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Abstract—Fully reusable spaceplanes do not exist as yet. This 

implies that design-qualification for optimized highly-integrated 
forebody-inlet configuration of booster-stage vehicle cannot be based 
on archival data of other spaceplanes. Therefore, this paper proposes 
a novel TIPSO-SVM expert system methodology. A non-trivial 
problem related to optimization and classification of hypersonic 
forebody-inlet configuration in conjunction with mass-model of the 
two-stage-to-orbit (TSTO) vehicle is solved. The hybrid-heuristic 
machine learning methodology is based on two-step improved 
particle swarm optimizer (TIPSO) algorithm and two-step support 
vector machine (SVM) data classification method. The efficacy of 
method is tested by first evolving an optimal configuration for 
hypersonic compression system using TIPSO algorithm; thereafter, 
classifying the results using two-step SVM method. In the first step 
extensive but non-classified mass-model training data for multiple 
optimized configurations is segregated and pre-classified for learning 
of SVM algorithm. In second step the TIPSO optimized mass-model 
data is classified using the SVM classification. Results showed 
remarkable improvement in configuration and mass-model along 
with sizing parameters. 
 

Keywords—TIPSO-SVM expert system, TIPSO algorithm, two-
step SVM method, aerothermodynamics, mass-modeling, TSTO 
vehicle.  

I. BACKGROUND 
classical vehicle design process relies heavily on archival 
design data for validation of its results. The classical 

methodology begins with initial size estimation – an iterative 
process that yields geometric parameters such as volume, 
wetted area, length etc. for vehicle and the stages. This is 
followed by vehicle weight estimation which is also an 
iterative process and parameters such as gross take-off/launch 
masses, empty masses etc. are obtained. Once mass and sizing 
model is complete then aerothermodynamic [1], [2] and 
aeroelastic studies [3] are undertaken to refine the 
configuration. Throughout these assessments the process relies 
greatly on archival (historical) design data of benchmark 
vehicles/systems. When optimization is undertaken for the 
final configuration its results are again compared with 
historical data, if desired improvement has been attained than 
approval is accorded to the conceptual design, else the process 
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is repeated till desired optimal parameters have been achieved. 
The high level of dependence on archival data may be well 
justified in the wake of large amount of data available for 
benchmark launch vehicles, however the same is not possible 
for spaceplanes in either single- or two-stage i.e. SSTO/TSTO 
configurations. This is because no real hypersonic fully-
reusable trans-atmospheric vehicle exists as yet. Under this 
scenario any methodology based on archival data may not 
suffice. Fig. 1 depicts the typical classical design 
methodology.  

In view of the foregoing in this paper a hybrid heuristic-
intelligent methodology is proposed as an expert system. The 
process mitigates the effect of dependence on historical data 
and instead uses computational intelligence [4] as its chief 
source for verification of results. It is used to solve the non-
trivial problem of evolving a global solution that 
simultaneously satisfies optimization needs of highly-
integrated hypersonic forebody-inlet configuration and mass-
model of the corresponding TSTO vehicle. The proposed 
methodology optimizes the aerothermodynamic design of 
forebody-inlet assembly of the booster stage while 
simultaneously optimizing mass distribution for the TSTO 
vehicle. It uses a combination of TIPSO algorithm [5], [6] (for 
optimization) and a two-step SVM method [7] (for 
classification), in a hybrid arrangement, to recursively locate a 
global optimal solution for aerothermodynamic parameters of 
hypersonic compression component and attendant mass-model 
of the corresponding TSTO vehicle. The optimal solution is 
treated as a candidate configuration whose efficacy i.e. 
suitability is classified using support vector machine 
algorithm. This classification methodology acts as an expert 
system for mass-modeling parameters to evaluate suitability of 
the TSTO configuration. This method has the obvious 
advantage of substantially improving the efficiency of design 
process by obtaining a truly global optimal solution that 
satisfies the high-level integration need through synchronized 
optimization and classification of the component and 
corresponding vehicle respectively. The TIPSO-SVM expert 
system results when evaluated through vehicle sizing analysis 
show marked improvement in basic geometrical parameters of 
the vehicle. 
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B. 1st Wedge (Ramp) Solver 

1 1
2 1

1 1 1

*

d d

u u
d

d d

u u OSW

M p
M p

f
T

T

β
ρ

ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥= −
⎛ ⎞ ⎛ ⎞⎢ ⎥+⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦            

 (2) 

 
Subscripts d and u represent downstream and upstream 

conditions across oblique shock wave generated from 1st 
wedge ramp. Symbols M, p, ρ and T represent Mach number, 
pressure, density and temperature conditions, while β 
represents shock wave angle of planar wedge. This description 
holds good for (3) and (4) as well. 

C. 2nd Wedge (Ramp) Solver 
 

 2 2
3 2

2 2 2

*

d d
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d

d d

u u OSW

M p
M p

f
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T

β
ρ

ρ
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⎢ ⎥= −
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            (3) 

D. Cowl Solver 

( ) ( ) ( )
( ) ( )4
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d d
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⎪ ⎪⎩ ⎭

  (4) 

 
The ref parameters are suitably selected values of Mach 

number, temperature and pressure ratios that represent ideal 
conditions for flow entering the combustion chamber. These 
are framework values that are defined externally through a .txt 
file as input variables for the program. 

E. Compression System Solver 

( )5 c KEf η η ς= − + −                           (5) 
 

Variables ηc and ηKE represent compression and kinetic 
energy efficiencies while ς represents non-dimensional 
entropy losses for the hypersonic compression system, such 
that ς = ds/Cpc. 

F. Stream Thrust Solver 

( )6 *o cf η η= −                                  (6) 
 
The overall efficiency ηo represents the overall 

thermodynamic performance of the HAP system. 

G. Inlet Start-Unstart Solver 

 0 1
7 * * *i

i
t t tKant Emp Isen

A A Af MA A A
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦    

 (7) 

 

The symbols Ai, A0, A1 and At represent inlet cross-section 
area, freestream capture area, inlet capture area and throat area 
of the inlet respectively while Mi refers to Mach number at 
inlet entry. 

H. Inlet-Isolator Interaction Solver 

 3 3
8

2 2max
*Ree

i

p pf p p θ
⎡ ⎤⎛ ⎞ ⎛ ⎞= − ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

               (8) 

 
The numerator term (p3/p2)max in the square brackets 

represents the pressure ratio that could result in a normal 
shock wave, while the term (p3e/p2i) represents the 
instantaneous pressure ratio, both across the isolator. The term 
Reθ is the Reynolds number of the momentum boundary layer. 

I. Inviscid Aerothermodynamics Solver 

( ) ( )
( )( )9

1 2/

WS LS

N L body
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L D

+ +

= − − + + +

− Δ Δ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

   (9) 

 
The coefficient terms include pressure (Cp), lift (Cl), drag 

(Cd) and resultant force (Cr) while L/D ratio is essential to 
waverider configuration and (Δ1/Δ2) are ratios of standoff 
distance at a given nose and lip radii (RN , RL) respectively 
across body length (Lbody). 

J. Leading Edge Bluntness & Shock Standoff Solver 

 ( )
( )

0 max
10 *

Ls C

p p Lf RR
⎡ ⎤ ⎛ ⎞= − ⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦

             (10) 

 
The term p/p0 is the instantaneous pressure ratio across 

normal shock region of shock wave, Δs represents the shock 
standoff distance (m), Rc is the radius of curvature (m) of the 
shock wave while Lmax and RL represent maximum length (m) 
of the shock generation surface and radius (m) of the lip of the 
leading edge of cowl.   

K. Shock-Boundary Layer Interaction Solver 

( )

( ) ( )
( )

( ) ( )
( )

11

invis

d u d uinvis

d u

d u d uinvis

d u

T T T T
f T T

p p p p
p p

δ δ
δ

⎧ ⎫−⎪ ⎪+
⎪ ⎪
⎪ ⎪

⎡ ⎤−⎪ ⎪⎣ ⎦= − +⎨ ⎬
⎪ ⎪
⎪ ⎪

⎡ ⎤−⎪ ⎪⎣ ⎦
⎪ ⎪
⎩ ⎭

    (11) 

 
Equation (11) represents the measure of variations in flow 

deflection angle (δ) and flowfield variables temperature (T) 
and pressure (p) caused by shock-boundary layer interaction 
when compared with equivalent parameters obtained from 
inviscid (invis) solution. 
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L. Stagnation Point Convective Heat Transfer Solver 

 ( )
( )

0
12

0 0

*
*

NR pf Vμ
⎡ ⎤= −Ω = − ⎢ ⎥⎣ ⎦

               (12) 

 
Here RN represents nose radius in meters while subscript 0 

represents freestream conditions. This relation is derived using 
Buckingham-Pi theorem. 

M. Thermal State of Surface Solver 

 ( ){ }13 0Pr*Re * * 1 *X X tw t ff St Z Z C= − −⎡ ⎤⎣ ⎦        (13) 

 
The left hand term represents Prandtl number (Pr), local 

Reynolds number (Rex) and local Stanton number (Stx). The 
terms Ztw and Zto are thermal state parameters for freestream 
and wall regions. They are derived using Buckingham-Pi 
theorem and expressed in (14) below. 
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                          (14) 

N. Boundary Layer Solver 

 
( )14

axial

flow disp mom f trans

Lf
C Xδ δ δ

⎡ ⎤
= − ⎢ ⎥+ + + −⎢ ⎥⎣ ⎦

    (15) 

 
The δ, Cf and Xtrans bar symbols represent average parameter 

values for the flow along the lower side of the external 
compression surfaces. 

O. Hypersonic Viscous Interaction Solver 

 ( )0
15 * *Rew

X
p pf KnCp

⎧ ⎫⎡ ⎤= − ⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
               (16) 

 
where pressure ratio pw/p0 indicates increment in wall pressure 
conditions, Cp is the coefficient of pressure, Kn is the 
freestream Knudsen number and Rex is the local Reynolds 
number of flow in the viscous interaction region. 

P. Forebody-Inlet Geometry Integration Solver 
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       (17) 

where, 

 inlet inletinlet ratio w h=   

 

( )max max* *
*

axial

inlet isolator

L H WVol ratio A L=
  

The variables of right hand term in (17) are same as those 
described in (1) to (4) and (8). Variables winlet and hinlet are the 
maximum width (m) and height (m) of inlet while Laxial 
describes the total axial length of forebody-inlet assembly 
along the body coordinates, Hmax and Wmax are the maximum 
dimensions of the assembly measured along vertical and 
lateral directions respectively. The variable Ainlet is area of 
inlet (m2) determined geometrically from the 
aerothermodynamic solution while Lisolator is length of isolator 
(m) obtained from solution of inlet-isolator interaction solver. 

Q. Mass Modeling Solver 

( )[ ]
( )[ ]
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*
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f L D
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= − Π
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 (18) 

 
Variables Z and Ze are derived parameters for vehicle mass 

ratio and empty mass ratio that help in determining the 
viability TSTO/SSTO vehicle configuration. The Γ, Πe and 
(L/D) variables represent mass ratios for SSTO and TSTO 
configurations, mass fraction for empty first stage and lift-to-
drag ratio also for first stage of vehicle respectively. These are 
also the optimization variables of large vehicle configuration. 

R. Aggregate Objective Function 
In order to avoid any conflict arising from multiple 

objective functions, an overall (aggregate) objective function 
is constructed by linear combination of multiple objective 
functions as shown in (12). 
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F fω ω
=

⎡ ⎤
= ⎢ ⎥⎣ ⎦

∑                               (19) 

 
where ω values are weightages needed to adjust AOF value to 
O(1). 
 

ω1=O(1); ω2=O(-2); ω3=O(2); ω4=O(14); ω5=O(-4); 
ω6=O(0); ω7=O(-1); ω8=O(7) ; ω9=O(-3); 

 
The optimization problem is classified as a nonlinear 

programming, constrained, parametric optimization problem 
of real-valued, deterministic type design variables. It has non-
separable multiple objective functions for multi-objective 
optimization, which are reconfigured into a single aggregate 
objective function for implementation with other evolutionary 
optimization algorithms. The mathematical model is defined 
by solution of design vector ( X ) as follows:- 
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B. Step 2 
In the SVM training and classification step the training 

matrices together with grouping vector is passed to the SVM 
training function for training of data based on the pattern of 
grouping solution for each of training matrices. The SVM 
training function uses an optimization method to identify 
support vectors si, weight ai and bias b that are used to classify 
vectors x according to (25). 

 

 ( ),i i
i

c a k s x b= +∑                         (25) 

 
Here k is a kernel function and SVM training function can 

classify data using linear, quadratic, polynomial, Gaussian 
radial basis, and/or multilayer perceptron kernel functions. 
The classification parameter c will classify data of vector x as 
member of the first group if c≥0 otherwise it is classified as a 
member of the second group. Once this step is complete then 
new i.e. test data is generated from a fresh run of 
SHWAMIDOF program and mass-model data from the 
analysis module is passed to the SVM classifier function. As 
with training data the test data also goes through segregation 
into test matrices and is then read into the SVM classifier 
function which also acquires classified training data from the 
SVM training function. The classifier function correlates test 
data with training data to determine the pattern and hence 
predicts the possible classification of test data into the good 
and bad configuration categories. 

V. TIPSO-SVM EXPERT SYSTEM RESULTS 

A. The TIPSO Results of Baseline Optimization  
In this section the full case scenario for aerothermodynamic 

optimization of hypersonic compression system coupled with 
mass-model optimization of lower-stage TSTO vehicle is 
addressed for the selected baseline configuration and using the 
chosen global TIPSO optimizer. The optimization variables 
constitute geometric, aerothermodynamic and mass-modeling 
parameters as defined in Table I. These variables also indicate 
to the diversity of parameters that are required to be handled 
for which the TIPSO algorithm is employed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I 
LOWER AND UPPER BOUND CONSTRAINTS FOR TIPSO OPTIMIZATION 

PROBLEM 

Variable  (≥) Lower 
bound 

(≤) Upper 
bound 

Nose radius (m) RN 0.0010 0.0030 
Lip radius (m) RL 0.0030 0.0045 
Thermal emissivity ε 0.90 0.97 
Thermal conductivity (W/m2) kw 100 110 
Temperature factor laminar-to-
turbulent ψLT 1.40 1.50 

Forebody oblique shock angle (deg) β0d 9.60 11.0 
1st ramp oblique shock angle (deg) β1d 22.0 24.0 
2nd ramp oblique shock angle (deg) β2d 26.0 28.0 
Cowl shock angle (deg) β3d 40.0 45.0 
Reynolds number of momentum 
boundary Reθ 10000 15000 

Pressure factor across isolator Φ23 1.40 1.50 
Max. height of generating cone (m) hmax 10.0 12.0 
Empty mass fraction of stage 1 Πe1 0.35 0.42 
Empty mass fraction of stage 2 Πe2 0.19 0.22 
Lift-to-drag ratio of stage 1 (L/D)stg1 4.0 5.0 

  
The outcome of TIPSO optimization is the optimal 

variables. These are compared with corresponding variables of 
baseline configurations at Table II to determine the percentage 
change brought about by optimization. The percent variations 
show that heuristic optimization affects all parameters of 
optimization some of which are increased while others are 
reduced in comparison with baseline parameters. An 
assessment based on baseline parameters vis-à-vis the optimal 
results can be assessed rather easily by evaluating and 
comparing performance, geometric and mass-modeling 
parameters corresponding to the baseline and optimal 
configurations. 

 
TABLE II  

COMPARATIVE RESULTS OF OPTIMIZATION VARIABLES FOR BASELINE AND 
OPTIMAL CONFIGURATIONS 

Variables  Baseline Optimal Variation (%) 
Nose radius (m) RN 0.0025 0.001359 -45.64 
Lip radius (m) RL 0.0025 0.003628 +45.12 
Thermal emissivity ε 0.90 0.9309 +3.433 
Thermal conductivity 
(W/m2) 

kw 200 109.07 -45.46 

Temperature factor 
laminar-to-turbulent 

ψLT 1.50 1.4568 -2.88 

Forebody oblique shock 
angle (deg) 

β0d 10 9.6084 -3.916 

1st ramp oblique shock 
angle (deg) 

β1d 23.11 22.28 -3.59 

2nd ramp oblique shock 
angle (deg) 

β2d 27.57 26.61 -3.48 

Cowl shock angle (deg) β3d 43.29 41.36 -4.46 
Reynolds number of 
momentum boundary 

Reθ 8000 14483 +81.04 

Pressure factor across 
isolator 

Φ23 1.5 1.4071 -6.19 

Max. height of generating 
cone (m) 

hmax 15 11.69 -22.06 

Empty mass fraction of 
stage 1 

Πe1 0.40 0.3701 -7.48 

Empty mass fraction of 
stage 2 

Πe2 0.21 0.1926 -8.28 

Lift-to-drag ratio of stage 1 (L/D)stg1 4.5 4.7487 +5.52 
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Table III represents the comparative parameters for both 
configurations. These results show that cognitive heuristic 
framework yields an optimized configuration with higher 
overall efficiency. An increase in cycle temperature and 
pressure is seen as useful for combustion efficiency and 
equivalent specific thrust. However temperature and pressure 
gains cause increment in entropy and flow momentum losses 
which are compensated by forebody blending. In the process 
of configuration optimization it is envisaged that the geometry 
of baseline configuration will be re-sized so as to 
proportionately reduce the dimensions of the forebody-inlet 
assembly while attendantly increasing inlet flow capture area 
and improving the lift-to-drag and net thrust behavior of the 
system. Results of Table III show that for minimal variations 
in dimensions along axial and vertical direction but substantial 
reduction of upto 20% in frontal area (spurred by considerable 
variations along lateral direction) of the system, optimization 
process yields an optimal configuration by utilizing a 
waverider of 57% smaller base dimension. The inlet size gets 
increased by nearly 10% while the isolator throat is widened 
by four folds hence providing flow relieving effect that would 
permit higher Mach number operations to be performed by the 
system. The larger air inlet results in weaker sidewall and 
boundary layer interaction effects and hence an improved 
starting performance. Optimization results show that energy 
split parameter (α) shifts in favor of lower stage of TSTO 
vehicle, an improved TSTO mass configuration is achieved 
with as much substantial reduction in launch weight. Under 
the improved configuration both Z and Ze parameters reduce 
below unity value hence the mass ratio of CAV stage holds 
good for both SSTO and TSTO configurations. 

 

TABLE III  
COMPARATIVE PARAMETERS FOR BASELINE AND TIPSO OPTIMIZED 

CONFIGURATION 
Parameters Baseline config. Optimal config. 
Compression efficiency (ηc) 0.8932 0.8944 
Cycle temperature ratio (Ψ) 4.54 4.34 
Cycle pressure ratio (φ) 121.6 105.84 
Cycle entropy change ratio (χ) 0.3124 0.3016 
Mass flow specific thrust (Fsp) 685 m/s 719 m/s 
Uninstalled thrust (Funinst) 27KN 29KN 
Specific impulse (Isp) 2402s 2521s 
Overall (aeroth.) efficiency (ηo) 0.3634 0.3814 
Hypersonic energy partition (α) 0.64 0.725 
Payload mass (mpay) 7000 7000 
Empty mass of TSTO (me) 48391 30880 
Fuel mass TSTO (mf) 55303 37712 
Launch mass TSTO (mtotal) 110695 75592 
SSTO vs TSTO (Z/Ze) 1.15/1.08 0.97/0.88 

B. Mass-Modeling Parameters 
Since mass-modeling forms the basis of classification work 

for the TSTO configuration, therefore it is imperative to 
exclusively compile the mass-modeling parameters for the 
optimized vehicle. The mass data is evaluated on the basis of 
hypersonic energy partition (HEP) principle [10] and 
calculated for various pseudo-orbit altitude above mean sea 
level (AMSL) up to nominal low earth orbit (LEO). Selected 
results are presented at Table IV below. Insofar as distribution 
of vehicle masses are concerned between the first and second 
stages a minimum initial mass ratio configuration is 
considered to be the most feasible. Therefore the mass-model 
at 6536 km altitude is selected as the optimal masses for the 
TSTO stages and the optimal LEO (low earth orbit) height is 
defined at 165km. It is the mass-model parameters at this 
altitude that are processed through SVM for evaluating the 
suitability of the evolved optimal configuration. 

 
TABLE IV 

MASS MODELING PARAMETERS OF OPTIMIZED TSTO CONFIGURATION 
Orbital radius 

(km) 
Initial mass 
ratio (ΓTSTO) 

Energy 
split (α) 

Empty mass Fuel mass stage Gross mass 
Stage 1 (me1) Stage 2 (me2) Stage 1 (mf1) Stage 2 (mf2) Stage 2 (mi2) vehicle (mislv) 

6486 12.962 0.509 33582.7 5332.9 29459.2 15360.4 27693.3 90735.2 
6496 12.127 0.552 31418.8 4619 29483.5 12367.2 23986.2 84888.5 
6506 11.538 0.596 29892.1 4054.2 29818.3 9999 21053.2 80763.6 
6516 11.139 0.639 28859.5 3596.6 30437.2 8080.4 18677 77973.7 
6526 10.899 0.682 28236.6 3218.8 31339.3 6496.2 16715 76290.9 
6536 10.799 0.725 27978 2901.9 32544.8 5167.4 15069.3 75592.1 
6546 10.799 0.725 28043.5 2901.9 32656.2 5167.4 15069.3 75769 
6556 10.799 0.725 28109 2901.9 32767.8 5167.4 15069.3 75946.1 
6566 10.799 0.725 28174.6 2901.9 32879.4 5167.4 15069.3 76123.3 

 
C. SVM Based Expert System Results 
Hereinafter the optimized configuration is designated as 

FIC-2113MEO. The pre-classified data and its groups are read 
into the SVM which employs (25) to reclassify the training 
data into groups defined from the pre-classification process. In 
the training process of SVM data a linear kernel function is 
employed to map the training data of the three matrices into 
kernel space. The separating hyperplane for training data is 

found by using sequential minimal optimization (SMO) 
method. Results obtained for the classification of FIC-
2113MEO configuration matrices are presented in Figs. 5~7 
below. Results of Fig. 5 depict that test data of mass-model 
obtained from FIC-2113MEO is classified into the good 
category. This implies that for a certain value of initial mass of 
lower-stage of TSTO the mass ratio between lower and upper 
stages will be a minimal value hence providing for a lighter 
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rely on archival design data and instead a fast and frugal 
approach accumulates high-fidelity optimal solution data 
necessary for training of computational machine. A two-step 
SVM algorithm segregates text and numerical data from 
optimized solution and classifies the results of all newly 
generated optimization solution of TSTO surrogates. 
Classification results have been consistent with physical 
parameters of surrogates and the methodology is deemed to be 
of extensive utility as an expert system that relies on self-
generated training data and is independent of archival 
information from other aerospace systems.  
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