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Abstract—This article is concerned with the determination of the 

static interaction of a vertically loaded rigid circular disc embedded at 
the interface of a horizontal layer sandwiched in between two 
different transversely isotropic half-spaces called as tri-material full-
space. The axes of symmetry of different regions are assumed to be 
normal to the horizontal interfaces and parallel to the movement 
direction. With the use of a potential function method, and by 
implementing Hankel integral transforms in the radial direction, the 
government partial differential equation for the solely scalar potential 
function is transformed to an ordinary 4th order differential equation, 
and the mixed boundary conditions are transformed into a pair of 
integral equations called dual integral equations, which can be 
reduced to a Fredholm integral equation of the second kind, which is 
solved analytically. Then, the displacements and stresses are given in 
the form of improper line integrals, which is due to inverse Hankel 
integral transforms. It is shown that the present solutions are in exact 
agreement with the existing solutions for a homogeneous full-space 
with transversely isotropic material. To confirm the accuracy of the 
numerical evaluation of the integrals involved, the numerical results 
are compared with the solutions exists for the homogeneous full-
space. Then, some different cases with different degrees of material 
anisotropy are compared to portray the effect of degree of anisotropy. 

 
Keywords—Transversely isotropic, rigid disc, elasticity, dual 

integral equations, tri-material full-space.  

I. INTRODUCTION 

EACAUSE of mathematical difficulties and engineering 
application, the static interaction of an embedded rigid 

disc with an elastic medium has been a subject of active 
research for many years. The first research in the topic is 
probably related to the work done by Bousinesq in 1888 on 
indentation problem. The problem was reinvestigated by 
Harding and Sneddon [1], who used Love's stress function. 
Some other static or dynamic solutions were obtained on the 
response of a rigid disc resting on the surface of a half-space, 
as in Sneddon [2], Keer [3], Arnold et al. [4], Bycroft [5], 
Awajobi and Grootenhuis [6], Robertson [7], Gladwell [8], 
and Pak and Gobert [9]. In all cases, an integral transform has 
been used, which resulted in some dual integral equations, 
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whose solution has been given in the numerical form in 
general case. The solution has been given analytically for 
some simpler cases. 

This paper investigates the axisymmetric interaction of 
vertically loaded rigid disc embedded at the interface of a 
transversely isotropic tri-material full-space. The axes of 
symmetry of different regions are normal to the horizontal 
interfaces and parallel to the movement direction. Because of 
its completeness and simplicity, the potential function 
introduced in [10] is used to uncouple the equations of 
motions. Using the Hankel integral transforms [11], the 
relaxed mixed boundary-value problem considered here is 
transformed into a pair of integral equations named as dual 
integral equations in the literatures. With the aid of Nobel’s 
multiplying factor procedure [12], the dual integral equations 
obtained in this paper are changed to the form of Fredholm 
integral equation of the second kind, which is numerically 
solved for the general layered full-space. It is shown that the 
numerical solution for homogeneous transversely isotropic 
full-space which is degenerated from the general solution 
presented here is identical to the numerical solution given in 
[13]. 

II. BOUNDARY VALUE PROBLEM AND THE SOLUTION  
A massless rigid disc of radius a, embedded at an interface 

of a layered, transversely isotropic, linearly elastic full-space 
is considered (see Fig. 1). The disc is assumed to be 
undergoing a forced rigid body translation Δ  in the vertical 
direction. In view of the axial symmetry of the problem, a 
cylindrical coordinate system ( , , )r θ z  is installed at the center 
of the disc. Considering this coordinate system, the 
arrangement of different layers of full-space may be defined as 
an upper half-space with z h< −  called as Region I, an 
intermediate layer with 0h z− < <  denoted as Region II and a 
lower half-space with 0z >  showing by Region III. In the 
absence of body force, the axisymmetric equations of motion 
in terms of displacements in each region can be expressed as 
[10]. 
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where q = I, II and III, u  and w  are the displacement 
components in r and z directions, respectively and ijA  are the 
elasticity constants. For a transversely isotropic material, five 
independent elastic constants are needed to describe its 
behavior [10]. These elasticity constants which are different in 
different region are connected to the engineering constants E , 
E′ , υ , υ′ , G  and G′  through some relations (see [10] and 
[14] for details). Considering the vertical movement of the 
disc, a relaxed treatment of the mixed boundary-value problem 
can be stated in terms of the components of the Cauchy stress 
tensor ( , , )ij i j r zσ =  and the displacement components u  and 
w  as follows 
 
 0 ,         w r z r a= = Δ ≤( , )  (2) 

 
 II III0 0 0,        0w r z w r z r− += − = = ≥( , ) ( , )  (3) 

 
 II III0 0 0,        0u r z u r z r− += − = = ≥( , ) ( , )  (4) 

 
 II III0 0 ,     zz zzr z r z R r r a− += − = = ≤( , ) ( , ) ( )σ σ  (5) 

 
 II III0 0 0,zz zzr z r z r a− += − = = >( , ) ( , )σ σ  (6) 

 
 II III0 0 0, 0rz rzr z r z r− += − = = ≥( , ) ( , )σ σ  (7) 

 
 I II 0,  0w r z h w r z h r− += − − = − = ≥( , ) ( , )  (8) 

 
 I II 0,  0u r z h u r z h r− += − − = − = ≥( , ) ( , )  (9) 

 
 I II 0,        0zz zzr z h r z h rσ σ− += − − = − = ≥( , ) ( , )  (10) 

 
 I II 0.        0rz rzr z h r z h rσ σ− += − − = − = ≥( , ) ( , )  (11) 
 

Here, the function ( )R r  is the resultant vertical stress 
applied on the rigid disc.  

Utilizing the scalar potential function, F , introduced by 
Lekhnitskii [10] as the static case of the generalized potential 
function given by Eskandari-Ghadi [15], the difficulty in 
dealing with the coupled partial differential equations in (1) is 
avoided. The displacement- and the stress-potential function 
relationships are given in Hankel integral transformed space 
shortly. Thus, the solutions for the potential functions in 
different regions in Hankel space are [16]:  
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 s z s zF z B e D e .  z− −= + >ξ ξξ ξ ξIII 1 III 2(0)
III III III( , ) ( ) ( ) 0  (14) 

 
where the regularity condition has been applied in both 
vertical and horizontal directions. It is emphasized that in the 
above solutions, ξ is the Hankel’s parameter, I ( )A ξ  to III ( )D ξ  
are unknown functions to be determined using both the 
continuity and boundary conditions, and 1qs  and 2qs are the 
roots of (15).  

 

 
Fig. 1 Axisymmetric transversely isotropic tri-material full-space 

containing a rigid disc 
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The displacement components and stresses in each region 
can be expressed in terms of the potential function F, as 
follows [16]. 
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and q = I, II and III. 

Using (12)-(14) in (16) and (17), it is possible to write the 
continuity and boundary conditions in the matrix form as [17]. 
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Solving (19) it is possible to find  
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where 1

2 ( )iI ξ− =  the element at the ith row and the second 
column of the inverse matrix of ( )I ξ and i=1,2,…,8. 

Equations (2) and (6) result in a pair of integral equations 
called dual integral equations. For the treatment of these 
equations, the procedure introduced by Noble [12] is used. To 
do so, it is convenient to write the equations in the following 
form 
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and l is a modifier needed for the function H ξ( )  to make the 
condition at infinity to be satisfied [18]. This modifier is 
defined as l H= + ∞1 ( ) . By solving the dual integral 

equations (24) for (0) ( )R ξ , this function is known, and the 
remaining functions I ( )A ξ  to III ( )D ξ  are then known from 
(23). 

III. FREDHOLM INTEGRAL EQUATION 
As seen in [12], with the aid of Hankel inversion theorem, 

the governing dual integral equations (24) can be reduced to a 
Fredholm integral equation as 

 

 
0

1( ) ( , ) ( ) ,   0
a

r M r d r a
l

θ ρ θ ρ ρ
π

Δ
+ = ≤ <∫  (28) 

 
where 

 ( )
0

, 2 ( )cos( )cos( ) .  0 ,M r H r d r aρ ξ ξ ρξ ξ ρ
∞

= ≤ <∫ (29) 

 
and the function (0) ( )R ξ  is expressed as [19] 
 

 (0)

0

2( ) ( ) ( ) .
( )

a
R Cos dξ θ ρ ρξ ρ

πϑ ξ
= ∫  (30) 

 
Substituting (30) in (23), the functions I ( )A ξ  to III ( )D ξ  

can be found. Furthermore, the displacements and stresses can 
be obtained in terms of ( )θ r  by substituting these eight 
functions into the expression of the potential function F, and 
then using the displacement- and stress- potential relations. 
Equations (28) with (29) can be numerically solved for ( )θ r . 
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IV. NUMERICAL EVALUATION OF THE FREDHOLM INTEGRAL 
EQUATION 

In the previous section, the Fredholm integral equation was 
expressed in terms of ( )θ r . Generally, the Fredholm integral 
(29) cannot be analytically solved. As a result, the equation 
may be converted to a set of linear algebraic equations of the 
form  

 

 ,   , 1,2,...,ij jK i j n
l

θ Δ
= =  (31) 

 
where  

 1 ( , ),   , 1,2,...,ij ij j i jK W M r i j nδ ρ
π

= + =  (32) 

 
moreover, jW  is the weight function for transforming an 
integral to a summation, and n is the number of points selected 
on the disc for numerical evaluation [20]. To evaluate 

( , )ij i jM M r= ρ  from (29), an adaptive numerical quadrature 
method is adopted and coded in MATHEMATICA software. 
After determining ijM , the function θ  is found from (31) at 

the selected points. Then, replacing ( )j jθ θ ρ=  in (29) and 
integrating, the function θ  is found as a function of horizontal 
distance, r , after which (0) ( )R ξ  is obtained from (30).  

In order to validate the present study, numerical solutions 
presented in [13] for a homogeneous full-space are evaluated 
here and used for comparison. To understand the importance 
of relative material moduli in the problem, 5 sets of material 
constants as listed in Table I are considered.  

 
TABLE I 

SYNTHETIC MATERIAL ENGINEERING CONSTANTS 

Material E  
(N/mm2) 

E′  
(N/mm2) 

G  
(N/mm2) 

G′  
(N/mm2)

ν  ν′  

1 (Transversely Isotropic) 45,000 20,000 20,000 20,000 0.25 0.25
2 (Transversely Isotropic) 50,000 25,000 20,000 20,000 0.25 0.25
3 (Transversely Isotropic) 50,000 55,000 20,000 20,000 0.25 0.25
4 (Transversely Isotropic) 50,000 100,000 20,000 20,000 0.25 0.25
5 (Transversely Isotropic) 50,000 150,000 20,000 20,000 0.25 0.25

 
With these materials, three different cases are defined as 

below to demonstrate the solution: 
 
Case 1: I 5ijA Mat=  II 5ijA Mat=  III 5ijA Mat=  
 
Case 2: I 1ijA Mat=  II 2ijA Mat=  III 5ijA Mat=  
 
Case 3: I 1ijA Mat=  II 3ijA Mat=  III 5ijA Mat=  
 
Case 4: I 1ijA Mat=  II 4ijA Mat=  III 5ijA Mat=  
 

The last three cases are defined with different ratio of 
II II/E E′ , to portrait the effect of degree of anisotropy. As it is 

seen II II/E E′  for Mat2, Mat3 and Mat4 is 0.5, ~1 and 2, 

respectively. On the other hand, the first case is a homogenous 
full-space, which is used for verification.  

For generality, all numerical results presented here are 
dimensionless. Therefore, the stress zzσ  and the vertical 
displacement are presented in the form of dimensionless 
parameters as 2/ ( / )zzσ F πa  and /Δw , respectively. Here F  
is the vertical resultant force, applied on the disc, which itself 

is evaluated by the integral 
0

2 ( )
a

F π R r rdr= ∫ . F  is also 

evaluated directly in terms of the Fredholm equation as 

0
4 ( )

a
F a θ ρ dρ= ∫  [21].  

Fig. 2 illustrates the stress difference ( )R r  for the different 
cases listed above. As indicated in the figure, there exists a 
singular behavior at the vicinity of the edge of the disc. A very 
precise attention has been paid in the numerical evaluation, 
however, there exists a small error in the evaluation of the 
stress difference outside the disc, where the stress difference 
should be zero. This error is due to the number of points 
selected for evaluations of the stress in (31), and the truncation 
point selected in (29). Fig. 3 indicates a depth wise variation 
of the stress zzσ  for different cases. As seen in each curve, 
there exists a jump at 0z = , where the disc is located, which 
is equal to ( 0, 0)R r z= = . Since IIE′  in Case 4 is the largest 
among the tri-material cases, the stress zzσ  in this case for 
constant Δ  is the largest one. The solution presented by 
Ardeshir-Behrestaghi and Eskandari-Ghadi [13] is used as a 
benchmark, to provide a comparison with the results in this 
paper and proof validity of the numerical evaluations. To this 
end, Case 1 with the same material properties for all the layers 
is defined. Fig. 3 also shows the results for a homogenous full-
space for both studies, where an excellent agreement is 
discovered between the two solutions. 
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Fig. 2 Normalized resultant vertical stress applied on the rigid disc in 

terms of horizontal distance 
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Fig. 3 The stress zzσ  at 0r =  in terms of depth z 

 
Fig. 4 illustrates the normalized vertical displacement at 

0z =  in terms of radial distance. The vertical displacement 
from zero to r a=  should be equal to Δ  as inferred from (2). 
As seen in Fig. 5, although the displacement is continuous at 

0z = , its derivative with respect to depth is not continuous as 
indicated in (5) and the strain-displacement and stress-strain 
relationships. Since IIE′  in Case 4 is the largest, the vertical 
displacement in this case for constant Δ  is the largest one. 
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Fig. 4 Variation of vertical displacement at z=0 in terms of horizontal 

distance 
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Fig. 5 Depth-wise variation of vertical displacement at r=0  

V. CONCLUSION 
With the use of a scalar potential function and Hankel 

integral transforms, the relaxed mixed boundary value 
problem for a vertical movement of a rigid disc embedded in a 
tri-material full-space considered in this paper have been 
transformed to a Fredholm integral equation of the second 
kind, which have been solved numerically. The solution is 
collapsed on the homogenous full-space reported in the 
literature, which proves the validity of the solution presented 
in this paper. Some different arrangements have been 
compared to see the effect of different degree of anisotropy. 
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