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Abstract—Narrow bandwidth and high loss performance limits 

the use of reflectarray antennas in some applications. This article 
reports on the feasibility of employing strategic reflectarray resonant 
elements to characterize the reflectivity performance of reflectarrays 
in X-band frequency range. Strategic reflectarray resonant elements 
incorporating variable substrate thicknesses ranging from 0.016λ to 
0.052λ have been analyzed in terms of reflection loss and reflection 
phase performance. The effect of substrate thickness has been 
validated by using waveguide scattering parameter technique. It has 
been demonstrated that as the substrate thickness is increased from 
0.508mm to 1.57mm the measured reflection loss of dipole element 
decreased from 5.66dB to 3.70dB with increment in 10% bandwidth 
of 39MHz to 64MHz. Similarly the measured reflection loss of 
triangular loop element is decreased from 20.25dB to 7.02dB with an 
increment in 10% bandwidth of 12MHz to 23MHz. The results also 
show a significant decrease in the slope of reflection phase curve as 
well. A Figure of Merit (FoM) has also been defined for the 
comparison of static phase range of resonant elements under 
consideration. Moreover, a novel numerical model based on 
analytical equations has been established incorporating the material 
properties of dielectric substrate and electrical properties of different 
reflectarray resonant elements to obtain the progressive phase 
distribution for each individual reflectarray resonant element. 
 
Keywords—Numerical model, Reflectarray resonant elements, 

Scattering parameter measurements, Variable substrate thickness. 

I. INTRODUCTION 
EFLECTARRAYS are proposed as the best alternative to 
mitigate the various disadvantages of bulky parabolic 

reflectors and expensive phased arrays [1]. The need for 
finding an alternative arises due to some of the limitations 
associated with the conventional structures. For example the 
use of parabolic reflectors is limited particularly at higher 
microwave frequencies [2], due to the curvature of reflector 
resulting in an increased weight and size of the antenna. 
Moreover it is difficult to achieve the wide-angle electronic 
beam scanning. However high gain array antennas utilize the 
controllable phase shifters making them feasible of wide-angle 
beam scanning as compared to the parabolic reflectors. They 
also require high cost amplifier modules which make them a 
very expensive solution for various high gain applications [2]. 
On the other hand flat structure, low cost and easy deploy 
ability of reflectarrays projected them as a promising 
candidate for future high gain applications.  

A Microstrip reflectarray consists of an array of resonant 
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elements printed on top of dielectric substrate backed by a 
ground plane [3]. A feed antenna is placed at a particular 
distance to illuminate the array, whose individual elements 
scatter the incident field with proper phase distribution 
required to make a planner wave in fort of the aperture of 
reflectarray [3], [4]. Various approaches have been proposed 
in the past for the progressive phase distribution of the 
reflectarrays such as, square patches of variable size [5], [6], 
identical patches of variable-length stub [7], identical planar 
elements of variable rotation [8], cross dipoles [9], [10], ring 
elements [11], [12] and the liquid crystal based reflectarray 
antennas [13] to vary the effect of different path length. 
Despite number of advantages the bandwidth and reflection 
loss performance are considered as the main shortcomings of 
reflectarrays [14], [15]. The bandwidth is limited mainly due 
to the narrow bandwidth of the resonant elements and 
differential spatial phase delay due to the extended path length 
between the feed and reflectarray [16]. The feed antenna 
bandwidth and array element spacing are also among the 
factors responsible for limited bandwidth performance, but 
they are not of serious concern if the bandwidth requirement is 
less than 15% [3]. Many researchers have been working on 
various possible techniques to increase the bandwidth and up 
to 15% bandwidth has been reported in [17].  

In this work the effect of using variable substrate thickness 
on the performance characterization of reflectarrays has been 
demonstrated. The practical validation of predicted results 
obtained from commercially available CST computer model 
based has been carried out using waveguide simulator 
technique. A mathematical model has also been developed for 
progressive phase distribution of various reflectarray resonant 
elements.  
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(b) 

Fig. 1 (a) Built model of reflectarray unit cell (b) Dielectric 
absorption in reflectarrays 

II. THEORETICAL ANALYSIS 

A. Reflectarray Losses 
Reflectarrays attribute dielectric loss due to the dielectric 

absorption in the substrate and conductor losses due to the 
conductivity of the conducting material utilized for the design 
of reflectarray resonant elements [4], [18]. Thus the reflection 
loss performance of the reflectarrays depends on the material 
properties and thickness of the dielectric substrate. The 
reflection loss can be given as (1). 

 
                           L d cR α α= +                                (1) 

 
where, RL is the reflection loss and αd and αc are the 
attenuation due to the dielectric substrate and conductor loss 
respectively which can be calculated using (2) and (3) as: 
 

                      ( ) tan
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A unit cell reflectarray element with proper boundary 

conditions is shown in Fig. 1 (a). Fig. 1 (a) shows that the 
incident electric fields create E-walls (top and bottom walls) 
and H-walls (side walls) around the resonating structure. 
Moreover, the dielectric absorption into the substrate region of 
reflectarray antenna is depicted in Fig. 1. It can be seen that 
the port excitation is placed at a distance of λg/4 to incident the 
electric fields on the reflectarray resonant element and the 
dielectric substrate (t). These incident fields are being 
absorbed by the substrate region resulting in multiple bounces 
phenomenon. Thus the intensity of dielectric absorption in a 
particular substrate determines the reflection loss performance 
which can be seen from Fig. 1 (b). For thinner substrates, a 
number of rapid multiple bounces will occur due to higher 
dielectric absorption which contributes the higher reflection 
loss performance. Whereas, the number of multiple bounces 

can be decreased in order to obtain low reflection loss 
performance by increasing the substrate thickness. 

B. Design and Simulations 
A thorough investigation has been carried out based on 

Finite Integral Method (FIM) using commercially available 
CST computer model to realize and demonstrate the effects of 
variable substrate thickness (0.508mm, 0.787mm, 1mm, 
1.57mm, and 2mm) on the reflectivity performance of various 
reflectarray resonant elements. Three strategic resonant 
elements including dipole, square loop and triangular loop 
have been utilized to serve the purpose for operation in X-
band (8-12GHz) frequency range. These reflectarray resonant 
elements under investigation are made to resonate at 10GHz in 
[19] for the characterization of reflection loss and reflection 
phase performance.  

III. NUMERICAL MODEL 
Realization of progressive phase distribution is an important 

parameter in reflectarray antenna design which is required to 
make a planar wave in front of the periodic aperture. 
Therefore, in this work a novel numerical model based on 
Periodic Method of Moment (MoM) has been derived to 
estimate the reflection phase values depicted by each 
individual resonant element. Material properties of the 
dielectric substrate, reflection area and surface current density 
of reflectarray resonant elements have been taken into 
consideration for an accurate implementation of the model as 
shown in (4): 

 

                                 
tan2 r s

g r

I
W A t

ε δϕ π=                           (4) 

 
where φ is the desired reflection phase, 2π is the total phase 
range, εr is the relative permittivity, tanδ is the loss tangent 
value, Is is the surface current density, Ar is the area of 
resonant elements, t is the substrate thickness and Wg is the 
conditional arbitrary constant known as the guided wavelength 
factor whose range for the resonant elements mentioned in 
above section is given by (5) as: 

 
                              0.02 2.5g g gWλ λ≤ ≤                       (5) 

 
Whereas, the reflectarray antennas possess maximum 
reflectivity at the resonant frequency (fr), hence the value of 
phase will be 0° at the point of maximum reflection. 
Remaining reflection phase values at (f< fr) and (f> fr) can be 
calculated by using (6): 
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C. Bandwidth, Static Phase Range and Figure of Merit 
(FoM) 

Table I summarizes the measured 10% bandwidth, static 
phase range and FoM values of all the resonant elements 
under investigation. From Table I, it can be observed that 
dipole element with the minimum FoM value of 0.97°/MHz 
and 0.93°/MHz offers a minimum static phase range of 260° 
and 250° with maximum 10% bandwidth of 64MHz and 
39MHz whereas, triangular loop with maximum FoM value of 
1.16°/MHz and 1.12 °/MHz is shown to give maximum static 
phase range of 290° and 280° with minimum 10% bandwidth 
of 23MHz and 12MHz. Therefore it can be concluded that as 
the substrate thickness increases the 10% bandwidth increases 
whereas, static phase range and FoM decreases. 

VI. CONCLUSION 
Dielectric absorption in the substrate region of reflectarrays 

has been exploited by mounting various strategic reflectarray 
resonant elements on variable substrate thicknesses. It has 
been demonstrated that the dielectric materials plays and 
effective role in enhancing the reflectivity performance of 
reflectarrays. Moreover a numerical model has been 
established to realize the progressive phase distribution of 
reflectarray resonant elements. Two patch unit cell reflectarray 
have also been fabricated to carry out the waveguide simulator 
technique for the performance realization of each thickness 
separately. It can be observed that the reflection loss decreases 
with an increase in the substrate thickness. The dipole element 
is shown to offer the minimum measured reflection loss of 
3.70dB with the highest 10% bandwidth performance of 
64MHz. Whereas, the triangular loop element depicts the 
maximum measured loss of 20.25dB with the highest static 
phase range performance of 290°. Therefore it can be 
concluded that by employing thick substrate the feasibility to 
enhance the bandwidth performance can be realized. However 
the increase in the bandwidth performance has to be traded-off 
with the static phase range performance of the reflectarrays.  
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