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Exponential Stability Analysis for Uncertain Neural
Networks with Discrete and Distributed
Time-Varying Delays

Miaomiao Yang,

Abstract—This paper studies the problem of exponential stability
analysis for uncertain neural networks with discrete and distributed
time-varying delays. Together with a suitable augmented Lyapunov
Krasovskii function, zero equalities, reciprocally convex approach
and a novel sufficient condition to guarantee the exponential stability
of the considered system. The several exponential stability criterion
proposed in this paper is simpler and effective. Finally,numerical
examples are provided to demonstrate the feasibility and effectiveness
of our results.
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I. INTRODUCTION

ECURRENT years neural networks have been studied

extensively and have been widely applied within a kind
of engineering fields such as associative memories, neuro
biology, population dynamics, and computing technology[1-9].
Existing stability criteria can be classified into two categories,
that is, delay-independent ones and delay-dependent ones. It
is well known that delay-independent ones are usually more
conservative than the delay-dependent ones, so much attention
has been paid in recent years to the study of delay-dependent
stability conditions.

Although neural networks can be implemented by very large
scale integrated circuits, there inevitably exist some delays
in neural networks due to the limitation of the speed of
transmission and switching of signals. It is well known that
time-delay is usually a cause of instability and oscillations of
recurrent neural networks. Therefore, the problem of stability
of recurrent neural networks with time-delay is of importance
in both theory and practice.

The problem of exponential stability analysis for uncertain
neural networks with discrete and distributed time-varying
delays has been studied by many investigators in the past
years.mang known results,the time-varying delays varies from
0 to an upper bound,but in practice the delay of lower bound
is not restricted to be 0, In this paper, we considered the
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relationship between the time-varying delay and its lower and
upper bound, by means of the Lyapunov-Krasovskii function
and the linear matrix inequality(LMI) approach, Note that
LMIs can be easily solved by using the Matlab LMI toolbox,
Finally numerical examples given to illustrate the effectiveness
of the proposed methods.

Notation: Throughout this paper, the superscripts’ — 1/, "T”
stand for the inverse and transpose of a matrix, respectively;R"
denotes an n-dimensional Euclidean space; ™ *™ is the set of
all m x n real matrices; P > 0 means that the matrix P is
symmetric positive definite; / is an appropriately dimensional
identity matrix.

II. PROBLEM STATEMENT

Consider the following neural networks with time-varying
delays:

2(t) = —(C+ AC(1))z(t) + (A + AA(t))g(2(¢))
+ (B + AB(t))g(z(t — 7(t))) + (D + AD(t))
¢ (D
X /t g(z(s))ds + u

—d
Z(t) = ¢(t)7t € [77-270}

where 2(t) = [21(¢), 22(t), ..., 2 (t)]T € R™ is the neuron
vector,g(z(1))) = [g(21(1)), 9(22(t))- -, g(za(1))]" € R”
is neuron activation function,C' = diag{ci,ca,...,cp} > 0,

A e R*" B e R™*"are the connection weight matrices,and
and the delayed connection weight matrices, respectively, u =

[k, pias -
AD(t) are the parametric uncertainties of system matrices of
the form

AC(t) = WF(t)E., AA(t) = WF(t)Eq, AB(t) = WF(t) Ey,
AD(t) = WF(t)Ey
2)

with

FT()F(t) <I,Vt>0. 3)
and 7(t) is a continuous time-varying function which satisfies
0<7m <7(t) <710,7(t) <u 4

where 7 and w are constants.
The following assumption is made in this paper.

., ttn]Tis constant input vector, AC(t),AA(t),AB(t),
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Assumption1.The neuron activation functions g;(-) in
bounded and satisfy

gi(z) — gi(y)

r—y

(1) are

S7j7x7y€%7x#y7i:1727"'7n
&)

Y <

Where v;,7; (i = 1,2, - -,n) are positive constants.
Assumption] guarantees the existence of an equilibrium
point of system(16).Denote thatz* = [z},25,...,2%] is the
equilibrium point. Using the transformationz(-) = z(-) — z*
system (1) can be converted to the following error system:

(t) = —(C+ AC(t)x(t) + (A+ AA()) f(x(t))
+ (B+ AB(t))f(x(t — (1)) + (D + AD(t)) ©)
X tiif(x(s))ds
where z(t) = [21(t), 22(t), ..., 2, (t)]T € R™ is the neuron
vector, f (z(t)) = [f1(z1(1)), f2(x2(1)), . .., fu(zn(t)]" € R"
denotes the neuron activation function.f;(z(-)) =
9i(z:(1) —gi(zF),i=1,2,...,n
7;g%gﬁ,fi(o)zo,izl,z,...,n (7)

System(6) can be written as

i():—Cl()wLAf( (#)) + Bf(z(t = 7(t)) + D

X - f(z(s))ds + Wp(t)

p(t) =F(t)(—Ecx(t) + Eaf(2(t)) + Ev f(x(t — 7(¢)))

+ Eq » f(xz(s))ds

®)

By translating d to function d(t), we have
i(t) = = Ca(t) + Af(x(t)) + Bf(z(t — (1)) + D

/ fa
(—Eea(t) + Buf (a(t) + By f(a(t — 7(2)))

+Ed[ d(t)f(x(s))ds

))ds + Wp(t)

p(t) =

©))
where 0 < d(t) < d.
Definition1.The equilibrium point of system (16) is said to be
globally exponentially stable,if there exist scalars k£ > 0 and
£ > 0 such that
2(6)]] < Be™

sup Hqﬁ(s) —2"||,Vt > 0.

72

(10)

Lemma 1.[9].For any constant positive matrix Z = Z7 > 0,
7Z € R"*" scalars hy > hy > 0, such that the following
integrations are well defined, then

h1
—(hg — hl)/ {ET
ha

h1 h1
< —/ xT(s)dsZ/ z(s)ds
ha h

2

(s)Zxz(s)ds
(11

Lemma 2.[10]The following inequalities are true:

0< /0 [fi(s) —

;i (t)
0< / [+
0

Lemma 3.[11] For all real vectors a,b and all matrix @ > 0
with appropriate dimensions, if follows that:

vi slds < [fi(zi(t)) — v @i(t)]wi(t)

(12)

s = fi(s)lds < [y wi(t) + fulwi(1)))a(t)

13)

2a7b < aTQa +bTQ b (14)
Lemma4.[12] Given symmetric matrices 2 and D, E, of
appropriate dimensions,

Q+DF{t)E+ ETF(t)D" <0

for all F(t) satistying FT(¢)F(t) < Lif and only if there
exists some € > 0 such that

Q+eDDT + e 'ETE <. (15)

III. MAIN RESULTS

In this section, we propose a new exponential criterion
for the uncertain neural networks with time-varying delays
system(9).First,we let AC(t) = 0,AA(t) = 0,AB(t) =0
and AD(t) = 0 ,the system as following:

#(t) = =Cu(t) + Ag(x(t)) + Bg(x(t — 7(1)))

t
+D g(z(s))ds (16)
t—d(t)

Now, we have the following main results.

Theoreml.For given scalars I'v = diag(yy,7v5 57 )
Ty = diag(i, v, ..., 7). d >0, u <1, T = 7 — 71, the
system(16) is globally exponential stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices, @; (i = 1,2,...,6), R; (i = 1,2,3,4),

S11 Sz Si3
P, S = xSy Sos|, positive diagonal matrices My,
* * 533
]\/[2, A1 = diag(/\l,)\g,...,)\n), Ay = diag(él,ég,...,dn)
such that the following LMIs hold:
[e17 ez e;s 0 0 0 0 0 el
* €29 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* * * €44 €45 €46 0 0 0
E=]% * % x e e es7 0 0] <0
* * * * ¥  egg egr cgg O
* * * * * err erg 0
* * * * * * egg O
* * * * * * *  egg

T (17
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(18)

€11 €12 €13 0 0 0 0 0 €19
* €99 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* % x  fau 0 fie far 0 0
F=|%x % % % ‘es5 fs6 es7 0 0] <0
* * * * * €66 f67 €68 0
* * * * * fr fis O
* * * * * x* egg 0
* * * * * * * €99
-611 €12 €13 0 0 0 0 0 619-
* €29 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* * * guu 0 0 gar gas O
G=|x* * x x e fss es7 O
k ox % k% geg for ees 0
* * * * * fir ers O
* * * * * ess 0
* * * * * * * €99

19

€11 =2kP — PC — CP — 4kI’ AlfC(FgAnglAl)

T (T;;) C(Ry + Ry + R3)C — (TyAs — T1A)C
5

+ Qi +4kTyAy — 2T MTy
=1
e = PA+2kA — (Al — AQ)C + (F2A2 — FlAl)A

— kA, (T;) C(Ry + Ry + R3)A + My (T'; +T)

e13 = PB + (PQAQ — F1A1)B

el9g = PD + (FQAQ — FlAl)D (7-:1))2) C(Rl + Ry + Rg)D

€33 = (A — Ay)A — 2M; + (“2) AT(Ry + Ry + Ry)A
+ AT (A — Ay)

ea3 = (A1 — Ao)B + (m) AT(Ry + Ry + Rs)B

e20 = (A1 — A2)D + (7'12) AT(Ry + Ra + R3)D

€33 = (752) B"(Ry + Ry + R3)B — 2M,
— e (1 )Qg, €30 = Mo(Ty + )

esp = (T;) BT(Ry + Ry + R3)D

271472
—2k=3

eqq = —e 2k (1 —u)@Qy —2e R;
— 2Ty MsTy
€45 — € 2k2?1+?2 Rg, €46 = € 2’"%
es5 = —¢ TRy — e HIQy 4 e TS
ess =€ 1810, e57 = e 2 Sy

€66 = —¢€ 2k2?1+?2 (Qg + S11 + Rs + Rz)
+ 672’”1 (SQQ — Rl)

271479
—2k 2t

_aok2 —2k
€7 = —¢ Si2+e Ry + e 271 5,4

(T;f) C(Ry + Ry + R3)B

72]{3 27’2+T1

ok
err =€ “T1S33 — (R2 + Qu)
—2k 2Tt _ka
—e Sao, €78 = 3 Sog
—2k 2Tt 2k
egg = —¢€ S33 — e 2" (Q5 + Ry)

-
egg = ( ;,)2) DT(Ry + Ry + R3)D — e "R,
27 +7‘
f44 _ *672]67—2( )Ql o 2672k 2m+72 R2
—2I'1 M
27 47 2m 4T

fio =€ 2T Ry, far = e T3 T Ry,

271+
f56 _ 6—2k71 512 + e—2k413 2 R3

27y 47

for=—e T Sy + e TSy
frs = —e KT G 4 e MRy

297
frr= e85 — T (Ry + Qu) — e TRy

gaa = —e (1 —u)Q1 — 2¢ 2F Ry — 2T M,Ty
—2kTo Rl Gag = 2672167'2R
e (Q3 + S11 + Ra) + e 21.8p

ga7 = 2e
Je6 = —

Proof: Construct a Lyapunov function as follows:

V(ze) = Z Vi(zt)
where
Vi(zy) = 22T (t) Pa(t)

n

z;(t)
Vi) = 265 S0 (fs) =7 s

i=1

+A 5t s — fi(s))ds]

e 2T (5)Qrax(s)ds
t—7(t)
t
+/f . 2k9 T QQJ'()
t
+1%W2MTkmw@@
t
+ [ iy O Q)i
t
ka T
+[m (5)Qs2(5)
t
+/ e 17 (2(5))Qs f (a(s) ) ds
t—7(t)

T

(s) S11 Si2
/ x(s — 5T * Soo
rz+27'1 (S _ 2(7’2;7‘1)) % %
- Tz 7)) | ds
_ 2(T2 ‘1'1))

Si3
Sas
S33
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727’24—7’1 N

p— 3

Va(z) = 2 . n / / Gegksi(s)Tle:(s)dsdG
—T2 t+

_Tmot2n +

™ — T 3
3 72723+T1 140

o-m [T Y ke T
+ 3 . e x(s)" Ry (s)dsdl
_Tmat2m
3

e i:(5)T Ryi:(s)dsdh

(o 7d/ /W €2t £T (3(5)) Ra £ (3(5))

The time derivative of V(z;) along the trajectory of system
(16)is given by

6
V() = Z Vi(a:)
=1
where
Vi(xy) = 2ke®*t T (t) Pa(t) 4 22T (t) P(t) (20)

z(t)
— 7, s)ds

Val(x;) = 4keFt Z[/

x; (t)
+ / 5y
0

— 2T () A&(t) + (z

= fi(s))ds] + 2e**[(fT ((2))

T(6)F2 = f1 () Ad(t)]
@y

VS(xt 2kt T er(t—‘rg)(l _ u)

ZQ

x al(t — 7t ))le(t —7(1) + € f(2() Qo f T (x(1))

— 2T (- ) Qo (t — 1)

ary g 2 2
_ezk(t—%)xT(t T1 +7—2)Q3 (t— 7’1;-7'2)
_ e%(w%)xT(t 2 +7'1 )Quar(t — 27’1;7'2)

— 2R 0T (f — 1)) Qsa(t — 72)
— e2(t=2) (1 ) f(a(t — 7(£)Qef L (z(t — (1))

(22)
T
x(t — 1) S11 S22 Sz
Vi(z,) < R | g(p — 2t k  Sag Soy
ot — 22 * *  Si3
(E(t — Tl)
x |z(t — 2T1;'72)
x(t o 27'2;-7'1)
) It—%%) ’ S Sz Sis
2k (t— 22 2704 T
—e ) |a(t — =) *  Sag Saz
z(t — 1) * *  Saz
x(t 27’1;—7'2)
X |x(t — 2”;“)
1(t - Tg)
(23)

Vi(zy) = (ﬂ

3
o t7272;»71
-2 1/ e &7 (s)Ryi(s)ds
3 t—72

B s (24)
-2 1/ e i1 (5) Ryi:(s)ds
¢ 272;7’1

)23 (¢)(Ry + Ra + R3)i(t)

3
T2 —T1 t=n ks + T .
77/ e 1" (s)Rsi(s)ds
3 t72f13+f2

(DWhen 7 < 7(t) < 2”% Based on the bounds lemma
of[16], we have

t—71
Ty — T Cistss
T2 1/ 62ijT( )Rgl'( )d9 < €2k(t7 =12y
3 p_2T1HT2

a?(thl) r —Rg Rg 0

X .Z'(t — T(t)) * —2R3 Rg
x(t — 2tT2) * x  —Ry
x(t—m1)
x | z(t—7(t))
I(t _ 271;»72)
(25)
. t72ﬂ'2.+ﬂ'1
_7'237'1/ 8 25T (5)Ryio(s)ds < —e2k(t=T2)
t—To
2 2
ot — 22T ot — )| T Rafe(t — 22T
— l’(t - Tg)]
(26)
-7 [ i ks - T . k(¢ — 2271
- e 1" (s)Ra(s)ds < —e 3
3 —2m2+T1
2 2 2
x falt = =) — o (T Rl — L)
2T2 + T1
(- EET)
(27)
(2)When 272 < 7(1) < 222471 we have
To —T1 = 271;72 ks + T . 2% (t— 27271
- e 1" (s)Rot(s)ds < e 3
3 $— 272+
I(t— %ﬁ) r _R2 Rg 0
x | x(t—71(t)) *  —2Ry Ry
z(t — 22t * *  —Ry
Ji(t o 27—1;7—2)
x | x(t—7(t))
l’(t o 27'2;7'1)
(28)
e
T . T / 25 5T () Ry (s)ds < —e2H(=T)
t—T7o
2 2
x at — 22T ot — )T Ry [t — 22T
—x(t — 72)]
(29)
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t—T71
To — T1 ;. . _ 27147
2 €2ké$T(S)R3$(S) < _eZk:(t 5=)
3 t72713+72

2
x [t — 1) — a(t — 20T

27’1 +T2
]

)" Ryl (t — 1)

—m(t—

(30)

(3)When 2”% < 7(t) < 72. Based on the bounds lemma
of[16], we have

219471

— t 3
_7_2 3 1 / ezksi'T(S)Rli'(S)dS < er(t*"?)
t—T7o

T

I(t — 27—2%) —R1 R1 0
x | x(t—7(t)) x  —2R; Ry
x(t — T12) * * Ry
(E(t _ 272;-7-1)
x | x(t—7(t))
xz(t — 1)
(31)
mon [ 2k o 2h(t—22E )
- e?* 3T (5)Ryi:(s)ds < — 3
3 t_272;r71
2 2 2
x fot = ) oI R (e - )
2
()
(32)
t—T
2T / 1 2ks T(é)Rgi’(S) < _2k(t 2ritT2)
3 t7271;72
2m + T
[2(t —71) —=(t - 13 N Ryla(t — 1)
2
)
(33)

V(1) = d?e®* fT(2(s)) Raf (x(s))
—d [ [T (x(s))Raf(x(s))ds

t—d

< d* T (w(t)) Raf (2(t))

t t
_ 2k(t—d) T
e [ d(t)f (m(s))dsR;;/t d(t)f(x(s))ds
(34)

In order to derive less conservative results,we add the
following inequalities with positive diagonal matrices M7, My

=2 fT (@ (t)) My f (x(t)) + 227 () M1 (T1 + Ta) f(x(t))
— 22T ()T M Tox(t)] > 0
(35)

=2 f T ((t — 7(t)) Mo f(2(t = 7(t))) + 227 (¢
X (Pl + Fz)f(.fl’(t — T( )) — 2I (t — T(t))F1M2P2
w a(t — ()] > 0
(36)

(HDWhen 71 < 7(t) < 202 According to (17),from

(20) — (27), (34) — (36).Then one can obtain
V(ay) < MM (1) EE()] <0 37
where
EN(t) =[x(t), f(x(t), fla(t — 7(t)), x(t — 7(t)), x(t — 71)
(t— 2“;”2 ) ot — 2723”1 )2t —7),
|t
t—d(t)

(2)When 27E22 < 7(¢) < 224711 According to (18), from
(20) — (24), (28) — (30), (34) — (36). Then one can obtain
V(ar) < MET () FE()] <0 38

(3)When 272ETL < 7(¢) < 75 According to (19), from
(20) — (24), (31) — (36).Then one can obtain
V() < e™EN(HGED] <0

Therefore, if (17)— (19

exponentially stable.
On the other hand,

Vi(zo) < )‘maX(P)”w(O)Hz < Amax(P)

(39
), are satisfied, the system is globally

l(s)11*
(40)

sup
—12<s<0

Va(wo) < 2[f(2(0)) — T12(0)]" Az (0) + 2[T2(0)
— f(2(0))]" Az(0)
S 2)‘max(r2 - Fl)(Amax(A) + )\max(A))
[lz(s)]*

(41)

X sup
—12<s<0

21 + T
! 3 2 )\max(QB)

)\max(Q4) + 7—2)\max(Q5) + TQ’YAmax(QG))
H%(S)H2

VS(-Z'O) S (TQ)\max(Ql) + TlAmax(Q2) +
T1 + 27’2
3

X sup
77’2 9

+

(42)

According to Lemma 3

—7(t)) M, Va(wo) < 7:1;2 [Amax(S11) + Amax (S12) + Amax (S13)] ||z (s )H2

757 Dhna($12) + Mae(S13) + A (S22)]
X HI(S )H2 3[ max(SZQ) + )\max(S23)
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+ Amax(533)][|z (s )“2

S %[ max(sll) + 2)\max 512) + 2)\max(513)
+ )\max(522) + 2)\max(523) + /\max(SSS)]

)12

(44)

x sup |z(s
—12<5<0

T (1) (t) <4 Amax(CTO) + ¥ Amax (AT A) + Amax (BT B))

+d272)‘max(DTD)] sup H'T( )”2
—12<5<0
7= max {|v], i [}
. _min g
VS(IO) S %Amax(Rl) / IT(S)I(S)deG
—T 0
,2@ 0
2\ a(R) ’ / &7 ()i (s)dsdd
3 max 2 272_*_7_1

T12 max R3 / / dee
7—1+17—2

< E[le(Tl + 57'2)

=3 9 AmaX(Rl)
w e (B2)
T12 T12(5T1 +T2) T
5 7/\max R /\max C C
2men ()] Anax(CTC)
+ 7" Amax (AT A) + ¥ Amax (BT B)] sw l(s)]*
@)
d3 2
Va(20) € S Amax(Ra) - sup_[Ja(s)]|? (46)

—7,<s<0
According to (33)—(38), we can get the following inequalities:
V(2(0)) <w sup
<s<

—T2RS8>

ll(s)]1? (47)

where
W = Ama.x(P) + 2)\max(r2 - Fl)()\de(A) + )\max(A))

+ (7-2)‘max(Q1) + Tl)\lnax(QZ) + 27—1 + 2 )\max(QB)

3
T1 + 27

+ T)\max(Qzl) + 7_2>\max(Q5) + TQ’Y)\IHE}X(QG)

+ 22 Poma(S11) + Amax(512) + Amax(S13)]l () 1

+ 7—;2[ max(SIZ) + /\ma.x(SIS) + /\max(S22)]

X HI( 7)H2 3 [)\max(522) + )\max(SZB) + Arn'emx(si?»?))]
X Hx(S)HQ + B[)\max(sll) + 2)\max(‘912) + 2/\max(513)

+ )\max(SQZ) + 2Amax(S23) + Amax(sdj)]
2[712(7'14-57'2) Ti2(T1 + 72)

3 9 )\max(Rl) + 3 )\max(RQ)
571 +
T2 MONET)y (B P (C7C)

dB’YQ
+ ’Y2Amax(ATA) + ’YZAmax(BTB)} + ?)\max(R4)

(48)

On the other hand, we have

V() > e Ain(P)|2(t)|? (49)
Therefore

w —kt X
2@l < \[5—pye™ _sw_ Il (50)

Thus,according to definition] the system (16) is exponentially
stable, the proof is completed. u
Theorem 2.For given scalars I'y = diag(y; ;75 s+, 70 ) »
I'y = diag(’yf,y;,...,ﬁ{), d>0,u<1,790 =79 — 71, the
system(9) is globally exponentially stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices P, Q;(i = 1,2,...,6),R;(: = 1,2,3,4),

S11 S12 Si3
S = | % Sy Ss3| positive diagonal matrices My, Mo,
* * 533

A1 = diag(Al, )\27 ey >\n)’ Ag = diag(§1, 52, e
scalar € > 0,such that the following LMIs hold:

J0n) , a

FE+ ETlT{ —|—€_1T§T2 < 0.
F+eX Y1+, <o. (51
G+ ETlr{ + 8_1T5Y2 < 0.

where
[T17(A1 AQ)W+EaE7OaO7070707E}T
[ EC>Ea7Eb7070a07070aEd]
lePW (FQAQ—F Al)W+E

2
(R1 + Ry + Ry)W x %

[I]

Proof: In Theorem 1, we replace C, A, B, D with C +
AC(t), A+ AA(t), B+ AB(t), D + AD(t), then adding to
Lemma4, we can get the results. This completes the proof. ®
Colloary 1.For given scalars I'y = diag(yy ;75 -7 ) »
Ty = diag(yy,vs s sF), d >0, u < 1, 79 = 70 — 71, the
system(16) is globally exponential stable with the exponential
convergence rate index k if there exist symmetric positive
definite matrices P, Q;(i = 2,...,5), R;(i = 1,2,3,4),

S Si2 Si3
S = | % Sy Sy3| positive diagonal matrices M, Mo,
* * S33
Ay = diag(Ai, A2, ..., \n), Ao = diag(d1,09,...,0,) such
that the following LMIs hold:
-611 €12 €13 0 0 0 0 0 619-
* €99 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* k * €44 €45 €46 0 0 0
E=1| % * * * es; ess esr 0 0<0
* * * * ¥  egg egr cegg O
* * * * * err erg 0
* * * * * * * egg O
* * * * * * * * €99
(52)
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€11 €12 €13 0 0 0 0 0 €19
* €99 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
* ox  ox fae 0 fae far 00
F= * * * * €55 .f56 €57 0 0 S 0
* * * * * €66 f67 €68 0
Kook ok kX frr fis O
* * * * * * egg O
* * * * * * * €99
] ~(53)
-611 €12 €13 0 0 0 0 0 619-
* €29 €23 0 0 0 0 0 €29
* * €33 €34 0 0 0 0 €39
x ok % gy 0 0 gar gas O
G=| % * * x  es5 fs6 esr O 01]<o0
ok k% % geg fer ees 0
* * * * * fr ers O
* * * * * esg O
* * * * * * * €99
) 54

€11 = 2kP — PC — CP — 4kI Al - C(FQAQ - FlAl)

T (ng) C(Ry + Ry + R3)C — (TaAs — 1 A1)C

+ i Q; +4kDoAy — 2T My Ty
ez = z;zl‘l +2kA; — (A; — A2)C + (T2Ay — 1A )A
(752) C(Ry + Ry + R3) A+ My (T'y +T') — 2kA;
e13 = PB+ (T3As — T1A)B — (T;f) C(Ry + Ry + R3)B
e19 = PD + (oA = T1A)D — (52)°C(Ry + Ra + Ry)D
ean = (A1 — A2)A — 2M, + ( 3

+ AT(Al — AQ)

2)2AT(Ry + Ry + R3)A

es = (A1~ A2)B+ (52)°A" (R + R + Ry)B
e20 = (A1 — A2)D + (T12) AT(Ry + Ry + R3)D
€33 = (T;) BT(Ry + Ry + R3)B — 2M,

esqs = My(I'y +T'9)

e39 = (T;) BT(Ry + Ry + R3)D
R i ) .7/

€45 = € -2k R3,e46 =€ -2k

ess = _e—zkas e T, 4 e 2hg)

ess =€ 1810, e57 = e 2 Sy
27 +r
egg = —€ —2k=4 2(Q3+511+R3+R2)
+ 672’”1 (SQQ — Rl)

271479
—2k 2t

_aok2 —ok
€7 = —¢ Sz +e Ry + e 215,

72]{3 27’2+T1

err = e K1 Gy — (R2 + Qa)

— eI G erg = —e 2T G
€88 — *6721‘ ZTH—TZ S 33 — € ka(Q + R1)
€99 = (751,)2) DT(Ry + Ry + R3)D — e 2R,
faa = —2e7 K752 Ry O MT
fa6 = 2k Ry, far = eI Ry,
fs6 = e TG, + 2k R3

—2k”1+’2

Sip + 2571 S,

frs =—e" Sos + e k2 Ry

erp = e KT Gas — o2k (Ry+ Qq) — e 272 R,

gas = —2¢" 2Ry — 2T MoT'y

gar =2¢ TRy, gus = 2Ry
—2k21AT2

Jgee = —¢€ (Qs+ S11+ Ra) +

f67 = —¢

o 2Tty +7—2

—2kT1 522

Proof: Choosing Q1 = 0,Q¢ = 0 in Theorem 1,one can
easily obtain this result. |
Remark1. This paper not only divides the delay
interval[7y, 2] into [, Tl'g” and [TI;TQ ,To),but also
divides [r1, 5] into [ry, 27E72], [20bT TE2Ta] [TA2T 7]
.Each segments has a different Lyapunov matrix,which have
potential to yield less conservative results.

Remark 2.Unlike other papers [17-18],which 0 < 7(¢) < T,
in this paper we let 71 < 7(¢) < 79, consider 71 # 0. Thus our
results can obtain better for exponential stability criteria.

IV. NUMERICAL EXAMPLES

In this section, we provide the simulation of examples to
illustrate the effectiveness of our method.
Example 1. Consider the system (16) with the following
parameters:

23 0 0 09 —15 0.1
C=|0 34 0|,A=|-12 01 02|,
0 0 25 02 03 08
0.8 0.6 0.2 0.3 02 0.1
B= (05 07 01|,D= |01 02 0.1
0.2 0.1 05 0.1 0.1 02

I'y = diag(0,0,0), I's = diag(0.2,0.2,0.2)

For the case of 79 = d, k = 0,71 = 0, the upper bounds of
7 for unknown u is derived by Corollary 1 in our paper and
the results are listed in Table I. This example shows that the
stability condition in this paper gives much less conservative
results.

For the case of d = 0.2, &k = 2, = 0.5, and various u,
the maximum 75 are shown in Table II.

Example2. Consider the system (16) with the following
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TABLE I
ALLOWABLE UPPER BOUND OF 7 FOR EXAMPLE 1

Method Maximum of allowable 7
[13] 1.833
[14] 3.597
[15] 5.068
[16] 6.938
[17] 9.338
[18] 11.588
corollary 1 13.459
TABLE II
ALLOWABLE UPPER BOUND OF T2 FOR EXAMPLE 1
conditions Theorem 1
71 =05,d=0.2,,k=2,u=0.5 6.3
71 =0.5,d=02,k=2,u=0.8 6.0
71 =0.5,d=02k=2,u=0.9 5.8
TABLE III
ALLOWABLE UPPER BOUND OF k FOR EXAMPLE 2
conditions [15] [16] [17] Theorem 1
T2 =0.5,d=0.2,u =0 0.46 0.58 0.67 3.60
72 =0.5,d =0.2,u =0.5 0.21 0.35 0.45 3.59
TABLE 1V
ALLOWABLE UPPER BOUND OF 75 FOR EXAMPLE 3
1 0.3 0.5 0.7 1.0 2.0

Theorem 15.200 15.111 15.000 14.670 14.668

parameters:
6 0 0 1.2 -08 06
c=10 5 0/,A=|05 -15 0.7 [,
00 7 -08 -12 -14
-14 09 0.5 1.8 0.7 -0.8
B=]1-06 12 08|,D=1|06 1.4 1.0
0.5 —0.7 11 -04 06 1.2

Iy = diag(—1.2,0,—-2.4), T'y = diag(0,1.4,0)

For various 71,d and w, the maximum of the exponential
convergence rate index k calculated by Theorem 1 in this paper
are listed in Table III.

Example3. Consider the system (16) with the following
parameters:

C— {3.99 0 },A= {1.188 0.09}

0 299 0.09 1.188
0.009 0.14 045 —0.2
B = [0.05 0.09} D= {0.3 0.42}

I'y = diag(0,0), I'y = diag(1,1)

The corresponding upper of 7o for various 7 by Theorem 1
(letting k = 1,u = 0.8, d = 0.3) in Table IV.
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