z,
L=
ZEZM),U, + ZE(yth),Vl, (2)
ZE(ZA»/){;,,

q,= " 7
Z E(hkl)',’ 2 + Z E(hk/)r A

a
where E i 2,

and E’

iy 2, 1€ respectively the total diffracted

energy from the phases a and y of diffraction planes (hkl)}
a a
and (hkl); for wave length 4, , denoted as £ and E]. Elj

is calculated from the integral intensity at a diffraction peak
(hkl) as

Ef=Y"x,z A3)
k=1

where x; =2(0 ;- ©,.)) is the step angle and y; is the X-ray count
at diffraction position 26, Table III is the measurement
conditions for doublex austenite-ferrite stainless steel SCS14.

TABLE III
CONDITIONS FOR PHASE QUANTITATIVE MEASUREMENT

Measurement method

Fixed-n Q type

X-ray characteristic Cu-K,, A=1,54 A°

Filter Ni foil
Preset time 5 seconds
Step size 0.02°
Voltage and current 20kV, 10 A

Table IV compares the phase compositions of SCS14
determined from (2) and the microscope imaging method. The
strong agreement between the two methods shows the validity
of (2) and the computation software can be used effectively in
the industrial production.

TABLE IV
PHASE COMPONENTS OF STAINLESS STEEL SCS14
Phase . .
Methods Austenite Ferrite
X-Pro 1.0 55% 422 %
Microscope Imaging 55.9% 429 %

F. Hardness Determination

Many evidences show that the hardness of crystalline
materials has relation to the broadness of the diffraction line. A
previous research has determined a linear relation between the
Rockwell hardness HRC and the half-width B of the
diffraction line of quenched and tempered carbon steel [S8].
XPro v1.0 is integrated with function for determining the
hardness of quenched carbon steel experimentally. In the case
of the Gaussian curve method,

HRC = 87.85B +20.34

where B =2+/2In2c is the half-width of the diffraction line
and o is the standard deviation of the Gaussian curve.
In the case of the parabola method,
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HRC =103.01B8 +21.31

where B is the full width at half of maximum X-ray intensity of
the parabola fitted to the diffraction line.

Table V is the measurement conditions for eleven quenched

and tempered specimens in water for 45 minutes. Fig. 7 is the
relation between the HRC hardness and the line half-width.
The straight lines in Fig. 7 show that the developed XPro 1.0
can determine the hardness from the X-ray diffraction
measurement data.

TABLE V
CONDITIONS FOR HARDNESS MEASUREMENT OF QUENCHED CARBON
STEEL

Measurement method Fixed-n Q type

Diffraction plane (211) of body-centered cubic ferrite

Bragg angle 82.3°
X-ray characteristic Cu-Kq, A=1,54 A°
Filter Ni foil
Preset time 5 seconds
Step size 0.04°
Voltage and current 20kV, 10 A
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Fig. 7 Dialog box for hardness determination

III. CONCLUSIONS

A new material analyzing software X-Pro 1.0 has been

developed with various computational functions to evaluate
material properties such as residual stress, hardness, phase
quantity; the calculation for different measured data has shown
that the computation has very high accuracy.

Further development of the research could be:
Development of phase quantitative analyzing for material
having three phases or more;
Development of hardness of many advanced alloy
materials such as nikel-based alloy and aluminum alloys;
Determining the thickness for coating layers
Integration of function of corrosion mapping using
ultrasonic technique;
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