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Another Structure of Weakly Left C-wrpp
Semigroups

Abstract—It is known that a left C-wrpp semigroup can
be described as curler structure of a left band and a C-wrpp
semigroup. In this paper, we introduce the class of weakly left
C-wrpp semigroups which includes the class of weakly left C-rpp
semigroups as a subclass. We shall particularly show that the spined
product of a left C-wrpp semigroup and a right normal band is a
weakly left C-wrpp semifroup. Some equivalent characterizations of
weakly left C-wrpp semigroups are obtained. Our results extend that
of left C-wrpp semigroups.

Keywords—Left C-wrpp semigroup,left quasi normal regular band,
weakly left C-wrpp semigroup.

THROUGHOUT this paper, we adopt the notation and
terminologies given by Howei[1] and Du[2].

Tang[3] considered a Green-like right congruence relation
L∗∗ on a semigroup S : for a, b ∈ S, aL∗∗b if and only if
axRay ⇔ bxRby for all x, y ∈ S1. Moreover, Tang pointed
out in [3] that a semigroup S is a wrpp semigroup if and only
if each L∗∗-class of S contains at least one idempotent.

Recall that a wrpp semigroup S is a C-wrpp semigroup
if the idempotents of S are central. It is well known that
a semigroup S is a C-wrpp semigroup if and only if S is
a strong semilattice of left-R cancellative monoids(see[3]).
Because a Clifford semigroup can be expressed as a strong
semilattice of groups and a C-rpp semigroup can be expressed
as a strong semilattice of left cancellative monoids(see[4-9]),
we see immediately that the concept of C-wrpp semigroups
is a common generalization of Clifford semigroups and C-rpp
semigroups.

For wrpp semigroups, Du-Shum [2] first introduced the
concept of left C-wrpp semigroups, that is, a left C-wrpp
semigroup whose satisfy the following conditions: (i) for
all e ∈ E(L∗∗

a ), a = ae, where E(L∗∗
a ) is the set of

idempotents in L∗∗
a ; (ii) for all a ∈ S, there exists a unique

idempotent a+ satisfying aL∗∗a+ and a = a+a ; (iii) for all
a ∈ S, aS ⊆ L∗∗(a) ,where L∗∗(a) is the smallest left **-ideal
of S generated by a. For such semigroups, Du-Shum[2] gave
a method of construction.

Zhang[10] showed that the spined product of a left C-wrpp
semigroup and a right normal band which is a weakly
left C-wrpp semigroup by virtue of left C-full Ehremann
cybergroups. In this paper, we first define the concept of
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weakly left C-wrpp semigroups. A equivalent descriptions of
weakly left C-wrpp semigroups is therefore obtained and our
results generalize that of Cao on weakly left C-rpp in[5].
In view of the theorems given in this paper, one can easily
observe that the results of weakly left C-wrrp semigroups are
a common generalizations of weakly left C-semigroups and
left C-wrpp semigroups in range of wrpp semigroups.

We first recall some known results used in the sequel. To
start with, we introduce the concept of simi-spined product.

Let T = ∪α∈Y Tα and I = ∪α∈Y Iα be the semilattice
decomposition of the semigroups T and I with respect to
semilattice Y respectively. For all α ∈ Y , we denote the
direct product Iα × Tα by Sα. Let S = ∪α∈Y Sα. we define
the mapping η by the following rules:
η : S → Tl(I), (i, a) �→ η(i, a), η(i, a) : I → I, j �→ (i, a)#j,
where Tl(I) is a left transformation semigroup on I . Suppose
that the mapping η satisfies the following conditions:

(Q1)If (i, a) ∈ Sα, j ∈ Iβ , then (i, a)#j ∈ Iαβ ;
(Q2)If (i, a) ∈ Sα, (j, b) ∈ Sβ with α ≤ β, then

(i, a)#j = ij, where ij is the semigroup product in the
semigroup I = ∪α∈Y Iα;

(Q3)If (i, a) ∈ Sα, (j, b) ∈ Sβ , then η(i, a)η(j, b) =
η((i, a)#j, ab), where ab is the semigroup product in the
semigroup T = ∪α∈Y Tα.

Then we define a multiplication ” ◦” on S = ∪α∈Y Sα

by (i, a) ◦ (j, b) = ((i, a)#j, ab). By a straightforward
verification, we can prove that the multiplication ” ◦” satisfies
the associative law and hence (S, ◦) becomes a semigroup,
denoted by S = I ×η T . We call this semigroup the
semi-spined product of I and T with respect to the structure
mapping η.

Lemma 1[2] Let I be a left regular band which is expressed
as a semilattice of left zero bands Iα (that is, I = ∪α∈Y Iα
) and let T = ∪α∈Y Tα be a C-wrpp semigroup(that is,
T is a strong semilattice of left-R cancellative monoids
[Y ;Tα, φα,β ])(see[3]). If the structure mapping η satisfies the
following condition:

(Q): kerη(i, a) = kerη(j, b) for every (i, a), (j, b) ∈ Sα.
Then S is a left C-wrpp semigroup. Conversely, every left
C-wrpp semigroup S can be constructed in terms of above
method.

Lemma 2[5] A semigroup S is a weakly left C-semigroup,
that is, S is a regular semigroup and

(∀e ∈ E(S))η′e : S → eS, x �→ ex
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is a homomorphism if and only if S is a completely regular
and E(S) is a left quasi-normal band.

Lemma 3[2] If S is a left C-wrpp, then RegS is a left
C-semigroup.

Lemma 4[7] A band B is a left normal band (that is, a band
satisfies identity efeg = efg) if and only if Green relation L
and R are congruence on B and B/R is a right normal band.

Definition 1 A monoid T is called a left-R cancelattive
monoid if for a, b, c ∈ T, (ab, ac) ∈ R implies (b, c) ∈ R.
We call the direct product of a left-R cancellative monoid T
and a rectangular band I a left cancellative plank because the
direct product looks like a two-dimensional plank. We denote
the left-R cancellative plank by I × T .

Lemma 5[2] Let I = ∪α∈Y Iα be a semilattice of left zero
bands, and T = [Y ;Tα, φα,β ] a strong semilattice of left-R
cancellative monoids Tα. Then (i, a)R(j, b) if and only if aRb
and i = j for any (i, a), (j, b) ∈ S = ∪α∈Y (Iα × Tα).

III. T

In this section, the concept of weakly left C-wrpp
semigroups is introduced. We shall give equivalent
characterization for the structure of weakly left C-wrpp
semigroups. First, we introduce the concept of weakly left
C-wrpp semigroups.

Definition 2 A semigroup S is called a weakly left C-wrpp
semigroup, if S is isomorphic to a semilattice of left-R
cancellative planks, and

(∀ ∈ E(S))η′e : S → eS, x �→ ex

is a homomorphism.
We now characterize the weakly left C-wrpp semigroups.
Theorem 1 Let S be a semigroup. Then the following

conditions are equivalent:
(1)S is a weakly left C-wrpp semigroup;
(2)S is a semilattice of left-R cancellative planks, and RegS

is a weakly left C-semigroup;
(3)S is a semilattice of left-R cancellative planks, and E(S)

is a left quasi-normal band;
(4)S is a spined product of left C-wrpp semigroup and a

right normal band.
Proof. (1)⇒(2). We only need show that RegS is a weakly

left C-semigroup. Let a, b ∈ RegS. Then there exists x, y ∈ S
such that a = axa, x = xax, b = byb. So e = xa ∈
E(S). According to (1), we know that η′e is a semigroup
homomorphism from S to eS. Thus

ab = axabyb = aη′e[(by)b] = aη′e(by)η
′
e(b)

= axabyxab = (ab)(yx)(ab)
So ab ∈RegS. Therefore, RegS is a subsemigroup of S. Again
E(RegS) = E(S), according to Lemma 3, we obtain RegS
is a weakly left C-semigroup.

(2)⇒ (3). Clearly, we omit it.
(3)⇒(4). Let S = ∪α∈Y (Iα × Tα × Λα) is a semilattice

decomposition Y of left-R cancellative planks, and E(S) is
a left quasi-normal band, and put Sl = ∪α∈Y (Iα × Tα),Λ =
∪α∈Y Λα, Sα = Iα×Tα×Λα, where Iα, Tα and Λα are a left
zero band, a left-R cancellative monoid and a right zero band,
respectively. Next, we verify that Sl = ∪α∈Y (Iα × Tα) is a

left C-wrpp semigroup, and Λ = ∪α∈Y Λα is a right normal
band.

Step 1 Let T = ∪α∈Y Tα. we shall show that T is a C-wrpp
semigroup, and Λ = ∪α∈Y Λα is a right normal band. For this
purpose, we only need to show that T is a strong semilattice
of left-R cancellative monoids Tα, and a strong semilattice of
rihgt zero bands Λα, respectively.

Identity in Tα denoted by Iα, obviously, we have E(S) =
{(i, 1α, λ)|(i, λ) ∈ Iα × λα, α ∈ Y }, and

(i, 1α, λ)LE(j, 1β , μ) ⇔ α = β, λ = μ, (1)

(i, 1α, λ)RE(j, 1β , μ) ⇔ α = β, i = j (2)

where LE and RE are Green’s relations on semigroup E(S).
For all α ≥ β, let a = (i, g, λ) ∈ Sα, if (j, μ) ∈ Iβ × Λβ ,

then there exists (j1, h1, μ1) ∈ Sβ such that (j, 1β , μ)a =
(j1, h1, μ1). Since (j1, h1, μ1) = (j, 1β , μ)[(j, 1β , μ)a] =
(j, h1, μ1), we obtain j1 = j. On the other hand, for all
j′ ∈ Iβ , we have (j′, 1β , μ)a = (j′, 1β , μ) = [(j, 1β , μ)a] =
(j′, h1, μ1). So h1, μ1 do not depend on the choice of j in Iβ .
Let h1 = μ(i, g, λ)χα,β , μ1 = μ(i, g, μ)ψα,β . Then we have

(j, 1β , μ)(i, g, λ) = (j, μ(i, g, λ)χα,β , μ(i, g, μ)ψα,β). (3)

Similarly, we show that there exists φβ,α(i, g, λ)j ∈ Iβ ,
ϕβ,α(i, g, λ)j ∈ Tβ such that

(i, g, λ)(j, 1β , μ) = (φβ,α(i, g, λ)j, ϕβ,α(i, g, λ)j, μ). (4)

For all λ′ ∈ Λα, we have obtain (i, 1α, λ)RE(i, 1α, λ
′)

by (2). According to lemma 4, we know that
RE is a congruence on E(S), it follows that
(i, 1α, λ)(j, 1β , μ)RE(i, 1α, λ

′)(j, 1β , μ). Since E(S) is
a band, Referring to (2) and (4), we can follow that
(i, 1α, λ)(j, 1β , μ) = (i, 1α, λ

′)(j, 1β , μ), multiplied with
from left side of above formula’s both sides, by (4), we
obtain φβ,α(i, g, λ)j = φβ,α(i, g, λ

′)j, ϕβ,α(i, g, λ)j =
ϕβ,α(i, g, λ

′)j. Therefore, φβ,α(i, g, λ)j and ϕβ,α(i, g, λ) do
not depend on the choice of λ, let

φβ,α(i, g)j = φβ,α(i, g, λ)j, ϕβ,α(i, g)j = ϕβ,α(i, g, λ)j,
(5)

where λ ∈ Λα, α ≥ β. Similarly, by LE is a congruence on
E(S), we follow that μ(i, g, λ)χα,β and μ(i, g, λ)ψα,β do not
depend on the choice of i in Iα, let

μ(g, λ)χα,β = μ(i, g, λ)χα,β , μ(g, λ) = μ(i, g, λ)ψα,β (6)

where i ∈ Iα, α ≥ β. It follows that (j, μ(g, λ)χα,β , μ) =
[(j, 1β , μ)(i, g, λ)](j, 1β , μ) = (j, 1β , μ)[(i, g, λ)(j, 1β , μ)] =
(j, ϕβ,α(i, g)j, μ). So μ(g, λ)χα,β = ϕβ,α(i, g)j, write as c.
Clearly, c is determined by g but does not depend on the choice
of i, j, λ and μ. Let

gσα,β = μ(g, λ)χα,β = ϕβ,α(i, g)j, (7)

where i ∈ Iα, j ∈ Iβ , λ ∈ Λα and μ ∈ Λβ .
According to LE being a right normal band
congruence on E(S), for all μ, μ′ ∈ Λβ , we have
(j, 1β , μ

′)(j, 1β , μ)(i, 1α, λ)LE(j, 1β , μ)(j, 1β , μ
′)(i, 1α, λ),

that is, (j, 1β , μ)(i, 1α, λ)LE(j, 1β , μ
′)(i, 1α, λ). we can

follow that (j, 1β , μ)(i, 1α, λ) = (j, 1β , μ
′)(i, 1α, λ) in view

HE WEAKLY LEFT C-WRPP SEMIGROUPS
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of (1) and (3), multiplied with (i, g, λ) from right side of
above formula’s both sides, referring to (3)and (6), we obtain
μ(g, h)ψα,β = μ′(g, h)ψα,β . Therefore, μ(g, h)ψα,β does not
depend on the choice of μ in Λβ , let

(g, λ)ψα,β = μ(g, λ)ψα,β (8)

where μ ∈ Λβ , α ≥ β, In view of (3)-(8), we have

(j, gσα,β , (g, λ)ψα,β)

= (j, 1β , μ)(i, g, λ)

= [(j, 1β , μ)(i, g, λ)](i, 1α, λ)

= (j, gσα,β , (g, λ)ψα,β)(i, 1α, λ)

= (j, gσα,β , (g, λ)ψα,β)[(j, 1β , (g, λ)ψα,β)(i, 1α, λ)]

= (j, gσα,β , (g, λ)ψα,β)(j, 1ασα,β , (1α, λ)ψα,β)

= (j, (gσα,β)(1ασα,β), (1α, λ)ψα,β).

Therefore

gσα,β = (gσα,β)(1ασα,β), (g, λ)ψα,β = (1α, λ)ψα,β .

Since Tβ is a left-R cancellative monoid,

1ασα,βR1β(α ≥ β), (9)

let

λθα,β = (1α, λ)ψα,β = (g, λ)ψα,β , (g ∈ Tα, α ≥ β). (10)

Thus, summing up the above cases, we conclude that there
exists the mapping:φβ,α : Iα × Tα → Tl(Iβ), (i, g) �→
φβ,α(i, g);σα,β : Tα → Tβ , g �→ gσα,β ; θα,β : Λα →
Λβ , λ �→ λθα,β such that

(j, 1β , μ)(i, g, λ) = (i, gσα,β , λθα,β) (11)

(i, g, λ)(j, 1β , μ) = (φβ,α(i, g)j, gσα,β , μ) (12)

for all (i, g, λ) ∈ Sα, (j, μ) ∈ Iβ × Λβ .
The following we verify that σα,β and θα,β are the structure

homomorphism of strong semilattice on semigroups Tα and
Λα, respectively. For all α, β ∈ Y, (i, g, λ) ∈ Sα, (j, h, μ) ∈
Sβ , let (k,m, n) = (i, g, λ)(j, h, μ) ∈ Sαβ . Then for γ ≤ αβ
and (I, v) ∈ Iγ × Λγ , according to (11), we have

(l,mσα,β , nθαβ,γ) = (l, 1γ , v)(k,m, n)

= (l, 1λ, v)(i, g, λ)(j, h, μ)

= (l, gσα,γ , λθα,γ)(j, h, μ)

= (l, gσα,γ , λθα,γ)(l, 1γ , λθα,γ)(j, h, μ)

= (l, gσα,γ , λθα,γ)(l, hσβ,γ , μθβ,γ)

= (l, (gσα,γ)(hσβ,γ), (λθα,γ)(μθβ,γ))

Therefore,

mσαβ,γ = (gσα,γ)(hσβ,γ), nθαβ,γ = (λθα,γ)(μθβ,γ), (13)

(l, 1γ , v)(i, g, λ)(j, h, μ) = (l, (gσα,γ)(hσβ,γ), (λθα,γ)(μθβ,γ)).
(14)

(i)If β = α, then m = gh, n = λμ. By (13), we have
(gh)σα,γ = (gσα,γ)(hσα,γ), (λμ)θα,γ = (λθα,γ)(μθα,γ),
where g, h ∈ Tα, λ, μ ∈ Λα. So σα,γ and θα,γ are semigroup

homomorphism of from Tα to Tβ and from Λα to Λβ ,
respectively, where α ≥ γ. Similarly, it follows that σα,β is
also a semigroup homomorphism, by (9), we have

1ασα,β = 1β , (α ≥ β). (15)

(ii)If β = α, let γ = α, h = 1α, μ = λ. In view of (14)
and (15), it follows that g = gσα,α, χ = λθα,α for any g ∈
Tα, λ ∈ Λα. So σα,α and θα,α are identical mapping on Tα
and Tγ , respectively.

(iii)Let γ = αβ, l = k. According to (13), (14) and the
results above (ii), we have

m = (gσα,αβ)(hσβ,αβ), n = (λθα,αβ)(μθβ,αβ), (16)

(i, g, λ)(j, h, μ) = (k, (gσα,αβ)(hσβ,αβ), (λθα,αβ)(μθβ,αβ)).
(17)

(iv)If α ≥ β ≥ γ, then αβ = β. Referring to (13),(16)
and (17), we have (gσα,β)σβ,α = [(gσα,β)(1β)σβ,β ]σβ,γ =
(gσα,γ)(1βσβ,γ) = (gσα,γ)1γ = gσα,γ , (λθα,β)θβ,γ =
[(λθβ,β)(λθα,β)]θβ,γ = (λθβ,γ)(λα,γ) = λθα,γ . This leads
to σα,βσβ,γ = σα,γ , θα,βθβ,γ = θα,γ .

Define multiplication operations on T = ∪α∈Y Tα and
Λ = ∪α∈Y Λα, as follows respectively:

g ◦ h = (gσα,αβ)(hσβ,αβ)(g ∈ Tα, h ∈ Tβ), (18)
λ ◦ μ = (λθα,αβ)(μθβ,αβ)(λ ∈ Λα, μ ∈ Λβ). (19)

According to (i),(ii) and (iv), we know that T = [Y ;Tα, σα,β ]
is a strong semilattice of left-R cancellative monoid Tα and
Λ = [Y ; Λα, θα,β ] is a strong semilattice of right zero band
Λα, that is, (T, ◦) is a C-wrpp semigroup and (Λ, ◦) is a right
normal band. It follows that

(i, g, λ)(j, h, μ) = (k, g ◦ h, λ ◦ μ) (20)

by (18)-(20).
Step 2 We shall show that Sl = ∪α∈Y (Iα × Tα) forms a

left C-wrpp semigroup. Let I = ∪α∈Y Iα. We wish to define
a mapping η : Sl → Tl(I) so that Sl can be made into a
semi-spined product. For all k′ ∈ Iαβ , we have

(k,m, n) = (k,m, n)(k′, 1αβ , n) = (i, g, λ)(j, h, μ)(k′, 1αβ , n)
= (i, g, λ)(φαβ(j, h)k

′, . . . , . . .)
= (φαβ,α(i, g)φαβ,β(j, h)k

′, . . . , . . .).

So k = φαβ,α(i, g)φαβ,β(j, h)k
′. Therefore, φαβ,α(i, g)φαβ,β

(j, h) is a constant mapping on Iαβ , write as k =< φαβ,α(i, g)
φαβ,β(j, h) >, we have

(k,m, n) = (k,m, n)(j, 1β , μ)(j, h, μ)(k
′, 1αβ , n)

= (i, g, λ)(j, 1β , μ)(φαβ,β(j, h)k
′, · · · , · · · )

= (φαβ,α(i, g)φαβ,β(j, 1β)[φαβ,β(j, h)k
′], . . . , . . .)

= (< φαβ,α(i, g)φαβ,β(j, 1β) >, . . . , . . .).

Thus k =< φαβ,α(i, g)φαβ,β(j, 1β) > does not depend on the
choice of h, let k = η(i, g)j. We define the mapping η by the
following rules:

η(i, g) : Sl → Tl(I), (i, g) �→ η(j, g);

η(i, g) : I → I, j �→ η(i, g)j,
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and such that

(i, g, λ)(j, h, μ) = (η(i, g), g ◦ h, λ ◦ μ)

for (i, g, λ), (j, h, μ) ∈ S.
To see that η is a structure mapping defining a semi-spined

product I×η T , we need to verify that η satisfies the required
conditions (Q1)-(Q3). If (i, g) ∈ Iα ×Tα, j ∈ Iβ , α ≤ β, then
η(i, g)j =< φαβ,α(i, g)φαβ,β(j, 1β) >∈ Iαβ , (Q1) holds. To
verify that (Q2) holds, we let (i, g) ∈ Iα×Tα, j ∈ Iβ , α ≤ β,
then we obtain

(η(i, g)j, g ◦ h, λ ◦ μ) = (i, g, λ)[(i, 1α, λ)(j, h, μ)]

= (i, g, λ)(i, hσβ,α, μθβ,α)

= (i, . . . , . . .)

by (11) and (20). Consequently, we have η(i, g)j = i. Thus,
(Q2) holds. Finally, we let (i, g) ∈ Iα × Tα, (j, h) ∈ Iα × Tβ .
For all γ ∈ Y, l ∈ Iγ , v ∈ Λα, according to (20), we have

(η(η(i, g)j, g ◦ h)l, (g ◦ h) ◦ 1γ , λ ◦ μ)
= (i, g, λ)(j, h, μ)(l, 1γ , ν)

= (i, g, λ)(η(j, h)l, . . . , . . .)

= (η(i, g)η(j, h)l, . . . , . . .).

This leads to η(η(i, g)j, g ◦ h)l = η(i, g)η(j, h)l, so
η(η(i, g)j, g ◦ h) = η(i, g)η(j, h). In fact, we have shown
that (Q3) holds. Thus, η satisfies (Q1)-(Q3) and we do have
a semi-spined product I ×η T.

Next we need to prove that the structure mapping η on this
semispined product satisfies the condition (Q) in lemma 1. For
this purpose, we let (i, a) and (j, b) ∈ Iα×Tα. Take k ∈ Iτ and
l ∈ Iδ for some τ and δ, and suppose that η(i, a)k = η(i, a)l,
that is, (i, a)#k = (i, a)#l. By condition (Q1), we have δα =
τα. Denote the identity elements of the monoids Tδ and Tτ
by 1δ and 1τ , respectively. Since T is a strong semilattice
of Tα, we have a1δ = a1τ . By invoking Lemma 5, we have
(i, a)(k, 1τ )R(i, a)(l, 1δ). Since iLj, we have (i, a)L∗∗(j, b)
so that (j, b)(k, 1τ )R(j, b)(l, 1δ). Hence we have

((j, b)#k, b1τ )R((j, b)#l, b1δ) ⇒ (j, b)#k = (j, b)#l.

This shows that kerη(i, a) ⊆ kerη(j, b). Analogously, we can
also prove that kerη(j, b) ⊆ kerη(i, a) . Thus kerη(i, a) =
kerη(j, b) and so condition (Q) is satisfied. This shows that
Sl = ∪α∈Y (Iα × Tα) is indeed a left C-wrpp semigroup.

Summing up step1 and step2, we conclude that S is the
spined product of a left C-wrpp semigroup Sl and a right
normal band Λ.

(4)⇒(1). Let S be the spined product of a left C-wrpp
semigroup Sl = I ×Y,η T and a right normal band Λ =
[Y ; Λα, θα,β ]. Clearly, S is a semilattice of left-R cancellative
planks, and for all e = (i, 1α, λ) ∈ E(S)∩(Iα×Tα×Λα), x =
(j, h, μ) ∈ Iβ × Tβ × Λβ , y = (k,m, n) ∈ Iγ × Tγ × Λγ ,
let (l, q) = (i, 1α)(j, h) ∈ Iαβ × Tαβ . According to Sl is a
left C-wrpp semigroup and Lemma 1, we have (i, q)(i, 1α) =
(η(l, g)i, (qσαβ,αβ)(1ασα,αβ)) = (l, q) = (i, 1α)(j, h) ∈

Iαβ × Tαβ , so

η′e(xy) = exy = ((i, 1α)(j, h)(k,m), λμν)

= ((l, q)(i, 1α)(i, 1α)(k,m), λμν)

= ((i, 1α)(j, h)(i, 1α)(k,m), λμν)

= exey = η′e(x)η
′
e(y).

Consequently, η′e is a semigroup homomorphism from S to
eS, thus S is a weakly left C-wrpp semigroup.

Corollary 1 Let S be a semigroup. Then the following
conditions are equivalent:

(1) S is a weakly left C-rpp semigroup;
(2) S is a semilattice of left cancellative monoids, and RegS

is a weakly left C-semigroup;
(3) S is a semilattice of left cancellative monoids, and S is

a left quasi-normal band;
(4) S is a spined product of left C-rpp semigroup and a right

normal band.
Corollary 2 A weakly left C-wrpp semigroup is a wrpp

semigroup.
Proof . According to theorem 1, a weakly left C-wrpp

semigroup is a spined product of a left C-wrpp semigroup and
right normal band, but a left C-wrpp semigroup and a right
normal band are wrpp semigroups, it follows that a weakly
left C-wrpp emigroup is a wrpp semigroup.

By above corollary, we have the following results:
Corollary 3 A weakly left C-rpp semigroup is a rpp

semigroup.
Corollary 4 A semigroup S is a weakly left C-semigroup if

and only if S is a spined product of left C-semigroup and a
right normal band.
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