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Abstract—Based on the fact that volatility is time varying in high 

frequency data and that periods of high volatility tend to cluster, the 
most successful and popular models in modeling time varying 
volatility are GARCH type models. When financial returns exhibit 
sudden jumps that are due to structural breaks, standard GARCH 
models show high volatility persistence, i.e. integrated behavior of 
the conditional variance. In such situations models in which the 
parameters are allowed to change over time are more appropriate. 
This paper compares different GARCH models in terms of their 
ability to describe structural changes in returns caused by financial 
crisis at stock markets of six selected central and east European 
countries. The empirical analysis demonstrates that Markov regime 
switching GARCH model resolves the problem of excessive 
persistence and outperforms uni-regime GARCH models in 
forecasting volatility when sudden switching occurs in response to 
financial crisis. 

 
Keywords—Central and east European countries, financial crisis, 

Markov switching GARCH model, transition probabilities. 

I. INTRODUCTION 
N the last few decades there has been enormous interest in 
forecasting of returns fluctuations at the financial markets. 

The first autoregressive conditional heteroscedasticity model 
(ARCH) was proposed as in [1]. The ARCH model was 
extended by its generalized version (GARCH) as in [2]. 
However, GARCH(1,1) model usually indicate high 
persistence in the conditional variance, which may originate 
from structural changes in the variance process. Hence the 
estimates of a GARCH model suffer from a substantial 
upward bias in the persistence parameters. Therefore, models 
in which the parameters are allowed to change over time may 
be more appropriate for volatility modeling. The main feature 
of regime switching model is the possibility for some or all the 
parameters of the model to switch across different regimes 
according to a Markov process, which is governed by a state 
variable 

tS . Markov regime switching GARCH models allow 
different speeds of mean reversion of innovation process on 
different levels of variance in different time periods. Hence, in 
this paper Markov regime switching GARCH model, i.e. 
MRS-GARCH(1,1) is analyzed to describe structural changes 
in returns of referent stock indices caused by financial crisis at 
six stock markets from six different central and east European 
countries: Zagreb Stock Exchange (CROBEX), Prague Stock 
Exchange (PX 50), Budapest Stock Exchange (BUX), 
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Ljubljana Stock Exchange (SBI 20), Bucharest Stock 
Exchange (BETI) and Sofia Stock Exchange (SOFIX). 

II. CHANGES IN CONDITIONAL VARIANCE PROCESS 
The most widespread approach to volatility modelling 

consists of the GARCH model [2] and its numerous extensions 
that can account for the volatility clustering and excess 
kurtosis found in financial time series. The accumulated 
evidence from empirical research suggests that the volatility of 
financial markets can be appropriately captured by standard 
GARCH(1,1) model: 
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where tμ  is the conditional mean of return process { }tr , 

whereas { }tε  is the innovation process with its multiplicative 
structure of identically and independently distributed random 
variables tu . The last equation in (1) is conditional variance 
equation with GARCH(1,1) specification which means that 
variance of returns is conditioned on the information set 1tI −  
consisting of all relevant previous information up to period 

1t − . According to ARMA(1,1) representation of 
GARCH(1,1) it follows that GARCH(1,1) model is 
covariance-stationary if and only if 

1 1 1α + β < . In particular, 
GARCH(1,1) model usually indicates high persistence in the 
conditional variance, i.e. integrated behavior of the conditional 
variance when 1 1 1α + β =  (IGARCH) as in [3]. The reason 
for the excessive GARCH forecasts in volatile periods may be 
the well known high persistence of individual shocks in those 
forecasts. Lamouoreux and Lastrapes [4] show that this 
persistence may originate from structural changes in the 
variance process, i.e. shifts in the unconditional variance lead 
to biased estimates of the GARCH parameters suggesting high 
persistence. High volatility persistence means that a long time 
period is needed for shocks in volatility to die out (mean 
reversion period). Haas et al. [5] demonstrates that existence 
of shifts in the variance process over time can induce volatility 
persistence. A popular approach to endogenize changes in the 
data generating process is the Markov regime switching 
model. Hamilton [6] introduces this model to describe the U.S. 
business cycle. In the context of stock market volatility, a 
Markov process can be used to govern the switches between 
regimes with different variances. In practical applications, the 
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structural changes are rarely observed in advance and state 
variable cannot be predetermined. In addition the excess 
kurtosis implies that conditional distribution has fatter tails 
than the normal distribution, which means that large 
observations occur much more often than one might expect for 
a normally distributed variable as presented in [7]. Therefore, 
Markov switching models can be used for modeling possible 
time varying kurtosis when degrees of freedom are state 
dependent variable assuming Student t-distribution. 

III. REGIME SWITCHING GARCH MODEL 
First application of regime switching parameters by 

combining Markov switching model with ARCH specification 
was proposed in [8]. Markov switching ARCH model was 
designed to capture regime changes in volatility with 
unobservable state variable tS  following the first order 
Markov Chain with constant transition probabilities. Hamilton 
and Susmel [8] used an ARCH specification instead of a 
GARCH to avoid infinite path dependence problem. It should 
also be noted that most regime switching models appear 
certain difficulties in parameters estimation. Therefore, several 
models with certain modifications and restrictions are 
proposed. The most general form of MRS-GARCH(1,1) 
model can be written as: 
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where the unobserved state variable tS  is assumed to evolve 
according to the first-order Markov chain. 

Transition probability 
( ) ( )1 2 1 1 1Pr , ,..., , Prt t t t t tS S S S I S j S i− − − −= = =  indicates the 

probability of switching from state i  at moment 1t −  into 
state j  at moment t . When only two regimes are considered 

{ }1, 2tS = , i.e. low and high volatility regimes, these 

probabilities can be grouped together into probability 
transition matrix: 
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Based on transition probabilities ( )1Pr t tS j S i−= =  the 

conditional probabilities ( )1Pr t tS j I −=  can be generated to 

define the likelihood function. Hence, in order to maximize 
the likelihood function the stochastic behavior of discrete state 
variable must be assumed. Probability density function for 
each observation is presented as a weighted sum of the 
conditional distribution functions for both regimes. Associated 
weights ( )1Pr t tS j I −=  are interpreted as the probability that 

the process at the moment t  is in the state j , conditioned by a 

set of past information up to the moment 1t −  as in [9]. These 
probabilities are called ex ante probabilities. Since the 
procedure of maximizing the likelihood function for 
parameters estimation is iterative in each new iteration the 
conditional probabilities ( )1Pr t tS j I −=  can be updated using 

Kim’s filter (smoothing algorithm) [10]. For initial 
probabilities Hamilton [6] proposed unconditional 
probabilities of each state, i.e. steady state probabilities: 
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Based on the transition probabilities the expected duration 

of the j  state regime can be calculated as: 
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For the initial value of the variance 2
0σ  by recursive 

substitution in the conditional variance equation of (2) it can 
be obtained: 

 
1 112 2 2

0, 1, 1 1, 0 1,
0 0 0

σ α α ε β σ β
i tt

t S S t i S S
i j it i t i t j t i

− −−

− −
= = =− − − −

⎡ ⎤= + ⋅ +∑ ∏ ∏⎣ ⎦
.  (6) 

 

Equation (6) shows that 2
tσ  depends on the entire history 

of regimes up to moment t , i.e. there is an infinite path 
dependence problem, which means that conditional variance at 
moment t  depends on the conditional variance at moment 

1t −  and state variable at moment t  whereas the conditional 
variance at moment 1t −  depends on the conditional variance 
at moment 2t −  and state variable at moment 1t −  and so 
on, which makes the estimation infeasible in practice. In order 
to solve the problem of path dependence, it is proposed that 
conditional variance 2

1tσ −
is given by information at moment 

2t − , i.e to substitute 2
1tσ −
 with conditional expected value 

( )2
2 1t tE σ− −

as in [11]. Reference [12] introduces modification of 

Gray’s MRS-GARCH(1,1) model [11] by using conditional 
variance of 1tε −  given the information 1t − , i.e. he suggests 

to substitute 2
1tσ −
 with conditional expected value ( )2

1 1t t tE Sσ− −

. In [12], Klaassen’s MRS-GARCH(1,1) model is compared to 
standard GARCH(1,1) model. 

IV. EMPIRICAL RESULTS 
The data set analyzed in this paper is the stock market daily 

closing price indices from six central and east European 
countries. The sample period is from January 02, 2006 to 
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December 28, 2012 for a total of 1500 observations according 
to trading days. Both the conditional mean and the conditional 
variance equations are estimated jointly by maximizing the 
log-likelihood function which is computed as the natural 
logarithm of the product of the conditional densities of the 
innovations, which are assumed to follow Student-t 
distribution. When estimating MRS-GARCH(1,1) model each 
regime takes different degrees of freedom of a Student t-
distribution. Parameters 1α  and 1β  are also allowed to switch 
between two regimes, i.e. low volatility regime when 1tS =  
and high volatility regime when 2tS =  as in [13]. Maximum 
likelihood estimates are obtained with Broyden, Fletcher, 
Goldfarb and Shanno (BFGS) numerical quasi-Newton 
optimization algorithm in the Time Series Modelling package 
(TSM 4.29). Specifically, in the standard GARCH(1,1) model 
4 parameters were estimated, whereas degrees of freedom are 
pre-estimated using the method of moments (related to the 
kurtosis). In the case of MRS-GARCH(1,1) model, 10 
parameters are estimated whereas degrees of freedom were 
estimated jointly with other unknown parameters depending 
on the two regimes. 

The estimation results show that high volatility persistence (

11 βα + ) is associated with the standard uni-regime 
GARCH(1,1) model, which suggests that a long time is 
needed for shocks in volatility to die out (approximately 74 
days for CROBEX, or even never for PX 50, SBI 20 and 
SOFIX). Although the covariance-stationarity condition is not 
satisfied for three stock indices the finite unconditional 
variance is overestimated (3.22% for CROBEX, 3.59% for 
BUX and 3,10% for BETI), due to the bias in the parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE I 
ESTIMATED PARAMETERS AND DIAGNOSTIC TESTS OF GARCH(1,1) AND MRS-
GARCH (1,1) MODELS WITH T-DISTRIBUTION FOR THE CROBEX AND PX 50 

RETURNS 

Parameters 
CROBEX PX 50 

GARCH 
(1,1) 

MRS-
GARCH (1,1) 

GARCH 
(1,1) 

MRS-
GARCH (1,1) 

0
φ  0.00079** 0.00076** 0.00129** 0.00124** 

0
α  0.00003* 0.000025* 0.00005* 0.00003** 

1
α  0.1438** 0.2176** 0.2018** 0.1764** 

1
β 0.8469** 0.6298* 0.8181** 0.8235** 

df  4.6 4.93** 4.4 6.55** 

lim t
t

σ
→∞

 3.22% 1.81% ∞  1.77% 

p  - 0.98165** - 0.98853** 
q  - 0.95904** - 0.97466** 

1,2α  - 0.0258** - 0.1491* 

1,2β  - 0.9553** - 0.8263** 

2df  - 4.70** - 6.10** 
*ln L  3358.9 3361.3 3250.2 3248.0 

AIC  -6709.8 -6702.6 -6492.5 -6476.0 

SBIC  -6689.8 -6652.5 -6472.4 -6425.9 

( )10Q  5.4478 7.7996 19.9039* 17.3096 

( )2 10Q  5.9526 9.7704 8.1053 8.0618 

( )10LM  5.8366 9.6348 7.7673 7.5236 

1π  - 0.3094 - 0.3116 

2π  - 0.6906 - 0.6884 

1d  - 54 - 87 

2d  - 24 - 39 

* indicates significance at 5% level, ** indicates significance at 1% level 
Source: Author’s calculation 
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TABLE II 
ESTIMATED PARAMETERS AND DIAGNOSTIC TESTS OF GARCH(1,1) AND MRS-

GARCH (1,1) MODELS WITH T-DISTRIBUTION FOR THE BETI AND SOFIX 
RETURNS 

Parameters 
BETI SOFIX 

GARCH 
(1,1) 

MRS-
GARCH 

(1 1)

GARCH 
(1,1) 

MRS-
GARCH 

(1 1)
0φ  0.000029 0.00031 0.00056* 0.00059* 

0α  0.000023* 0.00006** 0.000004* 0.000073* 

1α  0.3211** 0.2639** 0.3477** 0.4353** 

1β  0.6543** 0.7244** 0.6989** 0.5661** 

df  6.5 6.60** 5.1 7.31** 

lim tt
σ

→∞
 3.10% 1.95% ∞  1.64% 

p  - 0.98334** - 0.98091** 

q  - 0.96503** - 0.94550** 

1,2α  - 0.0010* - 0.0212* 

1,2β  - 0.9989** - 0.9787** 

2df  - 6.50* - 5.26** 

*ln L  2975.7 2981.3 3496.8 3452.3 

AIC  -5943.4 -5942.6 -6985.6 -6884.6 

SBIC  -5923.3 -5892.4 -6965.6 -6834.4 

( )10Q  24.8700 13.3286 19.1780 12.9041 

( )2 10Q  8.3520 4.6406 7.1900 6.5117 

( )10LM 8.4418 5.3218 7.6255 5.7754 

1π  - 0.3227 - 0.2594 

2π  - 0.6773 - 0.7406 

1d  - 60 - 52 

2d  - 29 - 18 

* indicates significance at 5% level, ** indicates significance at 1% level 
Source: Author’s calculation 

 
Obviously, persistence volatility is lower in the regimes of 

low volatility compared to the persistence in the regime of 
high volatility. For example, this means that in the regime of 
low volatility of CROBEX index the mean reversion period is 
4 days, whereas in the high volatility regime 36 days are 
needed for shocks in volatility to die out. However, in the 
regime of low volatility of BUX index the mean reversion 
period is 2 days, whereas in the high volatility regime 38 days 
are needed for shocks in volatility to die out. Also, estimated 
transition probabilities indicate that the expected duration of 
the regime of low volatility for CROBEX of 54 days is more 
than the expected duration of the regime of high volatility (24 
days). 

TABLE III 
ESTIMATED PARAMETERS AND DIAGNOSTIC TESTS OF GARCH(1,1) AND MRS-

GARCH (1,1) MODELS WITH T-DISTRIBUTION FOR THE BUX AND SBI 20 
RETURNS 

Parameters 
BUX SBI 20 

GARCH 
(1,1) 

MRS-
GARCH (1,1) 

GARCH 
(1,1) 

MRS-GARCH 
(1,1) 

0φ  0.000651 0.00037 0.000191 0.00029 

0α  0.000007* 0.00007* 0.000002* 0.000053* 

1α  0.1304** 0.1927** 0.2472** 0.6143** 

1β  0.8691** 0.4678* 0.7679** 0.3289** 

df  4.8 6.56** 4.8 9.61** 

lim tt
σ

→∞
 3.59% 2.3% ∞  1.15% 

p  - 0.99108** - 0.97490** 
q  - 0.97580** - 0.91463** 

1,2α  - 0.0988* - 0.0226* 

1,2β  - 0.8832** - 0.9509** 

2df  - 5.46** - 8.48** 

*ln L  3025.3 3031.1 3811.8 3816.7 

AIC  -6042.7 -6042.2 -7615.5 -7613.4 

SBIC  -6022.7 -5992.1 -7595.4 -7563.2 

( )10Q  22.437* 12.0680 10.2000 10.9301 

( )2 10Q  10.4400 7.9551 6.1200 6.6165 

( )10LM  8.6545 7.3852 6.1908 6.7862 

1π  - 0.2693 - 0.2272 

2π  - 0.7307 - 0.7728 

1d  - 112 - 40 

2d  - 41 - 12 

* indicates significance at 5% level, ** indicates significance at 1% level 
Source: Author’s calculation 
 
Ljung-Box statistics ( )10Q , ( )2 10Q  and Lagrange 

multiplier test ( )10LM  are not statistically significant, 

suggesting that there is no ARCH effects or autocorrelation of 
standardized residuals (mean and variance equations are 
correctly specified). The value of AIC and SBIC information 
criteria is less in a standard GARCH(1,1) model compared 
with MRS-GARCH(1,1) model, because 10 parameters are 
estimated in regime switching model. 

V.  CONCLUSION 
Due to the effects of structural changes in the return series, 

caused by the financial crisis, sum of the parameters 11 βα +  
in standard GARCH(1,1) model indicates high volatility 
persistence. In such situations models in which the parameters 
are allowed to change over time are more appropriate, i.e. 
Markov switching GARCH model. Regime switching 
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GARCH models allow different speeds of mean reversion of 
innovation process on different levels of variance in different 
time periods. Estimation results show that volatility 
persistence is lower in the regime of low volatility compared 
to the persistence in the regime of high volatility in selected 
central and east European countries. Estimated transition 
probabilities indicate that the expected duration of the regime 
of low volatility is more than the expected duration of the 
regime of high volatility. It is also important to point out that 
the variability of degrees of freedom of the Student t-
distribution in MRS-GARCH(1,1) model suggests that degrees 
of freedom for a period of low volatility are greater in 
comparison to a period of high volatility. Specially, the 
estimated lower degrees of freedom in periods of increased 
volatility indicate that the occurrence of extremely low 
(negative) returns, as well as extremely high (positive) returns 
is more frequent. The empirical analysis demonstrates that the 
Markov regime switching GARCH model resolves the 
problem of excessive persistence and outperforms uni-regime 
GARCH models in forecasting volatility when sudden 
switching occurs in response to financial crisis. 
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