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Abstract—This paper suggests a decision tree based approach for 

flexible job shop scheduling with multiple process plans, i.e. each job 

can be processed through alternative operations, each of which can be 

processed on alternative machines. The main decision variables are: 

(a) selecting operation/machine pair; and (b) sequencing the jobs 

assigned to each machine. As an extension of the priority scheduling 

approach that selects the best priority rule combination after many 

simulation runs, this study suggests a decision tree based approach in 

which a decision tree is used to select a priority rule combination 

adequate for a specific system state and hence the burdens required for 

developing simulation models and carrying out simulation runs can be 

eliminated. The decision tree based scheduling approach consists of 

construction and scheduling modules. In the construction module, a 

decision tree is constructed using a four-stage algorithm, and in the 

scheduling module, a priority rule combination is selected using the 

decision tree. To show the performance of the decision tree based 

approach suggested in this study, a case study was done on a flexible 

job shop with reconfigurable manufacturing cells and a conventional 

job shop, and the results are reported by comparing it with individual 

priority rule combinations for the objectives of minimizing total flow 

time and total tardiness.  

 

Keywords—Flexible job shop scheduling, Decision tree, Priority 

rules, Case study.  

I. INTRODUCTION 

HIS study considers the scheduling problem in flexible job 

shops with multiple process plans, i.e. each job can be 

processed through alternative operations, each of which can be 

processed on alternative machines. The problem, which is an 

extension of the conventional job shop scheduling problem, can 

be found in various types of manufacturing systems, especially 

in flexible or reconfigurable manufacturing systems since each 

operation can be processed on one or more machines. Here, the 

reconfigurable manufacturing system is the one designed at the 

outset for rapid changes in its hardware/software components 

to quickly adjust its production capacity and functionality in 

response to sudden market changes or intrinsic system changes. 

In case that one or more reconfigurable manufacturing cells are 

introduced to a conventional job shop system for the purpose of 
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increasing system capacity and flexibility, the resulting hybrid 

system becomes a flexible job shop.  

Since the flexible job shop scheduling problem with multiple 

process plans is very complicated, the previous studies suggest 

meta-heuristics or report the performances of priority rule 

combinations. Here, the priority rule combinations are required 

since the scheduling problem has two main decisions: (a) 

selecting operation/machine pairs; and (b) sequencing the jobs 

assigned to each machine. See Ozguven et al. [1] and Doh et al. 

[2] for recent studies on flexible job shop scheduling problem 

with multiple process plans. Although there are some merits, 

the meta-heuristic and the priority scheduling approaches have 

disadvantages. First, the meta-heuristic approach requires too 

much computation time to be used in real-time environment. 

Also, the priority scheduling approach has the burdens required 

for developing simulation models and carrying out simulation 

runs to select the best rule for a specific system state.  

In this study, we suggest a decision tree based approach for 

the flexible job shop scheduling problem in which the decision 

tree is used to select a priority rule combination appropriate for 

a specific system state and hence the burdens required for 

developing simulation models and carrying out simulation runs 

can be eliminated. In general, the decision tree, one of the data 

mining techniques, is a kind of classifier expressed as a 

recursive partition of the instance space. In this study, we adopt 

the decision tree for flexible job shop scheduling since it has 

several advantages, i.e. simple to understand and interpret, 

containing value even with little hard data, adding possible 

scenarios, etc. See Deng et al. [3] for more advantages of the 

decision tree. 

There are several previous studies on production scheduling 

based on the decision tree. One of earlier studies is Shinichi and 

Taketoshi [4] that suggest a learning algorithm that generates a 

decision tree using the empirical data obtained by simulation 

runs, where the decision tree is used to decide the priority rule 

at decision points during the actual production operations. Also, 

Shaw et al. [5] suggest a scheduling framework to classify 

manufacturing patterns and to generate a decision tree that 

dynamically selects the priority rule for a given set of system 

attributes, and later, Piramuthu et al. [6] and Park et al. [7] 

applied the framework to flexible manufacturing systems after 

certain modifications. See Lee et al. [8], Arzi and Iaroslavitz [9], 

Su and Shiue [10], Kwak and Yih [11], Priore et al. [12], Shiue 

et al. [13] and Choi et al. [14] for other decision tree based 

scheduling approaches and applications.  

As stated earlier, this study suggests a decision tree based 

scheduling approach for flexible job shops, especially with 

multiple process plans. In this approach, the decision tree is 
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used to select a priority rule combination adequate for a specific 

system state and hence the burdens required for developing 

simulation models and carrying out simulation runs of the 

priority scheduling approach can be eliminated. The decision 

tree based scheduling approach suggested in this study consists 

of two main steps: construction and scheduling steps. In the 

construction step, a decision tree is constructed by a systematic 

procedure using the empirical data obtained by simulation runs, 

and in the scheduling module, a priority rule combination is 

selected under a specific system state using the decision tree. 

To show the performance of the decision tree based approach, a 

case study was done on a flexible job shop with reconfigurable 

manufacturing cells and a conventional job shop for each of the 

objectives of minimizing total flow time and total tardiness, and 

the results are reported by comparing it with individual priority 

rule combinations.  

The paper is organized as follows. In the next section, the 

problem is described in more details. The decision tree based 

scheduling approach is explained in the third section, and the 

case study is reported in the fourth section. The final section 

concludes the paper with a summary and discussion of future 

research. 

II. PROBLEM DESCRIPTION  

The flexible job shop scheduling problem considered in this 

study can be briefly explained as follows. For a given set of 

jobs, the problem is to determine the operation and machine 

pairs of each job and the sequence of the jobs assigned to each 

machine according to the process routes.  

As explained earlier, each job is processed according to a 

multiple process plan that specifies alternative operations, their 

sequence, and alternative machines on which an operation is to 

be processed. In other words, each job can be processed 

through alternative operations, each of which can be processed 

on alternative machines. The decision variables are: (a) process 

route of each job, i.e. operation/machine selections; and (b) 

sequence of the jobs assigned to each machine, i.e. job shop 

scheduling. The two objectives are considered in this study. 

They are minimizing total flow time and total tardiness. Note 

that each objective is a function of job completion times. 

This study considers a static and deterministic version of the 

problem. In other words, all jobs are ready for processing at 

time zero, i.e. zero ready times, and the job descriptors, such as 

multiple process plans, processing times, due dates, etc., are 

deterministic and given in advance. Other assumptions made 

for the problem are: (a) each machine can process only one 

operation at a time; (b) setup times are sequence-independent 

and hence can be included in processing times; (c) preemption 

is not allowed, i.e. once a job is processed on a machine, it will 

stay on that machine until its completion; (d) transportation 

times among machines are ignorable or can be included in 

processing times; and (e) due dates are not enforced as hard 

constraints. See Doh et al. [2] for more details.  

 

III. DECISION TREE BASED SCHEDULING APPROACH  

A. Decision Tree  

As a data-mining technique, a decision tree is a kind of 

classifier represented as a recursive partition of the instance 

space. More specifically, a decision tree is a rooted one that 

consists of non-leaf and leaf nodes, where non-leaf nodes 

represent a choice among alternatives, i.e. splitting the instance 

space into two or more sub-spaces according to a certain 

discrete function of the input attributes values, while leaf nodes 

represent classification or decision.  

Before explaining the decision tree in details, an example 

data set is summarized in Table I. In the table, there are twelve 

objects, four conditional attributes and one decision attribute. 

For example, object 1 implies that the decision is 1 (X = 1) if 

the values of conditional attributes A, B, C and D are 1, 2, 2, 

and 1, respectively. 
 

TABLE I  

DATA SET FOR CONSTRUCTING A DECISION TREE: EXAMPLE 

Objects 
Conditional attributes Decision attribute 

A B C D X 

1 1 2 2 1 1 

2 1 2 3 2 1 

3 1 2 2 3 1 

4 2 2 2 1 1 

5 2 3 2 2 2 

6 1 3 2 1 1 

7 1 2 3 1 2 

8 2 3 1 2 1 

9 1 2 2 2 1 

10 1 1 3 2 1 

11 2 1 2 2 2 

12 1 1 2 3 1 

 

Using the data given in Table I, various decision trees can be 

constructed. Fig. 1 shows an example in which a path from the 

root node to each lead node corresponds to a decision. For 

example, if the values of conditional attributes A, B and C are 

2, 3, and 1, the resulting decision is 1, i.e., d = 1. 

 

 

Fig. 1 Decision tree: example 

B. Decision Tree Based Scheduling  

Fig. 2 shows the decision tree based scheduling framework 

suggested in this study. As can be seen in the figure, the 

framework consists of storage, construction and scheduling, 

each of which is explained below.  
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Fig. 2 Decision tree based scheduling: framework 

1) Construction Module 

In this module, a decision tree is built up using simulator, 

statistical analyzer and decision tree constructor. The simulator 

provides the performances of priority dispatching rules under 

various system states, which are used by the statistical analyzer 

that analyzes the data associated with constructing a decision 

tree. In our application, the conditional and decision attributes 

in the data set correspond to the system states and the selection 

of priority dispatching rule, respectively. If the simulation 

technique is used to construct a decision tree, an object in the 

data set, i.e., each row in Table I, is obtained by performing a 

simulation run under a given system state and identifying the 

best dispatching rule.  

Based on the data obtained from simulation, the decision tree 

constructor builds up a decision tree that will be used to select a 

priority rule expected to perform the best under a specific 

system state. For this purpose, we suggest an algorithm that 

consists of four stages, each of which is explained below (The 

method is a modified version of Kwon et al. [15]). 

Stage 1. Specifying the Attributes  

In this stage, the system attributes are specified that may 

affect the system performance measures under consideration. 

For this purpose, various methods, e.g. knowledge of system 

experts, simulation, etc., can be used. 

Stage 2. Selecting the Eligible Attributes 

Among the specified system attributes in stage 1, the eligible 

ones, which are expected to be highly influential to the system 

performance under consideration, are selected. For this purpose, 

we suggest the correlation coefficient based method.  

The detailed step-by-step procedure is given below.  

Step 1. Calculate correlation coefficient value (ra) between an 

attribute and the performance measure under 

consideration, i.e. 
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where xi and yi denote the ith values of attribute and 

performance measure, respectively. 

Step 2. Classify the attributes as follows. 

Group 1: Attributes with 0.7 < ra  ≤ 1.0 
Group 2: Attributes with 0.3 < ra  ≤ 0.7 
Group 3: Attributes with 0.1 < ra  ≤ 0.3 
Group 4: Attributes with 0 ≤ ra  ≤ 0.1  

Step 3. Determine the eligible attributes by selecting some 

higher ranked groups. 

Stage 3. Determining the Number of Levels for Each 

Attribute  

In this stage, the number of levels for each eligible attribute 

is determined using its correlation coefficient value. More 

formally, calculate the number of levels as  
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where nF denotes the total number of eligible attributes. Also, 

• denotes the smallest integer greater than or equal to •. 

Stage 4. Constructing a Decision Tree  

In this stage, a decision tree is constructed using the data 

obtained from the simulation results on the performances of 

candidate priority rules under various system configurations, i.e. 

combinations of all the levels of eligible system attributes. 

Among various algorithms to generate a decision tree, we use 

the ID3 algorithm since it is simple but proved to be effective. 

See Quinlan [16] for more details of the ID3 algorithm.  

The ID3 algorithm is based on the entropy function to select 

the conditional attributes of a decision tree, where the entropy 

function of conditional attribute j is defined as 

 

∑
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where Cj denotes the number of different conditional attribute 

values, e.g., CA, CB, CC, and CD are, 2, 3, 3, and 3 for the 

example in Table I. Also, p(wcj | j) denotes the proportion of 
value wcj in conditional attribute c. For example, p(1|A) = 8/12 

and p(2|B) = 4/12 in Table I. 

The detailed procedure of the ID3 algorithm is given below. 

Step 1. Create the root node using the conditional attribute with 

the smallest entropy value and let the root node be the 

current node. 

Step 2. For each conditional attribute value of the current node, 

create and connect a child node whose conditional 

attribute is set to the one with the smallest entropy value 

after updating the data set, i.e. entropy values are 

calculated after removing the conditional attribute of the 

current node and the objects with the conditional 

attribute value of the current node. 

Step 3. If all conditional attributes are considered, stop. 

Otherwise, let one of the unconsidered child nodes be 

the current node and go to Step 2. 
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2) Scheduling Module  

In this module, a priority rule is selected using the decision 

tree. The decision tree can be used in two ways. First, for the 

static flexible job shop scheduling problem considered in this 

study, the decision tree is used once at the beginning of 

scheduling period. On the other hand, if the decision tree is used 

for dynamic scheduling, the decision tree can be used to select a 

priority rule when the current rule needs to be changed due to 

system changes. Here, there may be various rescheduling 

strategies that determine the points of time when the current 

priority rule is to be changed. 

3) Storage Module  

This module collects and stores the date required for the 

construction and scheduling modules, e.g. simulation results or 

historical data on the performances of priority rules in order to 

construct the decision tree or perform rescheduling. 

IV. COMPUTATIONAL EXPERIMENTS  

The performance of the decision tree based scheduling 

approach was tested using the data on a flexible job shop case, 

and the results are reported in this section.  

As explained earlier, the flexible job shop considered in this 

study consists of reconfigurable manufacturing cells (RMCs) 

and a conventional job shop. The RMC, a state-of-the-art 

manufacturing technology that overcomes the limitations of 

flexible manufacturing systems, is the one designed for rapid 

changes in its hardware and software components to quickly 

adjust its production capacity and functionality. See Koren et al. 

[17] for more details on reconfigurable manufacturing systems. 

Also, the job shop is a conventional legacy system that consists 

of dedicated and flexible machines, such as marking machines, 

numerical control machines, cleaning machines, etc. Note that 

when RMCs are introduced to a conventional job shop, the 

resulting hybrid system becomes a type of flexible job shop. 

Here, an RMC can be utilized as an alternative processor that 

can replace the conventional job shop. Therefore, the hybrid 

system can be considered as a parallel system in which the 

operations can be done on either the RMC or the job shop. 

However, the two systems are different in operations and 

processing times even for the same part type. 

The RMC consists of numerical control (NC) machines, a 

loading/unloading (L/U) station and a central buffer. Each 

machine has an automatic tool changer and a tool magazine 

with limited capacities. A part can be fed into the RMC through 

the loading/unloading station after it is clamped onto a pallet 

with a required fixture type. Note that common pallets are used 

in the RMC, i.e., any fixture types can be mounted on a pallet. 

Also, a fixture type can be used for a specific set of part types. 

One or more tools are required to perform an operation on a part 

type, and each tool requires one or more slots in the tool 

magazine. The central buffer which is an automatic storage and 

retrieval system (AS/RS) is used to store in-process parts within 

the RMC. Since the RMC has a limited central buffer, an upper 

limit is imposed on the number of parts circulating in the 

system. After released into the RMC, a part with a required 

fixture type on a pallet goes into the central buffer and waits for 

processing. Each part stored in the central buffer is sent to the 

machines for operations. After the required operations are 

finished, the part leaves the system through the L/U station and 

removed from the pallet together with the fixture. Table II 

summarizes the system components.  
 

TABLE II  
SYSTEM COMPONENTS  

  M/C Code Description 

RMC 1 

RVMC1A Vertical Machining Center (RMC1) 

RVMC1B Vertical Machining Center (RMC1) 

RVMC1C Vertical Machining Center (RMC1) 

RLU Loading/Unloading station 

RMC 2 

RVMC2A Vertical Machining Center (RMC2) 

RVMC2B Vertical Machining Center (RMC2) 

RVMC2C Vertical Machining Center (RMC2) 

RLU Loading/Unloading station 

RMC 3 

RHMC1A Horizontal Machining Center (RMC3) 

RHMC1B Horizontal Machining Center (RMC3) 

RHMC1C Horizontal Machining Center (RMC3) 

RLU Loading/Unloading station 

RMC 4 

RHMC2A Horizontal Machining Center (RMC4) 

RHMC2B Horizontal Machining Center (RMC4) 

RHMC2C Horizontal Machining Center (RMC4) 

RLU Loading / Unloading station 

Job shop 

(legacy) 

MK1 Marking Machine 1 

MK2 Marking Machine 2 

VMC1 Vertical Machining Center 1 

VMC2 Vertical Machining Center 2 

HMC1 Horizontal Machining Center 1 

HMC2 Horizontal Machining Center 2 

HMC3 Horizontal Machining Center 3 

CFM Cubic Face Milling Machine 

HFMCMM 
Horizontal Face Milling/Cutting & 

Measuring Machine 

GDM Grinding Machine 

DRGD Drilling & Grinding Machine 

INS Inspection 

 
CLM Cleaning 

 

It is assumed that part types and their quantities to be 

produced during the upcoming period are given in advance, and 

each part type is produced requires a predetermined set of 

operations. Table III lists all the operations, together with the 

machines that each operation can be processed.  
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TABLE III  

OPERATIONS AND AVAILABLE MACHINES  

Operations Description Available machine 

OMK Marking MK1, MK2 

OVR Vertical Removing 
RVMC1A, RVMC1B, RVMC1C 
RVMC2A, RVMC2B, RVMC2C 
VMC1, VMC2, CFM, GDM 

OHR 
Horizontal 
Removing 

RHMC1A, RHMC1B, RHMC1C 
RHMC2A, RHMC2B, HMC2C 

HMC1, HMC2, CFM, FMCMM 

OCR Cubic Removing CFM 

OFC Face Cutting 
RVMC1A, RVMC1B, RVMC1C 
RVMC2A, RVMC2B, RVMC2C 

OHFM 
Horizontal Face 

Milling 
RHMC1A, RHMC1B, RHMC1C 
RHMC2A, RHMC2B, MK1 

OCFM Cubic Face Milling CFM 

OINS Inspection HFMCMM, INS 

OHFMCM 
Horizontal Face 
Milling/Cutting & 

Measuring 
HFMCMM 

OGM Grinding Mark MK2 

ODR Drilling VMC1, VMC2 

OGD Grinding GDM , DRGD 

ODRGD Drilling & Grinding DRGD 

 

It is assumed that a loading plan is given to specify the 

assignments of operations and their cutting tools on the 

machines. See Kim et al. [18] for more details on the loading 

problem. Also, it is assumed that fixture allocation is done in 

advance, i.e., the given set of common pallets is divided into 

mutually exclusive subsets, within which the pallets are 

equipped with a predetermined fixture type. Finally, we assume 

that the number of fixtures is enough to clamp parts on pallets. 

As explained earlier, each job is processed according to a 

multiple process plan, where the multiple process plan can be 

represented as a network that consists of three types of nodes: 

source, intermediate and sink. The source and sink are dummy 

nodes that represent the start and the end of a part processing, 

respectively. Each intermediate node represents alternative 

machines and operations, together with the corresponding 

processing times. Also, an arc connecting two nodes represents 

the precedence relation between the corresponding two 

operations. In particular, if a part meets an OR relation, it must 

select one of the corresponding alternative operation/machine 

pairs. In summary, a part is completed through a path (set of 

intermediate nodes) from the source to the sink node. Fig. 3 

shows an example of the network model for a multiple process 

plan with 4 OR relations and 15 intermediate nodes. In this 

figure, we can see that there are five paths from the source to 

the sink node, e.g. S1–OMK–OVR–OCFM–OINS–F1, where 

the operation OMK can be processed by either MK1 or MK2 

whose processing times are 30 and 60, respectively. 

 

 

Fig. 3 Multiple process plan: example 

 

Since the RMC is being developed, we could not obtain the 

real data on part types. Instead, we generated various data based 

on the experiences of the project partners. More specifically, 

we generated 5000 instances. In the instances, the number of 

part types and the production quantities were generated from 

DU(5, 15) and DU(1, 10), where DU(a, b) denotes the discrete 

uniform distribution with a range [a, b]. Also, the number of 

operations for each part type and the number of alternative 

operation/machine pairs were generated from DU(10, 32) and 

DU(1, 10). Also, multiple process plans for each part type was 

generated randomly in order to consider various process 

routing configurations. The processing times were generated 

from DU(30, 100). Finally, the capacity of the central buffer is 

36 and the available number of pallets (with fixtures) was 

generated from DU(5, 20).  

In the decision tree based scheduling approach, the decision 

tree was constructed using the four-stage algorithm explained 

earlier, where the eligible attributes selected by the correlation 

coefficient based method for the problem of minimizing the 

total flow time are summarized below. (Initially, we identified 

6 static attributes.)  

• Number of part types (for total flow time and tardiness) 

• Production quantity (for total flow time and tardiness) 

• Processing time (for total flow time and tardiness) 

Also, to show the performance of the four-stage algorithm, 

we constructed another decision tree using the C5.0 algorithm. 

For this purpose, we used a commercial software package. The 

detailed decision trees are not represented here due to its size.)  

In the test, the decision tree based scheduling approach is 

compared with 216 priority rule combinations, where the rule 

combinations are those of 4 input sequencing rules (SPPT, 

LPPT, SRF/TF and LRF/TF), 3 operation/machine selection 

rules (SQ, SW and SP) and 18 part sequencing rules (FIFO, 
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SOPT, WINQ, LWKR, LOPR, SJPT, EDD, CR, ATC, 

COVERT, MDD, MST, P-FIFO, P-SOPT, P

P-LOPR and P-SJPT). See Doh et al. [19] and Yu 

the detailed descriptions of the priority

detailed descriptions are skipped due to the space limitation.) 

For evaluation of the results, we use the relative performance 

ratio because we could not obtain the optimal solutions. Here, 

the relative performance ratio for a test instance 

 

bestbesta CCC /)(100 −⋅ ,

 

where Ca is the objective value obtained using rule combination 

a for the instance and Cbest is the best objective value among 

those obtained from the 216 rule combinati

Fig. 4

 

V. CONCLUSION  

In this study, we suggested a decision tree based 

for flexible job shop scheduling with multiple process plans. 

The main decisions are selecting operation

sequencing the jobs assigned to each machine.

tree is used to select a priority rule appropriate 

system state and hence the burdens required for 

simulation models and carrying out simulation

eliminated. In the decision tree based scheduling 

four-stage algorithm was suggested to construct a 

To show the performance of the decision tree based scheduling 

approach, a case study was done on a flexible job shop with 

reconfigurable manufacturing cells and a conventional job shop 

and the results showed that the decision tree based scheduling 

approach outperforms the simple priority rule combination 

based approach that requires simulation 

objectives of minimizing total flow time and total tardiness. 

This study can be extended in several directions. First, 

needed to consider the dynamic flexible job shop scheduling in 

which jobs arrive over time, not given in advance. In this case, 

the four-stage decision tree construction algorithm can be used 

after other dynamic attributes are identified. Second, 

studies for other shop configurations are worth to be performed.

Finally, this study can be extended to a 

real-time scheduling mechanism with rescheduling strategies,

decision tree update methodologies, etc.  
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