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Dynamics of Mini Hydraulic Backhoe Excavator:
A Lagrange-Euler (L-E) Approach
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Abstract—Excavators are high power machines used in the
mining, agricultural and construction industry whose principal
functions are digging (material removing), ground leveling and
material transport operations. During the digging task there are
certain unknown forces exerted by the bucket on the soil and the
digging operation is repetitive in nature. Automation of the digging
task can be performed by an automatically controlled excavator
system, which is not only control the forces but also follow the
planned digging trajectories. To develop such a controller for
automated excavation, it is required to develop a dynamic model to
describe the behavior of the control system during digging operation
and motion of excavator with time. The presented work described a
dynamic model needed for controller design and which is derived by
applying Lagrange-Euler approach. The developed dynamic model is
intended for further development of an automated excavation control
system for light duty construction work and can be applied for heavy
duty or all types of backhoe excavators.

Keywords—Backhoe excavator, controller, digging, excavation,
trajectory.

1. INTRODUCTION

ACKHOE excavators are used primarily to excavate

below the natural surface of the ground on which the
machine rests. According to forestry, earthmoving, and
excavator statistics program a backhoe excavator is defined as
“A ride-on dual purpose self propelled wheeled machine for
on and off road operation. One end with loader arms that can
support a full width bucket or attachment and the other end
incorporating a boom and arm combination capable of
swinging half circle for the purpose of digging or attachment
manipulation.” In other words a backhoe excavator is actually
three pieces of construction equipment combined into one
unit. These three pieces are a tractor, a loader, and a backhoe
[4]. The third piece of the equipment of a backhoe also known
as a backhoe excavator attachment is the area of research
reported in this paper. Earthmoving machines, such as
bulldozers, wheel loaders, excavators, scrapers and graders are
commonly used in construction work. An excavator is a
typical hydraulic heavy-duty human-operated machine used in
general versatile construction operations, such as digging,
ground leveling, carrying loads, dumping loads and straight
traction. However, there are many tasks, such as hazard
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environment (nuclear decomposition, earthquake, etc.) which
is not suitable for human to work on site. The remotely
controllable excavators are required to work in such
environment [5].

However, operators who control hydraulic excavators must
be trained for many years to do such work quickly and
skillfully. A hydraulic backhoe excavator has three links:
boom, dipper and bucket; and an operator have two arms.
Thus, it is not easy for beginners to execute elaborate work
that manipulates three links at the same time. Moreover,
because the operators have to run work in various dangerous
and dirty environments, the number of skillful operators is
ever decreasing. For that reason, studying the automation of
hydraulic excavators is necessary for improving productivity,
efficiency, and safety [3].

For an autonomous operation it is very important to study
the motion of the various links to operate the machine in
planned digging trajectory as well as to control the same
during excavation task, i.e. kinematics of the backhoe
excavator. The various forces exerted during the digging
operation can be understand and evaluated by developing a
dynamics model for backhoe excavator.

II. PROBLEM FORMULATION

Due to severe working conditions, excavator parts are
subjected to high loads. The excavator mechanism must work
reliably under unpredictable working conditions. The
excavation task is in cyclic nature. Poor strength properties of
excavator parts like boom, arm and bucket limit life
expectancy of the excavator. Dynamic modeling is an
important step in the design of excavator parts. The dynamic
behavior of the backhoe provides relationship between joint
actuator torques and motion of links for simulation and design
of control algorithms. During the work cycle of the backhoe,
at some point of time it needs to be accelerated, move at
varying speeds, and then decelerate. This time varying
position and orientation of the backhoe is termed as the
dynamic behavior of the backhoe. These time varying torques
are applied at the pin joints between swing and boom link,
between boom and arm link, and between arm and bucket link
by the corresponding hydraulic actuators to balance out the
internal and external forces. The internal forces are caused by
motion (velocity, and acceleration) of links, inertia, Coriolis,
centripetal and frictional forces. On the other hand load (a load
vector of reaction forces due to bucket ground interaction,
acting on the bucket) and gravitational forces are considered to
be external forces in context of robotics. Moreover; the
excavation operations can be made automated by an
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automatically controlled backhoe system. Such a system is
able to perform autonomously a planned digging work and to
quickly comply with interacting forces experienced during
excavation. The development of such an automated control
system is usually based on a dynamic model of the system that
describes the motion with the time [1].

The dynamic model of the backhoe is useful in computation
of the required torques for execution of a typical work cycle,
which is vital information for design of links, joints, and
actuators. Apart from this in designing the controller for the
backhoe also requires the dynamic model to obtain the desired
performance, because the controller directly depends on the
accuracy of the dynamic model and control algorithms. The
backhoe is a serial link manipulator (open kinematic chain)
and represents a complex dynamic system, which can be
modeled by systematically using the known physical laws of
Lagrangian mechanics or Newtonian mechanics. Approaches
such as Lagrange-Euler (L-E) which is energy based, and
Newton-Euler (N-E) based on force balance, can be
systematically applied to develop the backhoe equation of
motion (EOM). The resulting EOM are a set of second order,
coupled, nonlinear differential equations, consisting of inertia
loading and coupling reaction forces between joints. The next
section described research work reported by other researchers
in the field of dynamics of backhoe excavator with their
limitations and the scope of the further work to be carried out.

III. RELATED WORK

P. K. Vaha and M. J. Skibniewski have developed a
dynamic model of a hydraulic excavator in the digging mode
(for the three degrees of freedom only) in 1993. Vaha used the
Newton-Euler approach (a force balance approach) for the
development of the mathematical dynamic model. But few of
his assumptions were not realistic in practice, and these are:
For the determination of the mass moment of inertia tensor,
and to make it less computationally complicated, he assumed
(i) The axes of the link frame are aligned with the principle
axes of the link for all links, to make the products of inertia
Iy, 1y, and I, to be zero, which is a valid assumption, (ii) The
origin of frame of the link is made to coincide with the centre
of mass or centroid of the link to make the last raw and last
column of the moment of inertia tensor to be zero raw and
zero column respectively, which is not true in actual practice
because if the origin of the frame is translated to the centroid
of the link, then whole previously derived kinematic relations
will no longer be valid for the dynamic model. He also
assumed that the gravity centre or the centre of mass of all
links lie on the line joining the two end points of the links,
which is also not true [8].

S. Singh has attempted to develop a dynamic model for the
excavator in 1995. But as his main part of the research was to
develop tactical plans for the robotic excavation, not to
develop a dynamic model for the hydraulic excavator, his
dynamic model was incomplete and only torques resulted
from the gravitational forces were presented in an appendix of
his Ph D thesis. So his dynamic model was incomplete in

context of the application of the model for controlling of the
excavator [11].

A. J. Koivo et al. developed a complete dynamic model in
1996 using the same Newton-Euler approach for three degrees
of freedom mechanism of a hydraulic excavator, by
overcoming the shortcomings of Vaha’s dynamic model, as he
neglected the assumption of the centre of mass to be on the
line joining the two end points of the link made by Vaha, and
considered the real location of the centre of mass for each link.
He also neglected the assumption that the origin of frame of
the link is made to coincide with the centre of mass or centroid
of the link as this was the assumption of Vaha’s dynamic
model, and considered the inertia tensor in general form
(without neglecting the last raw and last column). His dynamic
model is so thorough that it can directly be applied as an input
to the excavator controller to carry out the excavation
operations in autonomous mode. He also gave a sound
example of the utilization of his dynamic model into the PD
(proportional plus derivative) controller for autonomous
control of an excavator [1].

J. Frankel has presented only the torque equations for
different joints, and presented just a procedure to develop a
dynamic model for the backhoe excavator using Lagrange-
Euler approach in 2004. But even in his procedure he did not
include the load vector (a vector of torques on each link due to
the interaction of the bucket with the ground while excavating)
in his dynamic model procedure. So he just provided the
procedure to find the dynamic model not the dynamic model
based on Lagrange-Euler approach [7].

P. H. Yang et al. have carried out the dynamic model for
three degrees of freedom mechanism of an excavator in 2008.
But as the model was developed for the testing of his designed
controller only, he did not consider the torques due to gravity
loading on each link, and torques due to the load vector. He
did not give any systematic procedure, and instead directly
presented the dynamic model, and thus leaving the model with
too many undefined terms [8].

To be concluded that the dynamic model of A. J. Koivo et
al. was proved to be a thorough model over the period of time
for many researchers to do the research work on the controller
design for the excavator. It means for the researchers working
in the area of designing new control algorithms for controlling
the operations of the excavator, the dynamic model of A. J.
Koivo proved to be a comprehensive input [1].

The development of such a comprehensive dynamic model
for the backhoe excavator in digging mode (in three degrees of
freedom only) using Lagrange-Euler approach and comparison
of the same with A. J. Koivo’s N-E dynamic model is another
area of the research reported in this paper.
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Fig. 1 Schematic view of a backhoe excavator attachment

IV. KINEMATICS OF BACKHOE EXCAVATOR

Kinematics is the science of motion which treats motion
without regard to the forces that cause it. Within the science of
kinematics one studies the position, velocity, acceleration, and
all higher order derivatives of the position variables (with
respect to time or any other variables) [6]. Fundamentally a
backhoe excavator has five links starting from the fixed link or
base link, swing link, boom link, arm link (dipper link), and
bucket link. These links are connected to each other by joints,
which allow revolute motion between connected links each of
which exhibits just one degree of freedom. This leads to the
four degree of freedom R-RRR configuration of the backhoe,
where R stands for a revolute joint. Fig. 1 describes the
schematic view of the backhoe excavator attachment. To
analyze the motion of the backhoe excavator for performing a
specific task, it becomes necessary to define a world
coordinate system to describe the position and orientation of
the bucket (collectively known as configuration of the bucket).
A right-hand Cartesian coordinate system X,,Y,,Z,, is chosen,
and its origin is placed at an arbitrary point on the ground
level in the workspace of the backhoe excavator. After
assigning the world coordinate frame the local coordinate
frames for all links are assigned by following the DH
guideline for link frame assignment algorithm [10].

A backhoe excavator is designed to perform a task in the 3-
D space. The bucket of the backhoe is required to follow a
planned trajectory to carry out the digging task in the
workspace. This requires control of position of each link
(swing link, boom, arm, and the bucket) and joints of the
backhoe to control both the position and orientation of the
bucket. To program the bucket motion and the joint link
motions, a mathematical model of the backhoe is required to
refer all geometrical and/or time based properties of the
motion. In other words kinematic model purely encodes the
geometric relationship of the mechanism. Moreover; the

kinematic model gives relation between the position and
orientation of the bucket and spatial positions of joint-links. A
problem of describing the complete kinematic model for an
autonomous operation of the backhoe excavator, and the static
model of the backhoe considered for study. This study
includes direct kinematic model (forward kinematic model),
inverse kinematic model (Backward kinematic model), the
differential motion of the backhoe refer to the differential
motion velocity only, and static force model of the backhoe
excavator but it is not a part of this paper, this paper focuses
only on the dynamics of the backhoe excavator based on the
Lagrange-Euler formulation.

V. LAGRANGE-EULER FORMULATION

A scalar function called Lagrange function or Lagrangian L,
is defined as the difference between the total kinetic energy Kg
and the total potential energy Pg of a mechanical system.

L, =Kg— P (D

The Lagrange-Euler dynamic formulation is based on a set
of generalized coordinates to describe the system variables. In
the generalized coordinates, generalized angular displacement
0 (radian), is used as a joint variable or joint angle, and 0
(rad/sec) describes the angular velocity of the joint, and
describes (rad/sec’) the angular acceleration of the joint.
Similarly t is a generalized torque required at the joint to
produce the desired dynamics [9].

The dynamic model based on Lagrange-Euler formulation
is obtained from the Lagrangian, as a set of equations,

a() - ()= @

The left sides of the dynamic equation refer to (2) can be
interpreted as sum of the torques due to kinetic and potential
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energy present in the system. In the right hand side of the
equation refer to (2) 1; is the joint torque for joint i that is
provided by the actuator (i+1) in our case. If 7; = o, it means
that joint i does not move and if t; is not equal to zero, it
means the backhoe movement is modified by the actuator (i +
1) of joint i.

Now the kinetic energy of the differential mass dm; of link
i, for i = 2, 3, and 4 moving with velocity %; (= v;) with
respect to the base frame {0} is,

dKg, = %dmi(vi)z 3)

The trace operator (If A is a matrix of size n * n, then trace
operator Tr(A) = Y1, a;;) is used to obtain (v;)? as,

vi? = Tr(viv;") 4)
The total kinetic energy is then given by,
Ke =32t Xy Thea Tr[CToa Q) L CTe Q) T16,8(5)

Note that here limits are taken from i = 2 to i = 4, because
the dynamic model presented is for the boom, arm and bucket
linkage only (RRR configuration) and the swing motion is not
considered. Where, OTJ-_l is a transformation matrix of the size
4 x 4 of frame {j-1} relative to the base frame {0}, O; is a
matrix when post multiplied with OTj_l, and pre multiplied with
T, gives the partial derivative of the transformation matrix
°T; with respect to the corresponding joint angle 6;, and can be

given by:
0
1
0

The mass of link contributes inertia forces during motion of
the link. The mass properties, which reflect all the inertial
loads with respect to rotations about the origin of frame of
interest, are presented by a moment of inertia tensor I;. The
moment of inertia tensor [; is a 4 x 4 symmetric matrix which;
characterizes the distribution of mass of a rigid body or link i,
and it can be defined as:

O OO r
oS oo o
[=NeleNe)

1 -
F (T + Iy, + 1) Ly I,, m;x; ]
1 _
- Iy 3 (g = Ty, + 1) Iy, m;y; (6)
1 —
lxz_ Iy, ;(Ixxi + 1y, — lzzi) m;z;
m;X; m;y; m;Z; m;

where, I, Iy, I, are moment of inertias of a body with
respect to X, Y and Z axes respectively, Iy, I,, and I, are the
products of inertia and are taken as zero by assuming that the
axes of the reference frame are aligned with the principle axes
of the body, m; is the mass of link i, and 'f; = [X; ¥;Z; 1] is a
homogeneous coordinate vector defining the position of the
centre of mass or centroid of the link i from the origin of the

link i of O;. So, new inertia tensor for our case will now be
modified as:

1 -
[; (_Ixxi + 1y, + lzzi) 0 0 m;%; |
1 —
L= 0 7 (o =Ly, + 1) 0 m;§; | (7
1 -
l 0 0 3 (I + Ly, — Ly,) Mz J
m;X; m;y;j m;Z; m;

The total potential energy of backhoe mechanism is sum of
the potential energy of the links, i.e. boom, arm and bucket,
then given by,

Py = —Xi, mg" T (3

The negative sign indicates that the work is done on the
system to raise link i against gravity. Where g is the vector of
acceleration due to gravity (m/s%):

g=|g.g,8,0]=[0-98100]
8" = [g, 8,2, 0] =[0-9.8100]"

The acceleration due to gravity g is the 4 X 1 gravity vector
with respect to base frame{0}.

VI. EQUATIONS OF MOTION
The following procedure should be adopted to develop an
L-E dynamic model [10].
The Lagrangian, La = K — Pg obtained by refer to (5) and
(8) is given by:

L, = %Z?:z Y-z Shez Tr[(OTjo1 Q1T (T QX 1T) 16,0, + T, m; gTOT; Ty (9)
According to the Lagrange-Euler dynamic formulation, the

generalized torque 1; of actuator i+1 at joint i, to drive link i of
the backhoe is given by (2) as:

_d (oL, (aLa)
=\ 96, ) \ae;

By substituting L, and carrying out the differentiation, the
generalized torque T1; applied to link i for 3 degree of freedom
backhoe is obtained [10]. The final EOM (dynamic model) is;

T= X, M;;6; + s Tikeahij 0,0 + Gi + Fioaq,
Fori=2,3 4.  (10)

Where, My = X0 _ i) Tr{dpilpd pi] (11)
= 1[oMy My _ Mk
hiik T2 aek] 96; ae)i ] (12)

Gy = Eg=i mpgpoi pfp (13)

ay[F¢sin(8; — p) — Fycos(6; — p)]
FLoad(Fy, Fn) = |az[Fsin(8;3 — p) — Fycos(8,35 — p)] (14)
au[—FsinA + Fjcos]
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Fig. 2 Resistive force resolution

Equation (12) has been taken from [12]. Fig. 2 shows the
resolution of the resistive force offered by the ground on the
teeth of the bucket. This resistive force can be resolved into
the tangential and normal directions on the bucket teeth as
shown in Fig. 2, and for load vector refer to (14) can be found
as given in [1].

Equation (10) is the dynamic model of the backhoe in
generalized form and gives a set of 3 nonlinear, coupled,
second order ordinary differential equations for 3 links of the
three degree of freedom backhoe. These equations are the
equations of motion or the dynamic equation of motions for
the backhoe. Mj; represents an inertia matrix refer to (10). It is
known as effective inertia when acceleration of joint i cause a
torque at joint i, and coupling inertia when acceleration at joint
j causes a torque at joint i.

The coefficient hyj, represents the velocity induced reaction

torque at joint i. hiikéjz represents the Centrifugal or
Centripetal force acting at joint i due to velocity at joint j, and
term hijkéj 0y represents the Coriolis force acting at joint i due
to velocities at joint j and k. G; is the gravity loading vector,
and F,,q is the load vector acting on the bucket teeth due to the
forceful and sudden interaction of the bucket teeth with the
ground and (14) can be determined from the geometry of the
backhoe link mechanism and also it can be found as given in

[1].

VII. ASSUMPTIONS OF THE PROPOSED DYNAMIC MODEL

The assumptions of the proposed dynamic model are as
follows:
e  The model has been presented in digging mode only, so
for the proposed dynamic model only three degrees of
freedom RRR (excluding the swing motion) are

considered (because while swinging, backhoe experiences
an extra load and that is payload in the bucket that does
not cause large amount of torques at different joints as
compared to the digging task does, so the fourth degree of
freedom is ignored).

e The frictional effects are neglected.

e The inertia tensor of the backhoe components is taken in a
generalized form with no assumption like the frame axes
are not coinciding with the axes of center of mass of the
body, but it has been assumed that the link frame axes are
coinciding with the principle axes of the body to cause the
products of inertia to be zero in an inertia tensor.

VIII. BACKHOE L-E DYNAMIC MODEL

Now the dynamic model of the backhoe in digging mode is
presented. The procedure used to carry out the final equations
of motion is described in section VI. The transformation
matrices "'T; from the direct kinematic model is directly
utilized in equations of motion. The final form of the
equations of motion (or dynamic model) for the backhoe can
be given by:

7, = M(0)8 + H(0,6)0 + G(0) + Floaa(Fu F)  (17)

M(0) represents the 3 x 3 symmetric inertia matrix, 0
represents the 3 x 1 joint acceleration matrix, H(O, 9)
represents the 3 x 3 velocity induced torque matrix or the
matrix of centripetal and Coriolis torques, § represents the 3 x
1 joint velocity matrix, G(0) is the 3 x 1 gravity induced
torque vector, and Fy y,q(F;, Fy) is the 3 x 1 load vector acting
on the bucket teeth offered by the ground or soil, and is the
function of tangential force F, and normal force F, acting on
the bucket teeth refer to (17). Now the calculations of the
elements of the matrices and vectors as described above are
presented. Note that for each matrix or vector the sample
calculation of the single element has been shown over here,
other elements can be found out in the similar way.

A. Determination of the Elements of an Inertia Matrix

Using (11) all the nine elements of the symmetric inertia
matrix can be determined as M;; for joint i = 2, 3, and 4; and
joint j =2, 3, and 4. So total nine elements M,,, M3, M,,, M3,
(= Mz3) M3z, M3y, My, (= Myay), Mys (= M3y), and My, have
to be determined as a function of the joint angles 6; for i = 2,

3, and 4. Let us first determine the element M,, with the use
of (11) as follows:

M,, = Tr(dy,1,dp, ]
p=max(2,2)

s My, = Tr[dzzlzdgz] + Tr[d3213d§2] + Tr[d4214d12] (18)

Now from (15) let us first determine the term Tr[d 22 I 2
d 22T ], in this term let us first determine d_22, as both i and
j are equal (i =2, and j = 2) the first condition of (15) can be
applied to determine d_22 as follows:
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1.0 0 0110 =1 0 07[C —S2 0 a,(,
d=0100100052C2031252
22 0 0 1 offo0 0 0 0 0 0 1 0

0 0 0 1dl0 0 0 0llop o 0 1

=S, —C, 0 -—a,$,
adyy = Cc =S5 0 a6
0 0 0 0
0 0 0 0

d7, is the transposition of the matrix d,.
The inertia tensor for i = 2 can be given as follows:

1
[E (_IXXZ + IYYz + lZZz) 0 0 mzxz]
[ 1 _
| 0 2 (lXXz - Iy}’z + 1122) 0 2|
[ 1 |
07 0, E (lxxz + lYYZ zzZ m;z;
m;X; myy; myz, m;
. T 71— B 2
o Trdy,lpdy,] = Izzz + m,(2a,%, + a,%) (19)

Similarly, the other two terms Tr[ds,I3dY,], and
Tr[d,,1,d},] can be determined and given as follows:

Trldszlzd%,] = Izz, + m3[R3(2a3 + 2a,¢3) — §3(2a,53) + a,” + a3’
+ 2a,a;3C;5]
(20)
Trlds,l,d,] = Izz, + my[%,(2a, + 22,034 + 2a3C,)

— V422,534 + 2a35,) + a2 + 232 + a,”
+ 2a3a3C3 + 2a3a,4C4 + 2a5a4C34)
21

Equations (19), (20), and (21) when added together will
form the first element of the inertia matrix M, as follows:

My, = Izz, + 7z, + 77, + my[(28,3,) + (a2)?]
+ m4[X;(2a; + 2a,¢3) — ¥5(2a,53) + 2,2 + ag?
+ 2a,a5c3] + my[X,(2a, + 2a,c34 + 2a5c,)
— V4(2a,834 + 2a35,) + 2,2 + az% +a,?
+ 2aa3C3 + 2a3a,C4 + 2aa4C34]

(22)
So the final inertia matrix can be given by:
M22 M23 M24

Mz, Msz Ms,
My, My My,

M(0) =

All the other elements are given in section VIII-F. In
current section only the methodology to derive the inertia
matrix elements have been explained with the illustration of
the determination of the first element M.

B. Determination of the Elements of a Joint Acceleration
Vector

The joint angle velocities 05, 6,, 65 and 0, and respective
angles 04, 0,, 05 and 0, are derived based on the joints 1, 2, 3
and 4 but this derivation is included in kinematics of backhoe
excavator not a part of this paper. The term 0 represents the 3

x 1 joint acceleration vector, in which the acceleration of joint
2, B, can be determined by time derivative of the velocity of
the joint 2, 6,.

Vagag(AsAe) } (23)

e’:{
27 L-(a1A5)(A1Ag)sin(m—y1-y2—62)

Therefore, the acceleration of joint 2 becomes,

_ (AsAg) {COS(T[—Y1_Y2_92)92VA5A6 —sin(mt-y;—y,—6;) U(ASAG} (24)
2 (A1A5)(A1A¢) sin?(m—y1—y2—65)

The time derivative of (25) yields the acceleration of the
joint 3, 0.

Va,Ag(A7Ag) }

63 = {—(A2A7)(A2AB)Sin(3ﬂ_51_52_93) (25)

Therefore, the acceleration of joint 3 becomes,

C (AjAg) cos(3m—81-8,-03) B3Va, a5 —SIN(3T—81-8,-03)aa,Ag (26)
37 (AzA0)(AzAg) sin?(3m-8,-5,-03)

By differentiating (27) with respect to time yields the
acceleration of the actuator 5 piston in terms of the angle
acceleration '@1, and then il will be determined in terms of the

joint 4 angle acceleration 0,,:

Therefore,
; Vaga;g(AoA10) }
= 27
G {—(A9A12)(A10A1z)5m(2ﬂ—31—(1) 27)
and
z _ —(AgAyp) {cos(ZT{—sl—(1)(1VA9A10—sin(Zn—sl—{l)ocAgAlo} (28)
1 (A9A15)(A10A12) sin?(2m—g;—{,)

The following two relations are known to us form (29) and
(30).

Z1 + Zz = 64 - Z.3 (29)
(A3A12)(A10A12)singg
G = [(A3A11)(A10A11)51n12] G (30)

Now substituting (30) into (29) and rearranging the (29)
yields,

Fo_ 5 (A3A12)(A10A12)singy :
9s=4 [1 + (A3A11)(A10A11)Sin12] T (31)

The acceleration of joint 4 becomes,

= (A3A15)(Ar0A12) {SmZZ €0sG; - § — cos{y sing, - Zz}]
1

(A3A11)(A10A11) sin?{,
5 (A3A12) (A10A1;)sing;
ta [1 * (A3A11)(A10A11)Sin(z]

(32)
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C.Determination of the Elements of a Velocity Induced
Torque Matrix

Using (12) all the nine elements of the velocity induced
torque matrix can be determined as Hj; for joint i = 2, 3, and 4;
and joint j =2, 3, and 4. So total nine elements H,,, H,3, Hy,,
Hj,, H3s, Hay, Hyy, Hys, and Hy, have to be determined as a
function of the joint angle velocities éi fori=2, 3, and 4. The
Hj; terms can be determined by the following equation as
given in [12]:

Hyj = Zit=s hijiBic (33)

Let us first determine the element H,, with the use of (33),
and (12) as follows:

HZZ = hZZZGZ + h223é3 + h224é4 (34)

Now let us first determine the term, h,,,0, and for this h,,,
is to be determined using (12) as follows:

1[0M,; My, My, 1[0My,
o= - -]
20700, " 90, 90,1 21706,

This is because it is clear from (22) that the element M,, is
not a function of the joint 2 angle 0,, thus partial derivative of
the element M,, with respect to the joint 2 angle 0, will
become zero. This leads to;

hzzzéz = (0)92 (35)

Now let us determine the second term h,,305 of (34) and
for this to be determined h,,5; can be given as follows:

o LMay  OMy 6M23] 1 6M22]
2379090, 00, 90,1 2106,
o hypg = —(m3X3(ay53) + m3¥s(azcs) + mg(azasss) + myX,(az534)
+ m,¥4(azC34) + my (222383 + a224534))
(36)
So, the term hy,30; can be given as:
hy305 = —(m3X3(azs3) + m3¥3(azcs) + my(azazs;) +
MyX4(22534) + My¥4(a2C34) + My (aza353 + a224534))03
(37
The last term of (34) can be given by:
hy240s = —(MyRy(arsse + a3s4) + m,¥,(az€34 +2a3C,) + My(azays,
+ 2,24534))0,
(38)

The first element of the Hj matrix, Hy, can be given as
follows:

Hyz, = (0)6, — (m3%;3(a,53) + M3¥3(azcs) + my(azazss) + m4i4(azs34)
+ m,¥4(azC34) + My (222353 +2,24534))03
— (myX4 (22534 +2354) + 'm4}74(azc34 +ascy)
+ my(aza,S, +2224534))0,4

(39)

So, the final velocity induced torque matrix or matrix of
centripetal and Coriolis torques can be given as:

) Hy;, Hiys Hyg
H(G, 9) =|Hz; Hzz Hgay (40)
Hy, Hys Hyg

All the other elements are given in section VIII-F. In this
section only the methodology to derive the velocity induced
torque matrix elements have been explained with the
illustration of the determination of the first element H,,.

D.Determination of the Elements of a Gravity Torque
Vector

The gravity torque acting at joint 2, 3 and 4 is the function
of joint displacement or joint angle 6; for joints i = 2, 3, and 4,
and can be collectively represented by a vector as follows:

Gz
G(0) = iGsl (41)
Gy

Using (13) let us first determine the first element of the
gravity torque vector, G, as follows:

G, = —(m,gd,, °T, + m3gds, *T3 + mygd,, *Ts)

where, g=[g,8,8,0]=[0—9.8100]
acceleration due to gravity is only acting in downward y
direction), f; = [X; ¥;Z; 1]7 is a homogeneous coordinate
vector defining the position of the centre of mass or centroid
of the link i from the origin O; of the link i. This leads to:

(assuming the

Gy = —(mag[c X, — 5,9, +a0,] + myg[c3Xs — 52373 + a0, +
a3C3] + My8[C234Xs — S234¥4 + @2C2 + A3C3 + 24C234])

(42)

All the other elements are given in section VIII-F. In this
section only the methodology to derive the Gravity torque
vector elements have been explained with the illustration of
the determination of the first element G,.

E. Determination of the Elements of a Load Vector

The loading vector resulting from the interactive forces due
to soil tool interaction and its elements are given in [1] and
can be written as:

F,
FLoad(Ft' Fn) = {F3}
Fy

The elements F,, F; and F, of the loading vector also
determined from the geometry of backhoe excavator by
resolving the resistive forces offered by ground as the
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tangential and normal components and can be written as per
(14).
Therefore, the load vector,

a,[Fysin(8; — p) — Fycos(8; — p)]
Froad (Fu. Fn) = |a3[Fsin(Bz3 — p) — Fycos(8,3 — p)]
a,[—FsinA + FjcosA]

As shown in Fig. 2 the resistive force F, is acting at the
bucket teeth by making an angle n with the plane defined by
the bottom plate of the bucket. While resolving F, in tangential
direction will give the value of the tangential force F,, and
resolving F, in the normal direction will give the value of the
normal force F, as follows:

F. = F.cos(n)

and,
Fn = Fysin(n)

But according to A. J. Koivo [1] these two forces can be
given by: F; = F.cos(0.1), and F, = F;sin(0.1).

F. Determination of the Final Equations of Motions

The final form of the equations of motion (or dynamic
model) for the backhoe can be given as follows:

7 = M(0)0 + H(0,0)0 + G(0) + FLoaq(Fu Fn)  (43)
where the inertia matrix and its elements are given by:
MZZ M23 M24

M32 M33 M34
M42 M43 M44

M(6) =

Where the elements of the inertia matrix are given as:

My, = Iz, + Izz, + Izz, + m,[(2X,a,) + (a2)?]
+ mg[X3(2a3 + 2a,¢3) — §3(2a,53) + ax® +a;?
+ 2a,a5C3] + my[X,(2a, + 2a,c34 + 2a5c,)
— V4(2a,534 + 2a35,) + a2 + az% + a,?
+ 2a,a3C3 + 2a3a4C4 + 2a,a4C34]

M,3 = M3, = lzz, + 172,
+ m3[R3(2a3 + ayc3) — ¥3(azs3) + az? + azazcs]
+ my[%,(2a, + aycsy + 2a5c,)
— V4(ay834 + 2a35,) + a2 + a,% + azazcy
+ 2a3a4C4 + 23a,4C34]

My, = My, = Izz, + my[X4(2a, + a5c34 + a3cy) — F4(@2534 + a354)
+a,2 4 a3a,C4 + apa,4C54]

Mss = Izz, + Iz, + m3[X3(2a3) + a3%] + my[X,(2a, + 2a3c,)
— V4 (2a35,) +a3% + a,% + 2a3a,C4)

My, = Myz = Izz, + my[X,(2a, +a3c,) — F4(@3ss) +as® + azascy]

and
Myy = Izz, + mu[%4(22,) + 2,%].

The joint acceleration column matrix can be written as
follows and derived in Section VIII-B;

0,
0=16,
0,
The velocity induced torques matrix or the matrix of
centripetal and Coriolis torques and its elements are given by:

. Hyp Hps Hopy
H(e, 9) =|H3, Hzz Hsy
Hy, Hiz Hyg

where the elements of the velocity induced torques are given
as:

Hz, = (0)(02) — (M3X3(a,s3) + M3¥a(ascs) + ms(azaszss)
+ m4§4(32531) + m,¥,(a;¢34) + my(azasss
+2,2,4534))(63)
— (m4X,(az534 +a354) + m4374(azc34 +ascy)
+ my (23,8, + a,2,534))(04)

Hys = —(m3%3(a,83) + m3¥3(aycs) + m3(ayass;) + myX,4(a;534)
+ m,¥,(azc34) + my(azazs; + 3234534))(62)
— (m3%;3(a,53) + m3¥5(asc3) + my(azass;)
+ myX,(22534) + My¥4(a2C34)
+ my(azass; + 3234534))(63)
— (m4X4 (22534 + a354) + I}'14}_’4(32C34 +ascy)
+ my (232454 + 3224534))(04)

Hay = —(myX4 (22834 + a354) + My¥4(a5C34 + a3C4) + my(aza,s, +
2,24534))(0) — (M4X,4 (2534 + 2354) + MyF4(a5Ca4 +23¢,) +
my(azass, + 3234534))(63) — (myR,(azs34 + a3s.4) +m,¥,(ayc3, +
a3Cy) + my (23,454 + a224534))(04)

Hj; = (m3%;3(azs3) + m3y3(azcs) + ms (aza353) +m,X,(a;534) +
m,74(a5C34) + My (222353 + ,24534))(0;) + 0(93) — (m4X,(assy) +
m,¥,(a3c,) + my(a32,54))(04)

H3z =
0(6,) +0(65) — (m4X4(azss) + m,¥a(azes) + my(aza,s,))(0,)

Hjy = —(m4X4(a3ss) + myya(azcy) + m4(a3a454))(éz) -
(Mm%, (ass,) + mMyF4(asc,y) + my(a3a,5,))(03) — (myXu(ass,) +
m,¥,(a3¢,) + my(a3a,5,)) (04)

Hyp = (MyX4(a2834 +a384) +.m4)74(azc34 +azcy) + my(azass,
+ 3234534))(92)
+ (Mm%, (a354) + M,F4(a3¢,) + my(a32,45,))(03)
+0(0,)

Hys = (4R, (a354) + mu¥4(a3cs) + my(azass4))(6,) )
+ (myXy(a354) + my¥4(a3c,) + my(azaysy))(03)
+0(0,)

and . . _
Hy, = 0(6,) +0(05) + 0(0,).

The joint velocity column matrix can be given by:
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0,
0 = |6,
6,

The gravity torque vector and its elements are given by:
G,
6® = H
Gy
where the elements of the gravity torque vector are given as:
Gy = —(maglcoX; — 5272 + 22C,]

+ msg[cy3%;5 — S23¥3 + @20, +a3C,3]
+ m,8[Ca34%4 — S234Y4 + 82C; + A3C23 + A4C234])

Gz = —(m3g[cz3%; — S23F3 + a3Ca3] + Myg[Cr34%s — S234F4 +a3C23
+a4C234])
and
Gy = —(M48[C234%4 — S234¥4 + 24C234])-

The loading vector resulting from the interactive forces due
to soil tool interaction and its elements are given in [1] and
written as follows:

F;
FLoad(Ftv Fp) = {F3}
Fy

where the elements of the loading vector are given as:

F, = a,[F;sin(8, — p) — F,cos(8; — p)],
F3 = a3[F;sin(8,3 — p) — Frcos(8,5 — p)],
and F, = a,[—FsinA + FcosA].

IX. RESULTS AND DISCUSSION

The proposed dynamic model has been derived by
Lagrange-Euler (L-E) formulation for the three degrees of
freedom of the backhoe excavator. The proposed dynamic
model determines the required joint torques for the given set
of trajectory points, joint angle vector 8, joint speed vector 8,
joint acceleration vector 8. This proposed dynamic model will
be useful to the autonomous controlling problem of the
backhoe excavator. The MATLAB codes for the proposed
dynamic model and for A. J. Koivo’s dynamic model [1] are
developed. Parameters used for both the models are listed in
Table I and as well as shown in Fig. 1. To obtain the joint
velocity and acceleration the quadratic nonlinear equation is
consider for trajectory planning. The total angle moved by
boom, arm and bucket are 117.64°, 120.46° and 157.52°
respectively and time required to move these angles from start
position to end position are 9.5 seconds, 10.3 seconds and 8.48
seconds respectively. For the validation purpose here we have
considered the maximum breakout force condition.

To reach at the maximum breakout force position, the
boom, arm and bucket moves the angles of 44.13°, 107.69°
and 137.31° respectively from its starting position and it
required the time of 3.97 seconds, 7.54 seconds and 6.8

seconds respectively. Based on the MATLAB codes the joint
velocities and acceleration are obtained. This leads to the joint
parameters 0;, 0;, and §; for i =2, 3, and 4 as shown in Table L.

Here, the joint torques calculated for the maximum
breakout force condition of 7626 N [2], and the parameters as
listed in Table I are used in the MATLAB codes for both the
proposed dynamic model and A. J. Koivo’s dynamic model
[1], will give the following joint torque vectors.

The calculated torque vector for the proposed model:

T;)  (—10518
1, ={ts; =1 5346
w) (3788

The calculated torque vector for Koivo’s model:

T2 —9578.5
T; =T3¢ = {—4980.3

Ty —3698.6
TABLEI
PARAMETERS USED IN MATLAB CODES FOR DYNAMIC MODEL
Description Symbol Value Unit
quent of inertia oflmk 2 (boom), Loz, 8.809856
link 3 (arm), and link (4) bucket )
. - I, 5.875598 Kg'm
with respect to z axis of the frame 3 5343296
{2}, {3}, and {4} respectively Lz, :
Mass of link 2 (boom), link 3 (arm), M2 31.664
and link 4 (bucket) M3 32450 Ke
my 22.007
The distance of centre of mass of X, 0.566861
boom from the origin of frame {2} Vo 0.375865 m
in X3, Y,, and Z, directions Z, 0.000000
The distance of centre of mass of X3 0.312503
arm from the origin of frame {3} in V3 0.264238 m
X5, Y3, and Z; directions Z3 0.000000
The distance of centre of mass of X4 0.400734
bucket from the origin of frame {4} Va 0.150509 m
in X4, Y4, and Z, directions Zy 0.000000
Acceleration due to the gravity of 2
the earth & 981 m/s
Link lengths of boom, arm and 3z 1'33358
bucket 33 0.72296 m
a, 0.547
. . - 0, 0.2618
Joint angles fo'roji(r)lltn; 2, joint 3, and 0, 51569 radian
J 0, 6.2832
, " - 0, 0.3156
Joint al}fil:tv3elzrclgl.e()sirt;ct>r‘1]01nt 2, 0, 02402 rad/sec
Jomnt =, andJ 0, 0.3442
Joint angle accelerations for joint 2, ?2 0.0223 2
joint 3, and joint 4 O3 -0.0552 radfsec
Jomt >, b, -0.1543
The resistive force F. 7626 N
The digging angle p 75.82 degree
The angle between the bucket A
bottom plate plane and the positive = 0,34 54.63 degree
X, axis —3n—p

It can be seen that the highest torque is acting at the joint 2,
and lowest at joint 4 for both the models. The difference
between the two models is 8.93 % for 15, 6.84 % for 13 and
2.36 % for 1,. The difference of torque at joint 2 of t, is
higher compare to others because the of the geometrical
difference in excavator model taken for study by A. J. Koivo
et al. as given in [1], in which the front end of the boom
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cylinders are attached at both side of the boom (link 2) and
rear end of the boom supported by link 1from bottom, whereas
in our case the front end of the boom cylinder is hinged on top
surface of the boom and rear end hinged on swing link at
upper side of the boom as shown in Fig. 1. The differences in
results are very less and acceptable.

X.CONCLUSION

A complete dynamic model of the backhoe in digging
mode is presented using L-E approach. The proposed dynamic
model can be used as the basis for automating the digging
operation of the backhoe. This can be accomplished by
designing the controller so that the entire system can be
operated in autonomous mode. The approach presented can
equally be applied to the operations of all type of backhoe
excavators. The proposed dynamic model of the backhoe is
useful in computation of the required torques for execution of
a typical work cycle, which can be used for design of backhoe
mechanism and helpful for autonomous application of
excavator. Apart from this in designing the controller for the
backhoe, this dynamic model can be utilized to obtain the
desired performance, because the controller directly depends
on the accuracy of the dynamic model and control algorithms.
MATLAB codes are developed for our presented dynamic
model which is based on L-E formulation and dynamic model
presented by A. J. Koivo et al. [1] which is based on N-E
formulation and compared them for same parameters. The
results show the acceptable difference in values of torque. The
variation in the torque is due to only the geometrical
differences in the backhoe excavator models.
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