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Abstract—In this study, a physically-based, modeling framework 

was developed to predict saturated hydraulic conductivity (Ksat) 
dynamics in the Clear Creek Watershed (CCW), Iowa. The modeling 
framework integrated selected pedotransfer functions and watershed 
models with geospatial tools. A number of pedotransfer functions and 
agricultural watershed models were examined to select the 
appropriate models that represent the study site conditions. Models 
selection was based on statistical measures of the models’ errors 
compared to the Ksat field measurements conducted in the CCW 
under different soil, climate and land use conditions. The study has 
shown that the predictions of the combined pedotransfer function of 
Rosetta and the Water Erosion Prediction Project (WEPP) provided 
the best agreement to the measured Ksat values in the CCW compared 
to the other tested models. Therefore, Rosetta and WEPP were 
integrated with the Geographic Information System (GIS) tools for 
visualization of the data in forms of geospatial maps and prediction 
of Ksat variability in CCW due to the seasonal changes in climate and 
land use activities.  

 
Keywords—Saturated hydraulic conductivity, pedotransfer 

functions, watershed models, geospatial tools. 

I. INTRODUCTION 
HEN infiltration rate into soil reaches a steady state 
condition, it is defined in the literature as the saturated 

hydraulic conductivity, also known as Ksat [1]. Ksat directly 
influences the amount of runoff and eroded surface soil that 
are delivered to local waterways, thereby affecting both in-
field soil and in-stream water quality [2], [3]. Ksat is also one 
of the key input variables for the majority of the physically-
based watershed models used for the assessment of the 
impacts of the land uses and management practices on the 
dynamic behavior of soil and water [4]. Therefore, accurate 
estimate of Ksat and its statistical properties is of paramount 
importance for predicting hydrologically-driven processes and 
making catena assessments in landscapes [5], [6]. 

Ksat exhibits large nonlinear spatial and temporal variability 
at both large and small scales due to various combinations of 
the intrinsic soil properties (e.g., texture, bulk density) and 
extrinsic factors such as land use, vegetation cover, and 
precipitation [7]. 

Spatial variability of Ksat due to regional differences is 
controlled by intrinsic soil properties, while the added 
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seasonal variability of Ksat within a region is due to the 
extrinsic factors [8].  

The main objective of the proposed study was to introduce 
an integrative modeling method to make adequate predictions 
of Ksat under different intrinsic and extrinsic factors at scales 
where management and policy decisions must be made (e.g., 
watershed, township, county, state, etc.). A geospatial-
physically based, modeling framework was developed within 
which geographic, climatic, and land uses data can be 
incorporated. The model integrated pedotransfer functions 
(PTFs) and watershed models (WSMs) along with the 
Geographic Information System (GIS) tools to predict Ksat as a 
function of some intrinsic soil properties and extrinsic factors. 
The ultimate goal of this study was to utilize the proposed 
modeling framework in the Clear Creek Watershed (CCW), 
Iowa by adapting it to site-specific parameters. The model 
predicted Ksat dynamics in a subwatershed of the CCW due to 
the seasonal changes in climate and land use activities. The 
study incorporated also selective field measurements for 
models calibration. 

II. MODELING FRAMEWORK DEVELOPMENT 
A physically-based, modeling framework within which 

different geographic, climatic, and land uses data can be 
incorporated was developed by integrating selected PTFs and 
WSMs with the Geographic Information System (GIS) tools to 
predict Ksat dynamics. Selection of the appropriate PTFs and 
WSMs that provide consistent predictions with the field 
measurements was based on statistical criteria. The predictions 
of the integrated models were compared to the field 
measurements at selected locations in the CCW.  

A. Ksat Models  
The predicted Ksat from the PTFs is defined as the baseline 

saturated hydraulic conductivity. The main assumption 
underlying most PTFs is that textural properties dominate the 
hydraulic behavior of soils [9], [10]. 

 WSMs that account for extrinsic factors [4] typically adjust 
the values obtained from the PTFs, for variables such as 
vegetation cover, land use, management practices, and 
precipitation. The main assumption underlying most of the 
WSMs is that extrinsic factors can alter Ksat values for soils 
exhibiting the same surface texture [4], [11].  

B. Models Selection 
The first step towards developing the modeling framework 

was the selection of the appropriate models that represent the 
study site conditions [12]. The models were examined against 
the field data collected from previous studies [13]. The 
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accuracy (the deviation between observed and predicted 
values) of a number of PTFs and WSMs was examined 
through statistical measures of the models’ errors [14]. 
Standard criteria such as the root mean square error (RMSE) 
and Akaike Information Criterion (AIC) were considered in 
this study to evaluate each model’s performance [15], [16]. 
Both the RMSE and AIC are negatively-oriented scores that 
range from 0 to ∞. The lower their values, the closer the 
agreement between the predicted and measured values is. The 
geometric mean error ratio (GMER) and the geometric 
standard deviation of the error ratio (GSDER) were also 
considered in the evaluation to account for the log-tailed 
distribution of Ksat [12], [17]. The predicted values are 
overestimated if GMER > 1.0 and underestimated if GMER < 

1.0. Perfect agreement between the predicted the measured 
values is obtained when the GSDER = 1.0.  

Table I summarizes the performance of the PTFs and 
WSMs. The overall performance of the PTFs and WSMs were 
evaluated using the following scoring rule: one point was 
assigned for each criterion shown in Table I to give a total of 
seven points. The scores were relative on a linear scale and 
based on the close agreement between the measured and 
predicted values. The score for the different examined PTFs 
and WSMs are given in Table I along with the total score. The 
last column in the table shows the overall performance in 
percentage. The table shows that Rosetta and WEPP 
predictions provided the best agreement to the measured Ksat 
values in the CCW.  

 
TABLE I 

PTFS AND WSMS PERFORMANCE 
Criterion* 

Mode Min. Max. AIC RMSE GMER GSDER Total  Ω (%) 
Author 

PT
F 

[18] 0.8 0.82 0.18 0.85 0.89 0.6 0.71 4.85 69 
[19] 0.87 0.98 0.42 0.54 0.68 0.36 0.71 4.56 65 
[20] 0.85 0.97 0.4 0.51 0.66 0.39 0.72 4.5 64 
[21] 0.32 0.72 0.23 0.96 0.95 0.89 0.86 4.93 70 
[22] 0.02 0.02 0.37 0.35 0.47 0.02 0.14 1.40 20 
[23] 0.73 0.94 0.08 0.21 0.15 0.1 0.65 2.86 41 
[24] 0.51 0.68 0.37 0.93 0.93 0.83 0.78 5.03 72 
[25] 0.74 0.91 0.03 0.12 0.1 0.02 0.53 2.45 35 
[9] 0.85 0.92 0.12 0.33 0.42 0.09 0.5 3.23 46 
[26] 0.83 0.91 0.42 0.66 0.81 0.61 0.55 4.79 68 

Rosetta BD [27] 0.59 0.83 0.79 0.79 0.91 0.93 0.76 5.6 80 
Rosetta [27] 0.91 0.72 0.17 0.73 0.88 0.67 0.78 4.86 69 

W
SM

 KINEROS [11] 0.67 0.53 0.18 0.88 0.88 0.58 0.69 4.41 63 
WEPP [4] 0.86 0.98 0.38 0.99 0.97 0.92 0.84 5.94 85 

CAESAR [28] 0.35 0.89 0.28 0.88 0.88 0.58 0.69 4.55 65 
*AIC = the Akaike Information Criterion, RMSE = the root mean square error, GMER = the geometric mean error ratio, GSDER = the geometric standard 

deviation of the error ratio, Ω = the overall performance in percentage, BD = the bulk density. 
 
C. Models Integration  
Rosetta and WEPP were integrated with the GIS tools to 

develop a physically-based, modeling framework within 
which different geographic, climatic, and land use data can be 
incorporated. ArcGIS, developed by the Environmental 
Systems Research Institute (ESRI), Redlands, CA, was used 
for graphical representation of the models outputs. The 
modeling framework allowed for visualization of the data in 
forms of geospatial maps for the prediction of Ksat dynamics. 

Geospatial data for both Rosetta and WEPP models were 
obtained from open-access Internet sources. An algorithm was 
developed to facilitate the compilation of different 
geospatially distributed data from registries of the data and 
computational resources of the models into the ArcGIS 
interface. The data were downloaded, transmitted to the 
computational resources of the models, and converted with the 
developed code into a format that can be implemented into 
ArcGIS [29]. ArcMap, a subcomponent of ArcGIS, was used 
to convert the soil vector maps into raster maps, develop maps 
for different variables describing the models, and convert the 
raster maps into data points for statistical analysis. 

III. MODEL IMPLEMENTATION  

A. Study Site 
Model implementation and infiltration measurements were 

conducted in a representative watershed in southeastern Iowa, 
namely the South Amana Subwatershed (SAS) in the Clear 
Creek Watershed (CCW), Iowa (Fig. 1). The SAS is located in 
the northwest corner of the CCW and encompasses 
approximately 10% of the total CCW drainage area, which is 
about 270 km2. The SAS has two sub-basins, both containing 
first order tributaries. The average slope is 4% with a range 
that varies from 1% to 10%.  

There are four main soil series mapped across the SAS [30] 
comprising approximately 80% of the total acreage. The 
uplands are comprised of the Tama series, which is the most 
prominent in the southern sub-basin, and the Downs series, 
which is prominent in the northern subbasin. Both soils are 
well-drained and are formed from Peorian loess. They are 
considered, respectively, the end members of a prairie-forest 
biosequence. Floodplains are comprised of mostly Ely and 
Colo soil series. These soils are derived from alluvium. The 
Ely and Colo soils are poorly drained.  
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Currently in the SAS, there are nine main land uses. Six of 
the land uses represent various corn-soybean rotations. Each 
rotation involves a unique set of the following management 
practices: no-till, reduced spring tillage and conventional fall 
tillage with secondary tillage in the spring. Three of these 
rotations encompass over 80% of the watershed acreage. Hay 
farming, pastures, and fields enrolled in the Conservation 
Reserve Program are the remaining land uses. The growing 
season lasts about 180 days in Southeast Iowa. 

 

 
Fig. 1 The Clear Creek Watershed and the South Amana 

Subwatershed, Iowa 
 

Due to the mid-continental location of Iowa, the SAS 
climate is characterized by hot summers, cold winters, and wet 
springs [31]. Summer months are influenced by warm, humid 
air masses from the Gulf of Mexico, while dry Canadian air 
masses dominate the winter months. Average daily 
temperature is about 10oC, ranging from an average July 
maximum of 29ºC to an average January minimum of -13ºC. 
Average annual precipitation is approximately 889mm/yr with 
convective thunderstorms prominent in the summer, and 
snowfall in the winter, which averages 762mm annually. 

B. Input Variables 
Soil, land use, and precipitation data were collected from 

different databases as inputs for Rosetta and WEPP. The soil 
data were obtained from the Soil Survey Geographic 
(SSURGO) databases of the Iowa Department of Natural 
Resources (IDNR). The databases provide information 
regarding the soil series, major soil area, taxonomic 
classification (order and suborder), hydrological group, soil 

textures, surface and subsurface bulk density, organic matter, 
cation exchange capacity, and soil pH. The soil information 
obtained from the SSURGO database was confirmed via the 
soil cores collected from the South Amana Subwatershed 
(SAS). About 85% of the soil pedons classified as the same 
series identified in the published soil survey databases.  

Detailed maps of land uses and management practices of 
the SAS were obtained from IDNR. The land use maps of 
2002, which is the latest survey conducted by the IDNR, was 
used as input for the models. There were insignificant changes 
in the current land uses in the SAS, when compared to the 
IDNR maps of 2002. The extensive management practices 
database of the WEPP model was used to estimate the random 
roughness based on the IDNR inventory.  

The precipitation depth and intensity were obtained from 
the Iowa Environmental Mesonet (IEM) of the Department of 
Agronomy at the Iowa State University. The rainfall radar data 
obtained from the IEM was compared to the tipping bucket 
data from different stations of the National Climate Data 
Center (NCDC) in the SAS. The deviation between the radar 
and tipping bucket data was less than 10%.  

C. Ksat Dynamic Maps 
The collected data from the databases were incorporated 

into Rosetta and WEPP, and imported as layered information 
into ArcGIS to generate Ksat dynamic maps for the SAS (Fig. 
2). As can seen from the figure, the models predicted the 
seasonal variation of Ksat in the SAS showing low Ksat values 
in the winter, moderate values in the spring and autumn 
seasons, and high values in summer. These trends were 
expected because the change in vegetation cover and rainfall 
intensity are believed to affect Ksat considerably.  

IV. SUMMARY 
The proposed modeling framework was able to successfully 

capture the spatial and temporal variability of Ksat of the South 
Amana Subwatershed (SAS). Among the tested Ksat models, 
Rosetta and WEPP predictions provided the best agreement to 
the measured values in the SAS. Therefore, Rosetta and 
WEPP were integrated with the Geographic Information 
System (GIS) tools to develop Ksat dynamic maps for the SAS. 
The developed maps of the SAS showed seasonal variation in 
Ksat values due to change in the vegetation cover and rainfall 
intensity. 
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SUMMER AUTUMN 

 

 

Fig. 2 Seasonal variation of Ksat in the SAS, IA 
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