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Abstract—This paper proposes a hierarchical hidden Markov
model (HHMM) to model the detection of M vehicles in a wireless
sensor network (WSN). The HHMM model contains an extra level
of hidden Markov model to model the temporal transitions of each
state of the first HMM. By modeling the temporal transitions, only
those hypothesis with nonzero transition probabilities needs to be
tested. Thus, this method efficiently reduces the computation load,
which is preferable in WSN applications.This paper integrates several
techniques to optimize the detection performance. The output of the
states of the first HMM is modeled as Gaussian Mixture Model
(GMM), where the number of states and the number of Gaussians are
experimentally determined, while the other parameters are estimated
using Expectation Maximization (EM). HHMM is used to model
the sequence of the local decisions which are based on multiple
hypothesis testing with maximum likelihood approach. The states in
the HHMM represent various combinations of vehicles of different
types. Due to the statistical advantages of multisensor data fusion,
we propose a heuristic based on fuzzy weighted majority voting to
enhance cooperative classification of moving vehicles within a region
that is monitored by a wireless sensor network. A fuzzy inference
system weighs each local decision based on the signal to noise
ratio of the acoustic signal for target detection and the signal to
noise ratio of the radio signal for sensor communication. The spatial
correlation among the observations of neighboring sensor nodes is
efficiently utilized as well as the temporal correlation. Simulation
results demonstrate the efficiency of this scheme.

Keywords—Classification, decision fusion, fuzzy logic, hidden
Markov model.

I. INTRODUCTION

ECENTLY Wireless Sensor Networks (WSNs) have

become an emerging technology. The objective of WSNs
is to monitor, control, or track objects, processes, or events
[1]. Battlefield surveillance, border monitoring, and intelligent
traffic system are some of the applications of the classification
of ground vehicles based on acoustic signals using WSNs.
Efficient classification and data fusion is a requirement for
intelligent sensor networks. Many of the the recent researches
tackle the problem of enhancing the performance of single
target classification. Multiple moving vehicles classification
as in Fig. 1 is a real challenge [2] because of the dynamicity
and mobility of targets. The dynamicity of the targets
refers to the evolution of the number of targets over time.
Furthermore, limited observations, computational resources,
finite power, and presence of communication constraints
within and between the sensor nodes make it a more
challenging problem. Multiple target classification is tackled
in different ways as in Fig. 2. Target classification of multiple
targets can be modeled as a Blind Source Separation (BSS) [3]
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Fig. 1 Two vehicles passing an area monitored by a wireless sensor network

to separate or extract each signal of each vehicle then extract
a feature vector then classify it. There are many techniques in
the literature that are used to solve the BSS problem. However,
all these techniques are hard to implement in WSNs because
of the computational complexity. Classification of multiple
targets without signals or sources separation based on multiple
hypothesis testing is an efficient way of classification [4].
Ref. [5] proposed a distributed classifiers based on modeling
each target as a zero mean stationary Gaussian random process
and so the mixture signals.

In this paper a multi hypothesis test based on maximum
likelihood is the base of the HHMM classifier. We assume
that the maximum number of distinct vehicles that may exist
in a sensing range of one sensor at the same time M is
known. Based on this we consider each combination of M
distinct vehicles and less as a one class. Then the number
of hypotheses or classes is N = 2. N is exponentially
increasing with M, to solve this problem HHMM is used
to model the sequence of these hypotheses. For instance for
M = 2 (vehicle type T and vehicle type W), the number
of hypotheses is equal to 4 as in Fig. 3 namely: (00, OT,
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OW, TW). Then the branched HMM as in Fig 3 are used to
model the distribution of the output of each hypothesis. Power
consumption, resulting from data transmission, is greater than
power consumption, resulting from data processing. This
motivates people to consider decentralized data processing
algorithms more than the centralized ones [6], [7]. In a
distributed sensor network, each sensor node sends its local
decision to the fusion center instead of sending the whole
observation to save power and communication bandwidth
as in Fig. 4. Recently, there are many researches in
distributed detection and classification; however, most of them
ignore the noises in the communication and observation
channels and assume independent and identically distributed
observations [8], [9]. In this paper, we consider the problem
of decentralized classification of a stochastic signal for cluster
based WSNs for non identically distributed observations.
Because of the path of the sensing measurement, there will
be a loss in the measurement power. This loss will make
the Signal to Noise Ratio (SNR) of the farther node poor.
Ref. [5] assumed that all the measurement from different
nodes were independent and identically distributed (i.i.d). It
is known that in reality these sensing measurements will
not be identically distributed because of the sensing channel
loss. Fig. 12 shows that there is an optimal radius around
each sensor node over which decisions should be fused to
get the minimum detection error. Ref. [10] analyzed the
performance of centralized detection of a stochastic Gaussian
signal in global power constrained wireless sensor networks.
It is observed in Ref. [10] that, for global power constrained
wireless sensor networks, there is an optimal number of sensor
nodes that minimizes the detection fusion error probability,
which depends on the signal to noise ratio for both the
observation and the wireless communication channel. It is
observed in this paper that even though the global power of the
WSN is not constrained, there is an optimal number of sensor
nodes for decision fusion to be performed. This is because of
the decaying of the observed signal SNR as the target gets
farther. Weights for every local decision of each sensor node
is computed based on the SNR for both the observed signal
and the wireless radio signal. In WSN, the Received Signal
Strength Indication (RSSI) is used as a measure of the SNR of
the wireless radio signal and the relative power of the acoustic
signal emitted from the targets is used as a measure of the SNR
of the acoustic signal.

The remainder of this paper is organized as follows.
Section II formulates the problem mathematically. Section III
describes modeling the problem as HHMM with GMM model.
Section IV and Section V introduce and describe the fuzzy
logic weighting algorithm. The state machine is described
in Section VI. Simulation environment is described in
Section VII. Section VIII presents the results and discussions.
And finally conclusions are described in Section IX.

II. PROBLEM FORMULATION

We assume that the maximum number of distinct vehicles
that may exist in one cluster region at the same time M
is known. Then the number of hypotheses is N = 2M,
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Fig. 2 A summary diagram of the techniques that are used in multiple
vehicle classification using WSNs
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Fig. 3 The Hierarchical HMM

where the hypotheses correspond to the various possibilities
for the presence or absence of different vehicles. Let h;
denote hypothesis 7, = = 0,...,N — 1. Observation xj is
a feature vector obtained by a sensor node at time k. The
feature vector can be related to the spectrum of a mixture of
maximum M vehicle sounds. According to Bayes theorem, h;
is the maximum likelihood hypothesis given xy, if p(h;|zy) >
p(hj|zr), Vi # j. So far, the decision about the hypothesis
at any given event is based on the observation at that event
without any relation with the previous observations as in [5].
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Fig. 4 Decentralized classification using k spatially distributed sensor nodes,
X; sequence is the observation in time domain for node i, where i is from
1 to k, k is the maximum number of sensor nodes, y; is the sequence of the
feature of the X;. U; and Z; are the local decision without channel noise
and with channel noise for time step i respectively

In fact, the class to which the feature vector z; belongs to also
depends on the previous event class. The classification decision
at any instant of time depends on the previous decision and the
current observation. Therefore, the classification problem is a
context dependent problem and it can be modeled by HMM.
In context-dependant Bayesian classification, a sequence of
decisions is needed instead of a single one, and the decisions
depend on each other. Let X : {x1, z2, ..., z: } be a sequence of
feature vectors of observations. And let H; : {hj1, hi2, ..., hit }
be a sequence of classes. According to Bayes theorem, X is
classified to H; if

p(Hi|X) > p(H;|X), Vi # j. M
p(Hi| X)(><)p(H;|X) = p(X|H)p(H;)(><)p(X|H,;)p(H;)
2

where (><) denotes comparing and = denotes equivalent to.
According to the Markov chain model,

N
p(Hi) = p(hi,) H p(hiy i) 3)
k=2

We assume that {z;} are mutually independent and so are
the probability distributions of the classes. Therefore,

N
p(X1Hy) = [ plalh,) 4)
k=1
Based on Eq. 2, 3, and 4, we have
N
p(X|Hy)p(H;) = p(hi,)p(ai|ha,) [ ] plhislhi (el hi,)
k=2

&)
We define the probability of transition from hypothesis h;, to
hypothesis h;,_, as d(h;,, hi,_,)

d(hlkﬂhlk—l) :p(hlk|hlk—l)p(xk|h1k) (6)

d(hnvhm) :p(hn)p(u’UJhn) @)

Feature vector of observation of each class i is modeled as a
HMM with GMM output distribution. The maximum revenue
corresponds to the optimal path. The hypotheses along the
optimal path result in the observation sequence X. Based on
Bellman’s principle the cost in Equations (6) and (7) can be
computed online.

Each sensor nodes processes the observation to get the local
decision then sends this decision to a fusion center where
a collective decision is made. In this research we relaxed
the assumption that the independent observed signals from
different sensors nodes is identically distributed. The observed
signal to noise ratio depends on the distance between the target
and the underlying sensor node. Assuming that the power
of the independent noises for the neighbor sensor nodes are
identical, then the power of the observed signal will be poorer
as the target becomes farther from the underlying sensor node.
Based on this, there will be an optimal radius around the fusion
center over which the fusion will be performed. Each local
decision should be weighted to have a better contribution on
the final decision to minimize the detection error probability.
Suppose that a binary hypothesis testing situation where the
hypothesis are denoted by Hy and H;. H; denotes the presence
of the target signal. The target is modeled here as a zero mean
Gaussian stochastic process. The Gaussian observed signal is
denoted by S,,. S, is characterized by its covariance matrix
Sn ~ N(0,X). Hy denotes the noise v. v is a white Gaussian
noise characterized by its covariance matrix, v ~ N(0,%,),
assuming that the noises are independent at different sensor
nodes then o, = 0'12,1 . So the observation vector for node k is
Xy as in Fig. 4 can be written as follows:

H, :X,=a,S, +v
HO :Xk:I/k,k:L...,N

where N is the number of sensor nodes and a, is the
attenuation factor for the observed signal.

ap = —ap; (8)
20

where p; is the distance between sensor node i and
the moving vehicle. « is the attenuation factor for unit
distance [11]. The value of « is determined by the
Atmospheric Sound Absorbtion Calculator [12]. The problem
is to define the minimum p; for each sensor node to have a
beneficial contribution in the decision fusion.

Zy =bp Xy +wg

Z = brapSk + brvy + wi
Where Z,, is the radio received signal, w, is the receiver white
Gaussian noise w ~ N(0,021I), and b, is the attenuation
factor of the radio signal. Based on the above, the covariance

matrices for both the noise and the original signal will be
changed as the following:

Y, =b2ai%, + b2oll + o2l )
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Yo = (bjol +o2)1 (10)
Thus the decision variable for the optimal fusion rules is as
follows:

T(z)=z"(2;' — 2z (11)

=2l ((b202 + 217! — (B2a2%, + b2+ o21) Dz (12)

The decision will be based on comparing the decision variable
T with a certain threshold. According to Eq. (11), the distance
between the two distributions will be decreased as a,, and/or
b,, decrease, because the attenuation factors a,, and b,, are
both less than one. This makes the decision accuracy decline,
as the attenuation factors decrease. Thus, each local decision
should be weighted according to the signal to noise ratio for
both acoustic signal and the wireless radio signal. Eq. (12)
shows how hard it is to model the decision weights based on
both SNRs mathematically. Therefore, we use fuzzy inference
system to weight each local decision.

I11. HIDDEN MARKOV MODEL (HMM)

Acoustic signals could be modeled as HMM. HMM has
a specific discrete number of unobserved states; each state
has a transition probability to any other state and an initial
probability. Each state may be considered as representing
a certain sound of the vehicle [13]. Ref. [13] models the
cepstral coefficients that are obtained from the time domain
signal as HMM, where the pdfs of the states are assumed
to be Gaussian with non zero means and with a diagonal
covariance matrix. Modeling the vehicle sounds as HMM is
based on the assumption that the acoustic signal of the vehicle
is consisting of a sequence of a discrete number of sounds,
where the statics of each sound of these sounds is described
by a separate state. The parameters of the HMM are: the state
transition probability to any other state, the initial probability
for each state, and the observation pdf parameters for each
state. Estimation of the maximum likelihood parameters of
the HMM given a data set of the vehicle sounds can be
done by a special case of the Expectation maximization
algorithm called the Baum Welch algorithm; it is also known
as the forward backward algorithm. HMM implementation
for vehicle classification is based on the estimation of the
sequence of states, given a sequence of observations. Some
known algorithms are used for that such as the Viterbi
algorithm. GMM is static pattern model, while HMM is a
sequential pattern model.

A. Hierarchical Hidden Markov Model (HHMM)

In this paper, we propose a classification scheme that is
based on HHMM. The states in the HHMM contain another
HMM which represents a time sequence of the vehicle acoustic
signals. The branched HMM represents the distribution of
the output of the HHMM as in Fig. 3, where it models the
features of the continuous acoustic emissions. The output of
the states of the branched HMM is modeled as Gaussian
Mixture Model (GMM), where the number of states and
the number of Gaussians are experimentally determined. The
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Fig. 5 Main block diagram of pattern recognition

other parameters of the second HMM are estimated using
Expectation Maximization (EM). The HHMM is used to model
the sequence of the local decisions which are based on multiple
hypothesis testing with maximum likelihood approach. The
states in the first HMM represent various combinations of
vehicles of different types. Thus the number of the states of
the HHMM equals N = 2. The number of hypotheses that
need to tested at any time step is equal to M+ 1. The HHMM
utilizes the correlation between the sequence of decisions and
decreases the computational complexity.

B. Gaussian Mixture Model (GMM)

Due to the constraints in WSN resources, parametric models
such as Gaussian mixture model is preferred to non parametric
models [14]. Modeling of acoustic signal in WSN using a
parametric model, like GMM requires little resources, and
has a good pattern matching performance [14]. GMM is a
statistical method that is used for classification and clustering.
GMM is a linear combination of M Gaussian pdfs. Let x be a
N dimensional feature vector, then the distribution of x is as
follows:

Fn(®) =D ig(x; 6;) (13)
i=1

m
where Y a;=1, a;>0:i€1l,..,m
i=1

a; is the lmixing weight, ¢(x;6;) is the Gaussian mixture
component. Component ¢ has N variate Gaussian density
function with weight a;, mean vector p;, and covariance
matrix X;.

Expectation maximization (EM) is one of the common
algorithm that is used to obtain the GMM parameters ®; =
(v, py, X;) from the training set. The GMM generated from
the training set will be used in vehicle classification as in
Fig. 5.

GMM is used as a classifier in WSN based on the
features that are extracted from the vehicle sounds in [14].
Ref. [14] concludes that the GMM, as a parametric classifier,
outperforms the k nearest neighbor algorithm (KNN) and
the support vector machine (SVM) classifiers, and it also
concludes that GMM needs relatively less resources.

IV. Fuzzy LOGIC INFERENCE

Fuzzy logic inference is a simple approach to solving a
problem rather than attempting to model it mathematically.
Empirically, the fuzzy logic inference depends on human’s
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experience more than the technical understanding of the
problem. Fuzzy logic inference consists of three stages:

1) Fuzzification: map any input to a degree of membership
in one or more membership functions, the input variable
is evaluated in term of the linguistic condition.

2) Fuzzy inference: fuzzy inference is the calculation of the
fuzzy output.

3) Defuzzification: defuzzification is to convert the fuzzy
output to a crisp output.

V. Fuzzy WEIGHTED MAJORITY VOTING

Majority voting is a simple way to combine decisions
of several classifiers or decision makers to improve the
recognition process. We refer the reader to [15] to understand
how and why the majority voting can improve the recognition
process. Fuzzy logic is used for weighting the local decisions
according to both observation SNR as well as wireless radio
SNR to minimize the decision fusion probability of error.
Fuzzy logic is applied in decision fusion to benefit from the
human logic. The fuzzy decision weighting system consists of
two inputs: The relative sensing signal power (SP), and the
relative Received Signal Strength Indication (RSSI) of the
wireless radio signal (RP). The three membership functions
of the two fuzzy logic inputs SP and RP are shown in Fig. 6.
The inputs are defined by the following membership functions:
C (Close), M (Medium), and F (Far). The output of the
fuzzy logic, the weight of each local decision W, is defined by
four membership functions very low (V' L), low (L), Medium
(M), High (H), and Very High(V H). Fig. 7 shows these
membership functions. The fuzzy logic rules are deduced as
in Table I. The centroid method is used for defuzzification. W
is shown as a function of SP and RP in Fig. 8.

VI. STATE MACHINE DECISION MAKING

The position and the speed of each target will not be
estimated in this paper. However, the position and speed of
the group will be estimated based on the propagation of the
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Fig. 7 The membership functions of the weight.

Fig. 8 The weight as a functions of the input variables RP and SB after
defuzzification

acoustic signal without association. Each cluster head will
keep track of the state of the targets and decide wether the
targets are closing in or going far from the fusion center
according to the power of the acoustic signal for each sensor
node at each time step. Although a cluster head takes the
decision every time step, it just sends its decision to the
gateway or sink one time. The best time to send this decision

TABLE I
FUZZY RULES FOR FUZZY WEIGHTING

Index Input I SP  Operator Input 2 RP  Rule weight  Output
1 C and C 1 VH
2 F and F 1 VL
3 M and M 1 M
4 C and F 1 M
5 F and C 1 M
6 M and F 1 L
7 F and M 1 L
8 M and C 1 H
9 C and M 1 H
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is when the targets are as close as possible to the cluster center.
This time will be determined by the state machine as in Fig. 9.
We grouped sensor nodes to two groups: group one, and group
two. Group one is the J sensor nodes with the highest acoustic
signal power. Group two is the closest J senor nodes to the
cluster center. Suppose ¢ is the difference of the sum of the
acoustic power of group one and group two.

J J
£ = Z PQ”'UUPO"E - Z PgroupTwo (14)
1 1

Then, if ¢ is decreasing, then the vehicles are closing toward

the center of the cluster. If ¢ is increasing, then the vehicles
are going far a way from the center of the cluster. By this
we can know the direction and the position of the vehicles
in that specific cluster. Tracking £ with time will lower the
detection false alarm, because of the motion detection besides
the acoustic signal detection. The speed can be estimated from
the rate of the difference A , where A =&, — &_;.
In ideal cases, If the targets are heading toward the center
of the cluster then A sign will not change. In reality,
because of the noise and the random motion of the vehicles,
the sign of A may fluctuate. Therefore, we introduced
the four counting states as in Fig. 9. These four counters
{CIF,CIC,CTF,CTC} will be reset in any transition to
any other state. State Count_To_Get_Far counts the number
of time steps that A has the negative sign. If the counter
(CTF) is greater than (M) the state will be changed to
Get_Far state, which assures that A is steady and the vehicles
keep getting far. If the sign of A is changed while the
system in state Get_Far then the fusion center will change
the state to Count_In_Get_Far. State Count_In_Get_Far counts
the number of time steps that A has the negative sign. If
the counter (CIF) is greater than (L) the state will be
changed to Count_To_Get_Far state. This also applies for
other states. { K, L, M, N} are determined experimentally. The
state machine keeps tracking the region of the high acoustic
power. This will enable the fusion center to know if this
detection is false or not from the changing of the region of
the highest acoustic power. This algorithm can be applied
for position estimation, speed estimation, as well as target
tracking.

VII. SIMULATION ENVIRONMENT

We developed our simulation environment using Matlab
for one network cluster region (300 x 300) as in Fig. 10.
Where this cluster consist of a grid of different numbers of
sensor nodes. Sensing range for all sensor nodes will be the
same. Sensing range is chosen to enable all sensor nodes in
one cluster region to observe the same targets with different
attenuation. The sensing range is represented by a radius of
a circle. When any target enters this circle, the simulator
will pick a random real life vehicle sound according to the
vehicle type. Where the vehicle type and number are chosen
randomly. Then this sound will be attenuated based on the
distance between the target and the sensor node. After that,
a mixture is linearly formed based on the number of targets.
Then each sensor node extracts the feature from the acoustic
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Get_Close
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A<0 & CTC<M Cic>K
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_Get_Clos
e
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Fig. 9 States machine diagram of the targets position relative to the center
of the cluster
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Fig. 10 Four sensors in one cluster simulation region

signal based on discrete spectrum. This mixture is classified
by each sensor node. The classification decision is sent to
the manger node where decision fusion will be accomplished.
Sensor nodes are deployed uniformly as in Fig. 10.

The simulator is built such that multiple targets enter the
region of simulation from one direction. Entry location and
entry angle are selected randomly. Targets speed and directions
are modeled according to Gauss Markov mobility model.
Gauss Markov mobility model parameters are chosen such
that to avoid sharp updates in speed and direction. Each
sensor node calculates the maximum likelihood state based
on HHMM at every discrete time f. State transition cost
as in equation (6) is calculated only for states that have
nonzero transition probability, then the maximum of all cost is
corresponded to the maximum likelihood state or hypothesis.
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VIII. RESULTS AND DISCUSSIONS

Simulation in this paper is based on real life vehicle
sounds that is available at http://www.ece.wisc.edu/sensit.
Fig.11 displays the result of running the simulator hundreds of
times. Our experiment is conducted for two distinct vehicles.
Simulation results that are shown in Fig.11 show that the
correct classification rate increases with the sensor density in
different kind of classifiers. It is clear that this rate is the
highest in the case of HHMM classifier. The classification rates
are based on k fold cross validation. Fig.11 shows how efficient
is the HHMM compare to other classifiers. The most important
benefit of HHMM over normal HMM classifier is the reduction
in the computation overhead for multiple hypothesis testing
approach. Because the only hypotheses that need to be tested
are the ones that have nonzero state transition probability. For
distinct targets, the number of hypothesis are 2¥ where M is
the maximum number of targets that can be exist within the
sensor range at the same time. In our approach, only M + 1
hypothesis need to be tested at each time step.

The classification decision and acoustic power are sent to
the cluster head where the decision fusion is performed. All
the local decisions are fused by a fuzzy weighted majority
voting algorithm. In the classical majority voting algorithm, all
the local decisions of the sensor nodes have the same weight
regardless of the observation SNR and wireless RSSI. While in
the fuzzy weighted majority voting decision fusion algorithm,
each local decision of the sensor node has been assigned a
different weight based on the observation SNR and wireless
RSSI. The result of simulation is shown in Fig. 12. The fuzzy
majority voting achieves less minimal point of detection error
average than the normal majority voting. Since farther sensor
nodes have less weight, this makes sharing many sensor nodes
in the decision does not increase the error in the fuzzy majority
voting. This means that, if the optimal number of the involved
sensor nodes in the decision fusion is unknown or can not
be determined, the least detection error can be obtained if the
fuzzy weighted majority voting decision fusion is used. The
correct fuzzy rules are deduced based on experiment results.
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Fig. 12 The relation between correct classification error rate and the number
of sensor for optimal data fusion, majority voting, and fuzzy majority voting
cooperative algorithm for a fixed number of sensor per square meter(0.0016)
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Fig. 13 The relationship between correct classification error rate and the
number of sensor for fuzzy majority voting cooperative algorithm for a four
distinct sensor’s densities dens1=0.0008, dens2=0.0006, dens3=0.0005, and
dens4=0.0004 sensors per square meter

Thus the rules should be changed as the network parameters
change. Fig. 12 shows that the error of our fusion scheme is
very close to the optimal fusion method, which is based on
the sum of the probabilities of all the hypotheses. The optimal
method is equivalent to the data fusion where each sensor node
send the feature vector to the fusion center, then the fusion
center find the highest sum of all hypotheses probabilities .
Fig.13 shows the detection error average for four different
densities. To have the detection error decrease as the number
of sensors increases until having the least detection error, the
right fuzzy logic rules should be deduced.

IX. CONCLUSIONS

A Hierarchical Hidden Markov Model is proposed in this
paper as a classifier to classify multiple vehicle using wireless
sensor network. Classification problem of multiple dynamic
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vehicles in WSNs can be modeled as a context dependant
classification problem. The states in the HHMM contain
another HMM which models the vehicle acoustic signals. The
number of moving vehicles of each type is considered as the
state, and each state depends on the previous state. This makes
it appropriate to model the system with HMM. Simulation
results based on real vehicle sounds show that using HHMM
increases the correct classification rate. The other benefit of
HHMM is the reduction of the computation overhead for
multiple hypothesis testing. The only hypotheses that need to
be tested depend on the state transition probabilities, therefore
the hypotheses that need to be tested are the ones that have
none zero transition probabilities. In our scheme the only
hypotheses that need to be tested is M + 1 out of 2, where
M is the maximum number of targets that can be exist within
the sensor range at the same time. A new on line decision
fusion method is developed for moving targets in wireless
sensor networks, where a fuzzy inference system is developed
to determine the weights for each local decision based on the
signal to noise ratios for the sensing signals and the wireless
radio signals. This is also integrated with a state machine
to help in deciding when to take the best decision for the
whole cluster and to know the direction and speed of the
targets. Simulation results demonstrate the efficiency of this
method. However, it is computationally more expensive than
the classical majority voting method.
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