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Abstract—The influence of the crystal field interactions on the 

mixed spin-3/2 and spin-5/2 ferrimagnetic Ising system is considered 
by using the mean field theory based on Bogoliubov inequality for 
the Gibbs free energy. The ground-state phase diagram is 
constructed, the phase diagrams of the second-order critical 
temperatures are obtained, and the thermal variation of the sublattice 
magnetizations is investigated in detail. We find some interesting 
phenomena for the sublattice magnetizations at particular values of 
the crystal field interactions. 

 
Keywords—Crystal field, Ising system, Ferrimagnetic, 

magnetization, phase diagrams.  

I. INTRODUCTION 
HE Ising model, with high and mixed spins, is an 
interesting subject of study because of its observed critical 

behaviors. The two sublattice mixed Ising ferrimagnetic 
systems have been of interest in the last two decades, for not 
only purely theoretical purposes but also because they have 
been proposed as possible systems to describe ferromagnetic 
and ferrimagnetic materials [1]. Moreover, the increasing 
interest in these systems is mainly related to the technological 
applications of these systems in the area of thermomagnetic 
recording [2]. Since the mixed spin Ising systems have less 
translational symmetry than their single spin counterparts, 
they exhibit many new phenomena which cannot be observed 
in the single-spin Ising systems and the study of these systems 
can be relevant for understanding of bimetallic molecular 
systems based magnetic materials [3].  

One of the earliest and simplest of these models to be 
studied was the mixed spin Ising system consisting of spin-1/2 
and spin-S (S > 1/2) in a uniaxial crystal field. The model for 
different values of S (S > 1/2) has been investigated by exact 
(on honeycomb lattice [4]-[6], as well as on Bethe lattice [7], 
[8], mean field approximation [9], effective field theory with 
correlations [10]-[14], cluster variational theory [8], 
renormalization-group technique [15] and Monte-Carlo 
simulation [16]-[18]. The mixed- spin Ising systems consisting 
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of higher spins are not without interest. Indeed, the magnetic 
properties of mixed spin-1 and spin-3/2 Ising ferromagnetic 
system with different single-ion anisotropies have been 
investigated with the use of an effective field theory [18], [19], 
mean field theory [20], a cluster variational method [21] and 
Monte Carlo simulation [22].  

Recently, the investigations have been extended to high 
order mixed spin ferrimagnetic systems (mixed spin-3/2 and 
spin-2 ferrimagnetic system and mixed spin-3/2 and spin-5/2) 
in order to construct their phase diagrams in the temperature-
anisotropy plane and to consider magnetic properties of these 
systems. Bobak and Delay investigated the effect of single-ion 
anisotropy on the phase diagram of the mixed spin-3/2 and 
spin-2 Ising system by the use of a mean-field theory based on 
the Bogoliubov inequality for the free energy [23]. Albayrak 
[24] studied the critical behaviour of the mixed spin-2 and 
spin-5/2 Ising ferrimagnetic system on Bethe lattice and he 
also [25] examined the critical and the compensation 
temperatures of the mixed spin-2 and spin-5/2 Ising 
ferrimagnetic system on Bethe lattice by using the exact 
recursion equations. Bayram Deviren et al. have used the 
effective field theory to study the magnetic properties of the 
ferrimagnetic mixed spin-3/2 and spin-2 Ising model with 
crystal field in a longitudinal magnetic field on a honeycomb 
and a square lattice [26]. 

In this paper, our aim is to consider a mixed spin-3/2 and 
spin-5/2 ferrimagnetic system within the framework of the 
mean-field theory based on Bogoliubov inequality for the 
Gibbs free energy, in order to investigate the influence of the 
crystal-field interaction on the critical temperatures and to find 
the change in the sublattice magnetizations of the system as a 
function of the temperature at a different values of the crystal-
field interaction. 

This paper is organized as follows: Section II briefly 
presents the mixed spin Ising model and its mean-field 
solution. Section III gives the results and the discussions. In 
Section IV the conclusion is summarized. 

II. THE MODEL AND CALCULATION 
We consider a mixed Ising spin-2 and spin-5/2 system 

consisting of two sublattices A and B, which are arranged 

alternately. The sublattice A are occupied by spins iS  , which 
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take the spin values of 3 / 2, 1 / 2± ± , while the sublattice B 

are occupied by spins jS , which take the spin values of . 

.2/1,2/3,2/5 ±±±  In each site of the lattice, there is 

a single-ion anisotropy AD  in the sublattices A and BD  in 
the sublattice B) acting in the spin-3/2 and spin-5/2. The 
Hamiltonian of the system according to the mean-field theory 
is given by 

 
22

),(
)()( ∑∑∑ −−−= B

jB
A

iA
B
j

ji

A
i SDSDSSJH ,   (1) 

 
where the first summation is carried out only over nearest-
neighbor pairs of spins on different sublattices and J is the 
nearest-neighbour exchange interaction. 

The most direct way of deriving the mean-field theory is to 
use the variation principle for the Gibbs free energy, 
 

0 0 0 0
( ) ( )G H G H H H≤ Φ ≡ + 〈 − 〉 ,              (2)  

                                        

where )( HG  is the true free energy of the model 

described by Hamiltonian given in (1), )(0 HG  is the model 

described by the trial Hamiltonian 0H which depends on 

variational parameters and 0⋅〉⋅〈⋅
 denotes a thermal average 

over the ensemble defined by 0H . 
Now, depending on the choice of the trial Hamiltonian, one 

can construct approximate methods of different accuracy. 
However, owing to the complexity of the problem, we 

consider in this work the simple choice of 0H , namely 
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where Aγ  and Bγ  are the two variational parameters related 
to the molecular fields acting on the two different sublattices, 
respectively. 

By evaluating (2), it is easy to obtain the expression of the 
free energy per site in MFA, 
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where 1 / Bk Tβ = , N is the total number of sites of the 

lattice and z  is the number of the nearest neighbors of every 

ion in the lattice Am  and Bm  are the sublattice 
magnetizations per site which are defined by (5). 

Now, by minimizing the free energy (4) with respect to 

Aγ  and Bγ , we obtain  
 

BA mzJ=γ ,     AB mzJ=γ .                (7)   
                     

The mean-field properties of the present model are then 
given by (4)-(7). Since (5)-(7) have in general several 

solutions for the pair ),( BA mm , the stable phase will be 
the one which minimizes the free energy. When the system 

undergoes the second-order transition from an ordered state 
)0,0( ≠≠ BA mm , to the paramagnetic state 

)0,0( == BA mm , this part of the phase diagram can be 

determined analytically. Because the magnetizations Am  and 

Bm  are very small in the neighborhood of second-order 
transition point, we can expand (4)-(6) to obtain a Landau-like 
expansion. In this way, critical and tricritical points are 
determined according to the following routine;  
1) Second-order transition lines when a=0 and b>0;  
2) Tricritical points, if they are exist, when a=b=0, and c > 0. 
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III. RESULTS AND DISCUSSIONS 

A. Ground State Phase Diagram 
Before going into the detailed calculation of the phase 

diagram of the model at higher temperature, let us first 
investigate the ground state structure of the model at zero 
temperature analytically. The ground-state phase diagram is 
easily determined from Hamiltonian Equation (1) by 
comparing the ground-state energies of the different phases, 
then the ground state configuration is the one with the lowest 
energy and each of these configurations for the given system 
parameters correspond to the stable states of the model which 
are indicated in Fig. 1. 

At zero temperature, we find six phases with different 
values of },,,{ BABA qqmm , namely the ordered ferrimagnetic 
phases.  

These ordered phases are separated by first ordered lines 
and the values of },,,{ BABA qqmm  for these phases are 
given as following: 
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where the parameters Aq and Bq  are defined by:  
 

2〉〈= A
iA Sq

 
 and   

2〉〈= B
jB Sq  

 
It should be mentioned that, in this mixed-spin-system, the 

ground- state phase diagram exhibit no disordered phases and 
that the ground state phase diagram is very important in 
classifying the different phase regions of the model for the 
phase diagrams at higher temperatures. 

B.  Finite Temperature Phase Diagrams  
In Figs. 2 and 3, the second-order critical temperature lines 

which separate the ordered phases, i.e. ferrimagnetic phases, 
from the paramagnetic phase of the mixed spin-3/2 and the 
spin-5/2 Ising ferrimagnetic system are depicted in the 
( / | |, / | |)A B cD z J k T z J  and ( / | |, / | |)B B cD z J k T z J

 
planes for some selected values of ||/ JzDA  for spin-5/2 

and ||/ JzDB  for spin-3/2, respectively. 
 

 
Fig. 1 Ground-state phase diagram of the mixed spin-3/2 and spin-5/2 

Ising ferrimagnetic system with the coordination number z  and 

different single-ion anisotropies / | |
A

D z J  and / | |
B

D z J The four 

phases: ordered ,1O ,2O 3O , 4O , 5O , 6O
 and there 

are no disordered phases in the ground-state phase diagram 
 

The second-order critical temperature lines are easily 
obtained by setting a= 0 and b > 0. The first phase diagram is 

obtained on the |)|/|,|/( JzTkJzD cBB  plane and 
presented in Fig. 2. This phase diagram shows the general 

characteristics of the model for given values of ||/ JzDA  in 

the range 6.0 / | | 6.0AD z J− < < . In this figure, one can 
observe that this mixed spin system exhibits second-order 
critical temperature lines only and does not exhibit any 
tricritical points or first order critical temperature lines, 
indicating that this system has no first order phase transition. 

It is also obvious that the second-order lines corresponding 
to each value of ||/ JzDA  present two straight portions at 
lower and higher temperatures for the low negative and high 
positive values of ||/ JzDB , respectively, meaning that the 
critical temperatures of the model become constant in these 
limits. These two straight portions of the second-order lines 
combine with each other with a gradually increasing part. At 
this part, the values of the second-order critical temperatures 
increase rapidly by increasing the values of ||/ JzDB , then, 
they start to increase slowly until they come to the highest 
saturated value at high positive values of ||/ JzDB . 
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Fig. 2 Phase diagram in the ( , )

B
D T plane for the mixed-spin Ising 

ferrimagnet with the coordination number z, when the value of

/ | |
A

D z J  is changed 
 

 
Fig. 3 Phase diagram in the ( , )

A
D T  

plane for the mixed-spin Ising 
ferrimagnet with the coordination number z, when the value of

/ | |
B

D z J  is changed 
 

On the other hand, at this part, the second-order critical 
temperatures values decrease rapidly by decreasing the values 
of ||/ JzDB  , then they start to decrease slowly until they 
come to the lowest saturated value at low negative values of 

||/ JzDB . 
The second phase diagram is obtained on the 

|)|/|,|/( JzTkJzD cBA  plane for selected values of ||/ JzDB  

in the range 0.6||/0.6 <<− JzDB  and is depicted in Fig. 
3. From this figure, it is clear that the behavior of the second 
order critical temperature lines with ||/ JzDA  for different 

values of ||/ JzDB  is similar to their behavior with ||/ JzDB  
for different values of ||/ JzDA  which is depicted in Fig. 2. 
 

 

Fig. 4 Phase diagram in the ( , )BD T  plane for the mixed-spin Ising 
ferrimagnet with the coordination number z, when the value of 

/ | | 20
A

D z J =  and / | | 20
A

D z J = − . The saturated values of the 
second-order critical temperatures are shown in this figure 

 
For the final illustrations, let us now turn our attention to 

the saturated values of the critical temperatures for high values 
and low values of ||/ JzDA  and ||/ JzDB . As shown in 

Fig. 4, for high positive and negative values of ||/ JzDA  

and ||/ JzDB . When ∞→||/ JzDA  and 

∞→||/ JzDB , the saturated value of the critical 

temperatures is 75.3||/ =JzTk cB . When ∞→||/ JzDA  

and ∞−→||/ JzDB  , the saturated value of the critical 

temperatures is 25.1||/ =JzTk cB . When 

∞−→||/ JzDA  and ∞→||/ JzDB , the saturated 

value of the critical points is. 75.0||/ =JzTk cB . If 

∞−→||/ JzDA  and ∞−→||/ JzDB  , the saturated 

value is 25.0||/ =JzTk cB .  

C. Sublattice Magnetizations Am  and Bm .  

In this subsection, let us at first examine the temperature 
dependence of the sublattice magnetizations Am  and Bm  for 
the system. The results are depicted in Figs. 5- 7.  

Fig. 5 shows typical sublattice magnetization curves with 
0.1||/ =JzDB , and selected values of ||/ JzDA . In this 

case, all the sublattice magnetization curves have standard 
characteristic convex shape. Moreover, in the present system 
and for all the values of the crystal field interactions ||/ JzDA  
and ||/ JzDB , the present system exhibits second-order 
phase transitions only, consequently, the sublattice 
magnetizations decrease by increasing temperature from their 
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saturation values at KT 0=  and vanish continuously at the 

critical temperatures cT .  
By comparing the values of the sublattice magnetizations at 

zero temperature, for different values of ||/ JzDA  and 

||/ JzDB in Fig. 5 with the values of the sublattice 
magnetizations, corresponding to the different phases and to 
the boundary between the phases, at the ground-state phase 
diagram (Fig. 1), we find that they are in an agreement and 
every sublattice magnetization has the same saturated value at 

KT 0=  as in the ground state phase diagram. 
In Figs. 6 and 7, we turn our attention to the points which 

are located close to or at the boundaries between the phases in 
the ground-state phase diagram. In Fig. 6, when 

0.1||/ =JzDB  and 35.0||/ −=JzDA  ( this point located 
in the ordered phase 1O  and close to the boundary between the 

ordered phase 1O  and the ordered phase 3O  in the ground 

state phase diagram, where 375.0||/ −=JzDA  ). In this case, 

the temperature dependences of Am  may exhibit a rather 
rapid decrease (damping) from its saturation value at

KT 0= . The phenomena is further enhanced when the 
value of ||/ JzDA  approaches the boundary. At 

375.0||/ −=JzDB  (at the boundary) and for KT 0= , 

the saturation value of Am  is 0.2=Am , which indicates that 

in the ground state the spin configuration of B
jS  

in the system 

consists of the mixed state; in this state half of the spins on 
sublattice B are equal to +5/2 (or -5/2) and the other half are 
equal to +3/2 (or -3/2).  

By further decreasing ||/ JzDA , the ground state becomes 

3O , with 2/3=Am  at KT 0= . In this region, when 

4.0||/ −=JzDA  (slightly below the boundary between the 

ordered phases 1O  and 3O ) the thermal variation of Am  
exhibits an interesting feature which is the initial rise 
(excitation) of Am  with the increase of temperature before 
decreasing to zero at the critical point. On the other hand, for 
all values of ||/ JzDA .  

 
Fig. 5 Thermal variation of the sublattice magnetizations

, ,A Bm m for 
the mixed-spin Ising ferrimagnet with the coordination number z, 

when the value of / | |
A

D z J  is changed for fixed / | | 1.0
B

D z J =  
 

 
Fig. 6 Thermal variation of the sublattice magnetizations , ,A Bm m

 
for 

the mixed-spin Ising ferrimagnet with the coordination number z, 
when the value of / | |AD z J  is changed for fixed / | | 1.0BD z J =  

 
In Fig. 6 and for all these values of ||/ JzDA  the sublattice 

magnetization 
Bm  may show normal behavior even though it is 

coupled to Am .   
When ||/ JzDB  has the values 75.0,7.0 −−  and 

8.0−  (close to and at the boundary between the ordered-

phases 3O  and 5O  in the ground-state phase diagram), it is 

clear from Fig. 6 that the temperature dependences of Bm  and 

Am  exhibit similar behaviors to the temperature dependences 

of Bm  and Am  in the previous case. 
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Fig. 7 Thermal variation of the sublattice magnetizations
, ,A Bm m

 
for 

the mixed-spin Ising ferrimagnet with the coordination number z, 
when the value of / | |BD z J  is changed for fixed / | | 1.0AD z J =  

 
Fig. 7 shows the sublattice magnetization curves as a 

function of temperature for several values of ||/ JzDB , 

when 0.1||/ =JzDA . In this case, the selection of 

||/ JzDB  corresponds to the crossover from the 1O  to the 
3O  

phase. When 0.1||/ =JzDB , the sublattice magnetization Bm  
may show normal behavior. When 0.1||/ −=JzDB  (slightly 
above the boundary between the ordered phase 1O  and the 

ordered phase 2O , where 0.1||/ −=JzDB ) the 

magnetization curve Bm  may exhibit a rather rapid decrease 

from its saturation value ( )2/3−=Bm  at KT 0= , 
while for the value of  

5.1||/ −=JzDB  (slightly below that boundary), there is 

a rapid increase of Bm  from the saturation value 

( )2/1−=Bm  with the increase in T.  

When the value of 25.1||/ −=JzDB , the saturation 

value of the sublattice magnetization Bm  at KT 0=  is 

( )0.1−=Bm . It indicates that at this point, the spin 
configuration of B

jS  in the ground state consists of the mixed 

state; half of the spins on the sublattice B are equal to -3/2 (or 
+3/2 as well) and the other half are equal to -1/2 (or +1/2 as 
well). It is also seen from Fig. 7 that when 

0.3||/ −=JzDB , the sublattice magnetization Bm  
decreases normally from its saturation value ( )2/1−=Bm  

to vanish at the critical temperature cT . On the other hand, for 

all values of ||/ JzDB  the sublattice magnetization Am may 

show normal behavior, even though it is coupled to Bm . 

IV. CONCLUSIONS 
In this work, we have studied The effect of the crystal field 

interactions on the critical temperatures and the sublattice 
magnetizations of a mixed spin-3/2 and spin-5/2 ferrimagnetic 
system by using the mean-field theory based on Bogoliubov 
inequality for the Gibbs free energy. Some new results on the 
phase diagrams and the sublattice magnetization curves have 
been obtained. We obtain six ordered Phases in the ground 
state phase diagram. We have found that the ground-state 
phase diagram for this system does not exhibit disordered 
phases. The finite temperature phase diagrams exhibit only 
second-order critical temperature lines. We found that for the 
values of the crystal field interactions close to the boundaries 
between the phases in the ground state phase diagram, the 
sublattice magnetization curves for this system may exhibit a 
rapid increase or decrease in their values by increasing the 
temperature before the sublattice magnetizations vanish at the 
critical points.   
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