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Abstract—The nullity η(G) of a graph is the occurrence of zero 

as an eigenvalue in its spectra. A zero-sum weighting of a graph G is 
real valued function, say f from vertices of G to the set of real 
numbers, provided that for each vertex of G the summation of the 
weights f(w) over all neighborhood w of v is zero for each v in G.A 
high zero-sum weighting of G is one that uses maximum number of 
non-zero independent variables. If G is graph with an end vertex, and 
if H is an induced subgraph of G obtained by deleting this vertex 
together with the vertex adjacent to it, then, η(G)= η(H). In this 
paper, a high zero-sum weighting technique and the endvertex 
procedure are applied to evaluate the nullity of t-tupple and 
generalized t-tupple graphs are derived  and determined for some 
special types of graphs,  

 Also, we introduce and prove some important results about the t-
tupple coalescence, Cartesian and Kronecker products of nut graphs. 

 
Keywords—Graph theory, Graph spectra, Nullity of graphs. 

I. INTRODUCTION 
HE eigenvalues of the adjacency matrix A(G) are said to 
be the eigenvalues of the graph G, the occurrence of zero 

as an eigenvalue in the spectrum of the graph G is called the 
“nullity” of G, it is denoted by η(G). Brown and others [2] 
proved that a graph G is singular if, and only if, G possesses a 
non-trivial zero-sum weighting, and asked, what causes a 
graph to be singular and what the effects of this on its 
properties are. Rashid [6] proved that the maximum number of 
non zero independent variables used in a high zero- sum 
weighting for a graph G, is equal to the nullity of G.  
Definition 1:[2],[6, p.16] A vertex weighting of a graph G is a 
function f: V(G)→R where R is the set of real numbers, which 
assigns a real number (weight) to each vertex. The weighting 
of G is said to be non-trivial if there is at least one vertex 
v∈V(G) for which f(v) ≠ 0. 
Definition 2:[2, p.16] A non-trivial vertex weighting of a 
graph G is called a zero-sum weighting provided that for each 
v∈V(G), ∑f(w) = 0, where the summation is taken over all 
w∈NG(v). 

Clearly, the following weighting for G is a non-trivial zero-
sum weighting where x1, x2, x3, x4, and x5 are weights and 
provided that (x1, x2, x3, x4, x5) ≠ (0, 0, 0, 0, 0)as indicated in 
Fig.1. 
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Fig. 1 A non-trivial zero-sum weighting for a graph G 

 
Theorem 1: A graph G is Singular if, and only if there is a 
non-trivial zero sum weighting for G.■ 
Out of all zero-sum weightings of a graph G, a high zero-sum 
weighting of G is one that uses maximum number of non-zero 
independent variables. 
Lemma 1: [6, p.35] In any graph G, the maximum number 
MV(G) of non zero independent variables in a high zero-sum 
weighting equals the number of zeros as an eigenvalues of the 
adjacency matrix of G, (i.e.MV(G)= η(G)).■ 

In Fig.1, the weighting for the graph G is a high zero-sum 
weighting that uses 5 independent variables, hence, η(G) = 5. 

This is a very active method to characterize the degree of 
singularity (nullity) of a chemical compound Graph, the 
carbohydrate graph CnH2n+1, with n=5, has two bonding 
graphs, (a) where the 5 carbon atoms induces a path of order 
5, η(G) = 7 this is a more stable case which is usually present 
in the nature, while in (b) where the 5 carbon atoms induces a 
star of order 5, with η(G) = 9 which has different physical 
properties as in case a,as well as more instability. 
Lemma 2:[1, p.72],[3] 
i. The eigenvalues of the cycle Cp are of the form 2cos

p
r 2π , r = 0, 1,…,p-1. According to this, η(CP)= 2 if 

p=0(mod4) and 0 otherwise. 
ii. The eigenvalues of the path Pp are of the form 2cos

1p
r 

+
π , r =1,2, … p. And thus, η(PP)=1 if p is odd and 0 

otherwise. 
iii. The spectrum of the complete graph Kp, consists of p-1 

and -1 with multiplicity p-1. 
iv. The spectrum of the complete bipartite graph Km,n, 

consists of √݉݊, - √݉݊ and zero m+n-2 times 
Lemma 3: (Endvertex Lemma)[4, p.234] If G is graph with an 
end vertex, and if H is an induced subgraph of G obtained by 
deleting this vertex together with the vertex adjacent to it, then 
η(G) = η(H). ■ 

Khidir R. Sharaf, Didar A. Ali 

Nullity of t-Tupple Graphs 

T



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:2, 2014

326

 

 

Lemma 4: (Coneighbor Lemma) If two vertices u and v have 
the same neighbors in a graph G, then η(G)= η(G-u)+1= η(G-
v)+1.■ 
Definition 3: [7] Let (G1, u) and (G2, v) be two graphs rooted 
at vertices u and v, respectively. We attach G1 to G2 (or G2 to 
G1) by identifying the vertex u of G1 with the vertex v of G2. 
Vertices u and v are called vertices of attachment. The vertex 
formed by their identification is called the coalescence vertex. 
The resulting graph G1 G2 is called the coalescence (vertex 
identification) of G1 and G2. 
Definition 4: [7] Let {(G1, v1), (G2, v2),…,(Gt, vt)} be a family 
of not necessary distinct connected graphs with roots v1, v2, 
…, vt, respectively. A connected graph   G= G1 G2 … Gt 
is called the multiple coalescence of G1, G2,…,Gt provided 
that the vertices v1, v2, …, vt are identified to reform the 
coalescence vertex v. The t-tupple coalescence graph is 

denoted by 
t

G  is the multiple coalescence of t isomorphic 

copies of a graph G. In the same ways 21

t

G G  is the multiple 
coalescence of G1 and t copies of G2. 
Remark 1: [7] All coalesced graphs have v as a common cut 
vertex. Some graphs and their operations will, herein, be 
illustrated in Fig.2. 
 

 

Fig. 2 Multiple coalescence 321 GGG , t-tupple coalescence 

3

1G  and coalescence of both 
2

1 2G G  
 
Definition 5: [7] Let G be a graph consisting of n vertices and 
L = {H1, H2, …,Hn} be a family of rooted graphs. Then the 
graph formed by attaching Hk to the k-th (1 ≤ k ≤ n) vertex of 
G is called the generalized rooted product and is denoted by 
G(L); G itself is called the core of G(L). If each member of L 
is isomorphic to the rooted graph H, then the graph G(L) is 
denoted by G(H). Recall G1, G2 and G3 from Fig. 3. Then, we 
have 

 
Fig. 3 Generalized rooted product graphs 

II. NULLITY OF T-TUPPLE GRAPHS 
In this section, we determine the nullity of t-Tupple graphs 

of some known graphs such as pC , pP , pK  and nmK , .    

A. t-Tupple Coalescence for Cycles 

t-tupple coalescence graph p

t

C  has order 1)1( +−pt  and 

size tp , and the diameter of  p

t

C  is equal to )(2 pCdiam , 

for 2t ≥ . The nullity of p

t

C  is determined in the next 
proposition.  

Proposition 1:For a t-tupple coalescence graph 
t

pC , 1t ≥ , we 

have: 

i. If np 4= , ...,2,1=n , then 1)( 4 += tC
t

nη . 

ii. If 24 += np , ...,2,1=n , then 1)( 24 −=+ tC
t

nη . 

iii. If p is odd, then 
0)( =

t

pCη
. 

Proof: 
i. Let jix , , ti ...,,2,1=  and nj 4...,,2,1= , where 

1,1,21,1 ... txxx === , be a weighting of a t-tupple 

coalescence graph
t

nC4 , ...,,2,1=n as indicated in Fig. 4. 
 

 

Fig. 4 A weighting of 4 ,
t

nC , 1, 2,...n =  
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Then, from the condition that , for all v in

...,2,1,4 =nC
t

n ,    we have: 

for ti ...,,2,1=  and 34...,,2,1 −= nj  
 

02,, =+ +jiji xx ⇒ 2,, +−= jiji xx             (1) 
since,                  

1,1,21,1 ... txxx ===                            (2) 
 

then, from (1) and (2), we get: 
for ti ...,,2,1=  and 34...,,5,1 −= nj  
 

1,1, xx ji =
          

 (3) 
 

and, for ti ...,,2,1= and 14...,,7,3 −= nj , 
 

1,1, xx ji −=
          

(4) 
 

Also, from the condition that , for all v in

...,2,1,4 =nC
t

n ,    we have: 

for ti ...,,2,1=  and 24...,,4,2 −= nj  
 

02,, =+ +jiji xx ⇒ 2,, +−= jiji xx                (5) 
 

thus, from (5), we get: 
for 24...,,6,2 −= nj  

2,,

2,2,2

2,1,1

tjt

j

j

xx

xx
xx

=

=
=

                             (6) 

and, for nj 4,...,8,4=  

2,,

2,2,2

2,1,1

tjt

j

j

xx

xx
xx

−=

−=
−=

        (7) 

Then, from (3) and (4) we use only one independent variable, 
and from (6) and (7), we use t independent variables, for a 

zero-sum weighting of ...,2,1,4 =nC
t

n . 
Thus, the maximum number of non zero independent 

variables used in a high zero-sum weighting of 

...,2,1,4 =nC
t

n , is equal to 1+t . Hence, by Proposition 

1.4, 1)( 4 += tC
t

nη . 

On the other hand, ...,2,1,4 =nC
t

n , is multiple 

coalescence of  t  isomorphic copies of a graph nC4 , 

...,2,1=n , since 2)( 4 =nCη , by Lemma 2 (i). Then, we 

need t2  variables for a weighting of nC4 . But by (3) and (4), 
one variable is occurred t times. In such a case, we must use 
this variable exactly once. Therefore,

1)1(2)( 4 +=−−= tttC
t

nη . 
ii. There exists a high zero-sum weighting for 

...,2,1,24 =+ nC
t

n , which uses 1−t  independent 

variables. Hence, by Lemma 1, 1)( 24 −=+ tC
t

nη . 
iii. If p is odd, there exists no non-trivial zero-sum 

weighting for 
t

pC . Thus, by Lemma 1, 
t

pC is non 

singular. ■ 

B. t-Tupple Coalescence for Paths 

t-Tupple coalescence graphs p

t

P  have order 1)1( +−pt  

and size )1( −pt , and the )(2)( p

t

p PdiamPdiam ≤ . 

Besides, equality holds where the rooted vertex of pP  is an 

end vertex. 

The nullity of p

t

P  is determined in the next proposition. 

Proposition 2:  For a t-tupple coalescence graph 
t

pP , 1t ≥ , 

we have: 
i. If p is even, np 2= , ...,2,1=n , and the attachment 

is at any vertex, then 1)( 2 −= tP
t

nη . 

ii. If p is odd, 12 += np , ...,2,1=n , and the 
attachment is at a vertex with zero weight ,then 

12)( 12 −=+ tP
t

nη . 

iii. If p is odd, 12 += np , ...,2,1=n , and the 
attachment is at a vertex with      non-zero weight ,then 

2 1( ) 1.
t

nPη + =  
Proof: 
i. Let the attachment is at end vertex, and let jix , , 

ti ...,,2,1=  and 12...,,2,1 += nj , where

∑
∈

=
)(

0)(
vNw G

wf

∑
∈

=
)(

0)(
vNw G

wf
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1,1,21,1 ... txxx === , be a weighting of 
t

nP2 , 

...,,2,1=n as indicated in Fig. 5. 
 

 

Fig. 5 A weighting of 
t

nP2 , ...,2,1=n , where the attachment is 

an end vertex 
 

Then, from the condition that , for all v in

t

nP2 , ...,,2,1=n we have: 

0... 12,12,212,1 ==== −−− ntnn xxx
    

(8) 
 

and, for ti ...,,2,1=  and 32...,,3,1 −= nj  
 

02,, =+ +jiji xx ⇒ 2,, +−= jiji xx                (9) 
 

Hence, from (8) and (9), we get: 
for ti ...,,2,1=  and 12...,,3,1 −= nj  
 

0, =jix
          

(10) 
 

Also, for ti ...,,2,1=  and 22...,,4,2 −= nj  
 

02,, =+ +jiji xx ⇒ 2,, +−= jiji xx               (11) 
 

and 

1, 2 2, 2 , 2... 0.tx x x+ + + =                      (12) 
Then, 

1

, 2 1, 2 2, 2 1, 2 , 2
1

... .
t

t t i
i

x x x x x
−

−
=

= − − + − = −∑
   

(13) 

 
Thus, from (11) and (13), we use only 1−t  independent 

variables for a high zero-sum weighting of 
t

nP2 . Hence, by 

Lemma 1, 12 −= tP
t

n .  

ii. Let the attachment vertex be a neighbor of an end 
vertex, and let jix , , ti ...,,2,1=  and 

12...,,2,1 += nj , where 1,2 2,2 , 2... tx x x= = = , be 

a weighting of a  t-tupple coalescence graph 
t

nP 12 + , 

...,,2,1=n we use tt +− )1(  independent variable 

for a high zero-sum weighting of  
t

nP 12 + .Hence

2 1 ( 1) 2 1,
t

nP t t t+ = − + = − where the attachment is a 
vertex with zero weight. 

iii. Let the attachment be at an end vertex, and let jix , , 

ti ...,,2,1=  and 12...,,2,1 += nj , where 

1,1,21,1 ... txxx === , be a weighting of the graph 
t

nP 12 + , ...,,2,1=n  

Then, a high zero-sum weighting of  
t

nP 12 +  is obtained 
which uses exactly one independent variable. 

Therefore, by Lemma 1, 1)( 12 =+

t

nPη .■  

C. t-Tupple Coalescence for Complete Graphs 

The t-tupple coalescence graph 
t

pK  is not a complete 

graph, and it contains one cut vertex of degree t(p-1) , with 

order 1)1( +−pt  and size tq , 
2

)1( −
=

ptptq  and 

2)( =
t

pKdiam , for 2t ≥ . 

The nullity of 
t

pK  is determined in the next proposition. 

Proposition 3:For a t-tupple coalescence graph
t

pK , 1t ≥ , we 
have: 

i. If 2,p = then 2( ) 1.
t

K tη = − . 

ii. If 3,p ≥ then 0)( =
t

pKη . 

Proof: 
i. For 2=p , then, 22 PK ≡ , therefore, the proof is a 

special case of  Prop.2 (i). 
ii. For 3≥p , there exists no non-trivial zero-sum 

weighting of the graph 
t

pK , thus by Th. 1, 
t

pK  is a 

non singular. Hence, 0)( =
t

pKη .■ 

∑
∈

=
)(

0)(
vNw G

wf
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D. t-Tupple Coalescence for Complete Bipartite Graphs 

The t-tupple coalescence graph nm

t

K ,  has order 

1)1( +−+nmt  and size )(mnt and , ,( ) 2 ( ),
t

m n m ndiam K diam K≤  

in which strictly holds where nmK ,  is a star graph and the 

coalescence vertex is the central. And equality holds 

otherwise. The nullity of nm

t

K ,  is determined in the next 
proposition. 

Proposition 4: For a t-tupple coalescence graph ,

t

m nK , 1t ≥ , 

, 1m n ≥ ,we have: the following cases: 

i. If )1,1(),( =nm , then 1)()( 21,1 −== tPK
tt

ηη . 

ii. If )2,1(),( =nm , we have two cases: 
a) If the attachment is at a vertex in a set that has one vertex, 

then 1,2 3( ) ( ) 2 1
t t

K P tη η= = − . 

b) If the attachment is at a vertex in a set that has two 

vertices, then 1,2 3( ) ( ) 1
t t

K Pη η= = . 

iii. for, , 2,m n ≥  if ( , ) (2,2),m n =  then 2, 2 4( ) ( ) 1,
t t

K C tη η= = +

and ,( ) ( 3) 1,
t

m nK t m nη = + − + otherwise. 
Proof: Parts (i) and (ii) are special cases of Prop. 2. 

iii. For ( , ) (2, 2)m n = , then 42,2 CK ≡ , which is a special 

case of    Prop.3 (i). For 2≥m and 3≥n , let jix ,  and 

sry , , tri ...,,2,1, = , mj ...,,2,1= , and 

ns ...,,2,1= . Where, 1,1,21,1 ... txxx ===  be a 

weighting of a t-tupple coalescence graph 
t

nmK , , as 

indicated in Fig.6. 
 

 

Fig. 6 A weighting of 
t

nmK , , for 2≥m and 3≥n  

 Then, from the condition that , for all v in

t

nmK , , we have: 

0...

0...
0...

,2,1,

,22,21,2

,12,11,1

=+++

=+++
=+++

nttt

n

n

yyy

yyy
yyy

 

then,  

∑

∑

∑

−

=
−

−

=
−

−

=
−

=−−−−=

−=−−−−=

−=−−−−=

1

1
,1,2,1,,

1

1
,21,22,21,2,2

1

1
,11,12,11,1,1

...

...

...

n

s
stntttnt

n

s
snn

n

s
snn

yyyyy

yyyyy

yyyyy

(14) 

and, we have: 

0...

0...
0...

,2,1,

,22,21,2

,12,11,1

=+++

=+++
=+++

mttt

m

m

xxx

xxx
xxx

 

then, 

∑

∑

∑

−

=
−

−

=
−

−

=
−

=−−−−=

−=−−−−=

−=−−−−=

1

1
,1,2,1,,

1

1
,21,22,21,2,2

1

1
,11,12,11,1,1

...

...

...

m

j
jtmtttmt

m

j
jmm

m

j
jmm

xxxxx

xxxxx

xxxxx

(15)    

with, 1,1 2,1 , 1... .tx x x= = =  

Then, from (14) we use )1( −n ,t times, and from  (15), we 
use )1( −m , one times and )2( −m , )1( −t  times. Thus, 
the maximum number of non-zero independent variables used 

in a high zero-sum weighting of 
t

nmK , , )1,1(),( ≠nm , is 

equal to ( 1) ( 2) 1t n t m− + − + . 
Therefore, by Lemma 4 (iv),  

,( ) ( 1) ( 2) 1
t

m nK t n t mη = − + − + 1)3( +−+= mnt ,  

where, )1,1(),( ≠nm .On the other hand,
t

nmK , ,

)1,1(),( ≠nm  is a multiple coalescence of t isomorphic 

copies of a graph nmK , , then, we need )2( −+ nmt

∑
∈

=
)(

0)(
vNw G

wf
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variables for a weighting of 
t

nmK , . But by (15), one variable 

is occurred t times. In such a case, we must use this variable 
exactly once. Therefore, 

)1()2()( , −−−+= tnmtK
t

nmη 1)3( +−+= nmt .■ 

E. t-Tupple Coalescence for Star Graphs 

The t-tupple coalescence graph 
t

nS 1,1 −  has order 

1)1( +−nt  and size )1( −nt  and the diameter of 
t

nS 1,1 −  is 

equal to 2 if the rooted vertex of 1,1 −nS  is a central vertex and 

equals 4 if the rooted vertex of 1,1 −nS  is a non central vertex. 

The nullity of 
t

nS 1,1 −  is determined in the next proposition. 

Proposition 5: For a t-tupple coalescence graph 1, 1

t

nS − , 1t ≥ , 

4n ≥ , we have: 
i. If the attachment is at central vertex, then:

1)1()( 1,1 −−=− ntS
t

nη . 

ii. If the attachment is at non-central vertex, then:

1)3()( 1,1 +−=− ntS
t

nη . 

Proof: 
i. If the attachment vertex is the central vertex, then the t-

tupple 
t

nS 1,1 −  is a star graph with order t(n-1)+1 and 

nullity t(n-1)-1. 
ii. The proof is similar to that of Prop. 4.■ 

III. NULLITY OF GENERALIZED ROOTED GRAPHS 
In this section, we study the nullity of generalized rooted 

product graphs, for some known graphs such as pC , pP , pK  

and nmK , . 

A. Generalized Rooted Product Graphs for Cycles 

A generalized rooted product graph G(H) where pCG =  

has order . ( )p p H  and size )(Hpqp +  with

)(2
2

))(( HdiampHCdiam p +≤ if p is even, and 

)(2
2

1))(( HdiampHCdiam p +
−

≤  if p is odd. Equality 

holds in both cases if coalescence vertices of H are diametrical 
vertices. 
Proposition 6:Let ,k t Z +∈ , then: 

i. If the rooted vertex of 12 +tP  has zero weight, then,

pCEPCPC ptptp =−= ++ ))()(())(( 1212 ηη  

ii. 2( ( )) 0.p tC Pη =  

iii. If the rooted vertex of 12 +tP  has non-zero weight, then,

4 2 1( ( )) 2.k tC Pη + =  
Proof: 
i. Let peee ,...,, 21  be the edges of the graph pC , then  

we remove all these edges to obtain the graph 
2 1( ( ) ( )).p t pC P E C+ − Clearly, 2 1( ( ) ( ))p t pC P E C+ −

2 1 2 1 2 1...t t tP P P+ + += ∪ ∪ ∪  is the union of p  paths each of order 

12 +t . See Fig. 7. 
 

 

Fig. 7 The graph 2 1( )p tC P +  
 

In a high zero-sum weighting of )( 12 +tp PC , we can use 

exactly p  non-zero independent variables; hence, 

pPC tp =+ ))(( 12η . On the right side, it is clear that 

12121212 ...)()( ++++ ∪∪∪=− tttptp PPPCEPC . 
Hence,  

)...())()(( 12121212 ++++ ∪∪∪=− tttptp PPPCEPC ηη
. 

Since, 1)( 12 =+tPη  by Lemma 2 (ii) and

2 1 2 1 2 1 2 1 2 1 2 1( ... ) ( ) ( ) ... ( ).t t t t t tP P P P P Pη η η η+ + + + + +∪ ∪ ∪ = + + + Therefore, 

pCEPC ptp =+++=−+ 1...11))()(( 12η . 

ii. The proof is similar to that of Prop.6 (iii). 
iii. Let jix , , ki 4...,,2,1=  and 12...,,2,1 += tj , be a 

weighting of a generalized rooted product graph 
)( 124 +tk PC , ,k t Z +∈ , Thus, we use 2 independent 

variables, for a high zero-sum weighting of  
)( 124 +tk PC , ,k t Z +∈ . Hence, 2))(( 124 =+tk PCη .■  

Proposition 7: Let pG C= and nKH = , 1>n , we have: 
i. 3( ( )) 1.pC Kη = .   

ii. If 3n ≠ ,  then ( ( )) 0.p nC Kη =  



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:2, 2014

331

 

 

Proof: The proof of (i) and (ii) are determined by weights 
technique.■ 
Proposition 8: Let pG C= and , , , 2m nH K m n= ≥ , we consider 
the following cases: 
i. If 4 ,p k= k Z +∈ , then 2)3(4))(( ,4 +−+= nmkKC nmkη .  

ii. If 4 ,p k≠ ,k Z+∈ then 

, ,( ( )) ( ( ) ( )) ( 3).p mn p mn pC K C K V C p m nη η= − = + −  
Proof: 
i. Let jix , , sry , , where, kri 4...,,2,1, = ,  mj ...,,2,1= , 

and ns ...,,2,1=  be a weighting for )( ,4 nmk KC , 

k Z +∈  as indicated in Fig. 8. 
 

 
Fig. 8 A weighting of the generalized rooted product graph

)( ,4 nmk KC  

 

Then, from the condition that , for all v in 

)( ,4 nmk KC , k Z +∈ ,   we have: 

0...

0...
0...

,42,41,4

,22,21,2

,12,11,1

=+++

=+++
=+++

mkkk

m

m

xxx

xxx
xxx

 

then, 

1,42,41,4,4

1,22,21,2,2

1,12,11,1,1

...

...
...

−

−

−

−−−−=

−−−−=
−−−−=

mkkkmk

mm

mm

xxxx

xxxx
xxxx

   

(16)  

 
and, 

0...

0...
0...

,42,41,4

,22,21,2

,12,11,1

=+++

=+++
=+++

nkkk

n

n

yyy

yyy
yyy

 

then, 

1,42,41,4,4

1,22,21,2,2

1,12,11,1,1

...

...
...

−

−

−

−−−−=

−−−−=
−−−−=

nkkknk

nn

nn

yyyy

yyyy
yyyy

  

(17) 

 
Also, we have:   For 24...,,4,2 −= ki  
 

01,21, =+ +ii xx ⇒ 1,21, +−= ii xx            (18) 
 

and, for 1,3,..., 4 3,i k= −  
 

01,21, =+ +ii xx ⇒ 1,21, +−= ii xx
   

(19) 
 
Thus, from (16) and (17), we use )1(4)1(4 −+− nkmk  

variables. But from (18) and (19), 24 −t  variables are 
iterated. Therefore, the maximum number of non-zero 
independent variables used in a high zero-sum weighting for

)( ,4 nmk KC , k Z +∈ , is equal to: 
 

4 ( 1) 4 ( 1) (4 2)
4 ( 1) 4 ( 1) 4 2

k m k n k
k m k n k

− + − − −
= − + − − +

 

2)3(4 +−+= nmk . 
 

Hence, by Lemma 1, 
 

2)3(4))(( ,4 +−+= nmkKC nmkη . 
 

ii. The proof is similar to that of Proposition 6 (i).■ 
Corollary 1: [5, p.44] If the rooted vertex of a graph 1,1 −nS  is 
a central vertex, then: 
 

1, 1 1, 1( ( )) ( ( ) ( )) ( 2).p n p n pC S C S E C p nη η− −= − = −
 

 
Proof: Follows by applying End vertex Corollary.■ 

B. Generalized Rooted Product Graphs for Paths 

A generalized rooted product graph G(H), where pPG =  

has order p|H| and size 1)( −+ Hpqp  and 

1)(2))(( −+≤ HdiampHPdiam p . Equality holds if 

coalescence vertices of H are diametrical vertices. 
Proposition 9:Let ,k t Z +∈ , then:  

∑
∈

=
)(

0)(
vNw G

wf
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i. tPVCPCP tktkt 2))()(())(( 24242 =−= ηη . 

ii. 2 1 4 2 1 4 2 1( ( )) ( ( ) ( )) 1
2 2.

t k t k tP C P C V P
t

η η+ + += − +
= +

 

iii. For each and 4 ,n k≠ ( ( )) 0.p nP Cη =  
Proof: 
i. We can use exactly t2  distinct independent variables 

for a high zero-sum weighting of )( 42 kt CP ., we have 

tCP kt 2))(( 42 =η . 

On the other hand, 2 4 2( ( ) ( ))t k tP C V P− 4 1 4 1 4 1( ... ).k k kP P P− − −= ∪ ∪ ∪ . 

Hence, ))()(( 242 tkt PVCP −η 4 1 4 1 4 1( ... )k k kP P Pη − − −= ∪ ∪ ∪ . 

Since, 4 1( ) 1kPη − =  by Lemma 2 (ii), and 

4 1 4 1 4 1

4 1 4 1 4 1

( ... )
( ) ( ) ... ( )

k k k

k k k

P P P
P P P

η
η η η

− − −

− − −

∪ ∪ ∪

= + + +
 

t211...11 =++++=  
   Therefore, 2 4( ( )) 2 .t kP C tη =  
ii. The proof is similar to part (i). 

iii. The proof is similar to that of Prop.8 (ii).■ 
Proposition 10:Let pG P= and nKH = , 1>n then 

0))(( =np KPη
. 

Proof: The proof follows from the fact that in any high zero-
sum weighting, each vertex of )( np KP  must be zero 

weighted, and then )( np KP  has no non-trivial zero-sum 

weighting.■ 
Proposition 11:Let 2, ≥nm , t Z +∈ , then: 

i. 
2 , 2 , 2( ( )) ( ( ) ( ))

2 ( 3).
t m n t m n tP K P K V P

t m n

η η= −

= + −
 

ii. 
2 1 , 2 1 , 2 1( ( )) ( ( ) ( )) 1

2 ( 3) 1.
t m n t m n tP K P K V P

t m n

η η+ + += − +

= + − +
 

Proof: 
i. If the rooted vertex of nmK ,  belongs to the set of 

vertices with cardinality m, then from the removal of 
all vertices of tP2  we obtain a disconnected graph with 

t2  components and each component is nmK ,1− , and by 

Lemma 4 (iv), )3()( ,1 −+=− nmK nmη . Therefore, we 

can use exactly 
( 3) ( 3) ... ( 3) 2( 3).m n m n m n t m n+ − + + − + + + − = + −  
independent variables for a high zero-sum weighting of

)( ,2 nmt KP . Therefore, by Lemma 1, we have:

2 ,( ( )) 2 ( 3)t m nP K t m nη = + − .■ 

Note: It is clear that if pPG = , 3,1,1 ≥= − nSH n , and the 

rooted vertex of a graph 1,1 −nS  is a central vertex , then 

1, 1 1, 1( ( )) ( ( ) ( )) ( 2).p n p n pP S P S E P p nη η− −= − = −  

C. Generalized Rooted Product Graphs for Complete 
Graphs 

A generalized rooted product graph G(H) where pKG =  

has order ))(( Hpp  and size )(
2

)1( Hpqpp
+

−
 and 

)(21))(( HdiamHKdiam p +≤ . Equality holds if 

coalescence vertices are diametrical vertices. 
Proposition 12:Let t Z +∈ , then: 
i. 4 4( ( )) ( ( ) ( )) .p t p t pK C K C V K pη η= − =  

ii. 3 4 1( ( )) 1.tK Cη − = . 
iii. ( ( )) 0,p nK Cη = , for 0p = and 4 1, 4 2n t t= + + . 
Proof:  
The proof of (i), (ii), and (iii) are similar to that of Proposition 
5 (i), 7 (iii) and 3 (ii), respectively.■ 
Proposition 13:Let t Z +∈ , then: 
i. If the rooted vertex of 12 +tP  has zero weight, then, 

.))()(())(( 1212 pKEPKPK ptptp =−= ++ ηη  

ii. ( ( )) 0,p nK Pη = otherwise. 
Proof: The proof of (i) and (ii) are determined by applying 
End vertex Lemma.■ 
Proposition 14:Let 1p> , 2, ≥nm , then   

).3())()(())(( ,, −+=−= nmpKVKKKK pnmpnmp ηη
Proof: The proof follows by applying Coneighbour Lemma.■ 
Note:  If 3≥n  and the rooted vertex of 1,1 −nS  is the central 

vertex, then 1, 1 1, 1( ( )) ( ( ) ( )) ( 2).p n p n pK S K S E K p nη η− −= − = −  

D. Generalized Rooted Product Graphs for Complete 
Bipartite Graphs 

The necessary and sufficient condition for a connected 
bipartite graph G to be a complete bipartite graph is that G 
does not contain a path of order four as an induced subgraph. 
Moreover, the generalized rooted product graph G(H) where 

nmKG ,=  has order )()( Hpnm +  and size 

)()( Hqnmmn ++  and 
, ,( ( )) ( ) 2 ( ).m n m ndiam K H diam K diam H≤ +

Equality holds if coalescence vertex of H  is diametrical 
vertex. 
Proposition 15:Let t Z +∈ ,  and 2, ≥nm , then:  
i. If ( , ) (2, 2),m n =  then: 2,2 4 1( ( )) 1.tK Cη − =  
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ii. for, , 2,m n ≥  if ( , ) (2, 2),m n = then 2,2 4( ( )) 6,
t

tK Cη =  

and 
, 4 , 4( ( )) ( ( ) ) ( 2) ( ),

t t

m n t m n tK C K C E m n m nη η= − = + − + +

otherwise. 
where E is the set of edges of 4tC which are adjacent with 

,m nK  after the coalescence. 

i. ,( ( )) 0,m n pK Cη = otherwise. 
Proof: 
i. The proof is similar to that of Proposition 7 (i). 

ii. Since 42,2 CK ≈ , then the proof is similar to that of 

Proposition 7(i), we can use exactly 2( ) 2m n+ −
+(m+n) independent variables for a high zero-sum 
weighting of )( 4, tnm CK .  

Therefore, by Lemma1, we have:
)()2())(( 4, nmnmCK tnm ++−+=η . 

On the right side, it is obvious that: , 4( ( ) )m n tK C E−

, 4 1 4 1 4 1( ... ).m n t t tK P P P− − −= ∪ ∪ ∪ ∪  

Hence, , 4( ( ) )m n tK C Eη − , 4 1 4 1 4 1( ... ).m n t t tK P P Pη − − −= ∪ ∪ ∪ ∪  

Since, 2)( , −+= nmK nmη  by Lemma 2 (iv), and 

4 1( ) 1tPη − =  by     Lemma 2 (ii). Then: 

, 4 1 4 1 4 1

, 4 1 4 1 4 1

( ... )

( ) ( ) ( ) ... ( )
m n t t t

m n t t t

K P P P

K P P P

η

η η η η
− − −

− − −

∪ ∪ ∪ ∪

= + + + +
1...11)2( ++++−+= nm 2( ) 2m n= + − . 

Therefore, 

, 4 , 4( ( )) ( 2) ( ) ( ( ) ).m n t m n tK C m n m n K C Eη η= + − + + = −  

iii. The proof is similar to that of Proposition 8 (ii).■ 
Proposition 16:Let t Z +∈ , and 2, ≥nm , then: 

i. If  the rooted vertex of 12 +tP  has zero-weight, then:          

, 2 1 , 2 1 ,( ( )) ( ( ) ( )) .m n t m n t m nK P K P E K m nη η+ += − = +  

ii. If  the rooted vertex of 12 +tP  has non-zero weight, then:

, 2 1 , 2 1 ,( ( )) ( ( ) ( )) 2

2 .
m n t m n t m nK P K P E K

m n

η η+ += − −

= + −  
iii. , 2( ( )) 0.m n tK Pη =  
Proof: The proof of (i) and (ii) follows by applying Endvertex 
Lemma m+n times which leaves such number of odd paths. 
The prove of (iii) is similar to that of Proposition 8.■ 

A. More Generalized Rooted Products 
We are going to study more generalized rooted product 

graphs  
Proposition 17:Let t Z +∈ , and )(21 ,...,, Gpuuu  be the 
vertices of the non-trivial graph G, then:  

i. If  the rooted vertex of 2 1tP +  has zero weight, then:

2 1 2 1( ( )) ( ( ) ( )) ( ).t tG P G P E G p Gη η+ += − =  

ii. If  the rooted vertex of 2 1tP +  has non-zero weight, then:

2 1( ( )) ( ).tG P Gη η+ =  
iii. 2( ( )) 0.tG Pη =  
Proof: The proof of (i), (ii) and (iii) follows by applying 
Endvertex Lemma. ■ 

We are going to prove more generalized rooted products to 
Prop, 8, 11 and 14. 
Proposition 18: Let )(21 ,...,, Gpuuu  be the vertices of a graph 

G and , ,m nH K=  then: ,( ( )) ( )( 3) ( ).m nG K p G m n Gη η= + − +  

Proof: If G is non-singular, then each vertex iu , 

)(...,2,1 Gpi = , has a zero weight in a high zero-sum 

weighting for )( ,nmKG . Therefore, removal of all vertices of 

G will not change the number of independent variables in any 
high zero-sum weighting of the graph )( ,nmKG , which is  

)3(...)3()3( −+++−++−+ nmnmnm )(Gp times. 
Hence,  

)3)(())()(())(( ,, −+=−= nmGpGVKGKG nmnm ηη  

But, if 0)( >Gη , then ∃  more η  independent variables in a 

high zero-sum weighting for )( ,nmKG .■ 

IV.  NUT GRAPHS AND THEIR COALESCENCE 
In this section, we introduce and prove some results on the 

nullity of coalescence of nut graphs such as coalescence at 
vertex, generalization rooted, edge introduced, Cartesian 
product and tensor product. It is clear that it is clear that in [6, 
Theorem 4] that a nut graph is connected with no end vertex 
and it is not bipartite. We can assume that 1K  is also a nut 
graph. The smallest nut graph has order 7. 

Some basic nut graphs with order 7 is C5oC3, with order 
3m, 3≥m is Cm(C3) and whose orders 8, 10 and are 
illustrated in the next figure. 
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Fig. 9 Some basic nut graphs 

 
Lemma 5: In the above nut graphs, if T or Ti, i=1, 2, 3 is 
replaced by 14 −kC , 1≥k , then the resulting graph is again a 
nut graph. 
Proof: The weighting of the triangle T {or any Ti} is {-x, x, x} 
can be replaced by {-x, x, x, -x, -x, x, x,…,-x, -x, x, x} in the 
weighting of the cycle 14 −kC .■ 

Theorem 2: For any two rooted nut graphs ),( 1 uG and 

),( 2 vG , the coalescence graph 21 GGG =  is a nut graph. 

Proof: Let ii xuf =)( , 1...,,2,1 pi =  and jj yvf =)( , 

2...,,2,1 pj =  be a non-zero weighting for 1G and 2G . 
Without loss of generality, let xuf =)( and yvf =)( . In G, 

vu ≡  and
1 2( ) ( ) ( )

( ) ( ) ( ) 0.
G G Gw N u v w N u w N v

f w f w f w
∈ ≡ ∈ ∈

= + =∑ ∑ ∑ Now, 

for each )(
1

uNu Gi ∈  and each )(
2

vNv Gj ∈ , we have: 

1( )
( )

G iw u N u
x f w

≠ ∈

− = ∑ and
2 ( )

( ) .
G jw u N v

y f w
≠ ∈

− = ∑  

Hence, yx =  and a non-trivial zero-sum weighting for G 
exists which uses exactly one variable say x. See Fig. 10. 
Therefore, G is a nut graph.■ 

 
Fig. 10 The coalescence of two nut graphs 

 
Thus, due to Lemma 5, and above basic nut graphs, given 

any number 7≥n , there exists a nut graph of order n. Now 
we assert and answer the following question. 
Question: Given a number n can one construct a nut graph of 
order n? 
The answer: Due to Lemma 5, Th.2 and basic nut graphs given 
in Fig. 9, there exist a nut graph of order n, for each positive 
integer n, 7≥n . Because the nut graphs of order 7, 8, 9 and 
10 are given in the Fig. 9 where m=3. Nut graphs of order 11 
are obtained from 7G , 12 are obtained from mG3 , while of 

order 13 and 14 are obtained from the coalescence of 7G and  

7G ,  7G  and 8G , and all other orders are obtained by 

replacing a cycle 14 −nC  by a cycle 34 +nC  in the last above 4 
cases. 
Theorem 3: For any two rooted nut graphs ),( 1 uG and 

),( 2 vG , both generalized rooted graphs )( 21 GG  and 

)( 12 GG  are nut graphs. 
Proof: The prove is an extension of that of Th.2, and hence is 
omitted.■ 
Theorem 4: For any two rooted nut graphs ),( 1 uG and 

),( 2 vG , the edge introduced graph 21 : GGG =  (obtained 
by introducing the edge uv ) is a non-singular graph. 
Proof: Weights 1G  and 2G  as in Th.2, then: 

0)()(
)( )(1

=+=∑ ∑
∈ ∈

ywfwf
uNw uNwG G

0=⇒ y  

and 
0)()(

)( )(2

=+=∑ ∑
∈ ∈

xwfwf
vNw vNwG G

0=⇒ x . 

       Hence, 0== yx  and there exist no non-trivial zero-
sum weighting for G. Thus, G is non-singular by Th.1 ■ 

Let G1 = (V1, E1) and G2 = (V2, E2) be vertex disjoint non-
trivial graphs. The Cartesian productG1×G2 of the two graphs 
G1 and G2 is the graph with a vertex set V(G1×G2) = V1×V2 
and two vertices (u1, v1) and (u2, v2) are adjacent in G1×G2 if, 
and only if, [u1 = u2 and v1v2∈E(G2)] or [u1u2∈E(G1) and v1 = 
v2]. See [8]. 

In [5, Th. 3.4.4], it is proved that the Cartesian product 

21 GGG ×=  of two singular graphs is a singular graph. 
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Hence, it follows that the Cartesian product of any two nut 
graphs is a singular graph. A necessary condition for the 
Cartesian product to be a nut graph is given by the following 
Theorem: 
Theorem 5:If for all eigenvalues 1...,,2,1, pii =λ  of the nut 

graph ),( 1 uG  and all eigenvalues 2...,,2,1, pjj =μ  of the 

nut graph ),( 2 vG , ji μλ −≠  except the zero eigenvalue for 

both, then the Cartesian product 21 GGG ×=  of the nut 

graphs  1G  and 2G  is a nut graph. 
Proof: The proof follows from Th. 1, and [5, Lemma 3.4.3].■ 

This means that the Cartesian product of bipartite graph by 
itself is never a nut graph. 

Let G1 = (V1, E1) and G2 = (V2, E2) be vertex disjoint non-
trivial graphs. The tensor productG1⊗G2 of two graphs G1 and 
G2 is the graph with vertex set V(G1⊗G2) = V1×V2 and two 
vertices (u1, v1) and (u2, v2) are adjacent in G1⊗G2 if, and only 
if, [u1u2∈E(G1) and v1v2∈E(G2)]. It is also called the direct 
product or the Kronecker product. See [8]. 

The next theorem is a result that follows from the definition 
of tensor product G1⊗G2 and nut graph. 

Theorem 6: The tensor product 1 2G G G= ⊗  of two nut 
graphs cannot be a nut graph, except where 1 2 1.G G K= =  
Proof: Assume that G1 and G2 are nut graphs and 1 2.G G G= ⊗  

 Then by [5, Th. 3.2.9], 1 2 2 1 1 2 1 2( ) 1.G p p p pη η η η η= + − = + −

If G is a nut graph, then 1)( =Gη .Since, 1121 =−+ pp

221 =+⇒ pp , hence 121 == pp .■ 

REFERENCES 
[1] L.W. Beineke, R. J. Wilson and P.J Cameron, Topics in Algebraic 

Graph Theory, Cambridge University Press, 2005. 
[2] M. Brown, J. W. Kennedy and B. Servatius, Graph singularity, Graph 

Theory Notes of New York, XXV, 1993, pp.23-32. 
[3] D. M. Cvetkovic, M.  Doob and H. Sachs, Spectra of Graphs-Theory 

and Application, Academic Press, New York, 1979. 
[4] D. M. Cvetkovic, M. Doob, I. Gutman and Torgas′ev, Recent Results in 

the Theory of Graph Spectra, North-Holland. Amsterdam, 1988. 
[5] D.H. Mohammed, On the Degree of Singularity of Some Compound 

Graphs, M.Sc. Thesis, Duhok University, Duhok. 2005. 
[6] P.A Rashid, Characterization for the Degree of the Singularity of a 

Graph, M.Sc. Thesis, Salahuddin University, Arbil, 2001. 
[7] I. Sciriha, Coalesced and embedded nut graphs in singular graphs, Ars 

MathematicaContemporanea, Vol.1, 2008, pp.20-31. 
[8] Y. Shibata and Y. Kikuchi, Graph products based on the distance in 

graphs, IEIC- E Trans. Fundamentals, Vol. E83- A, No. 3, 2000, 
pp.459-464. 

 


