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Nullity of t-Tupple Graphs

Khidir R. Sharaf, Didar A. Ali

Abstract—The nullity n(G) of a graph is the occurrence of zero
as an eigenvalue in its spectra. A zero-sum weighting of a graph G is
real valued function, say f from vertices of G to the set of real
numbers, provided that for each vertex of G the summation of the
weights f(w) over all neighborhood w of v is zero for each v in G.A
high zero-sum weighting of G is one that uses maximum number of
non-zero independent variables. If G is graph with an end vertex, and
if H is an induced subgraph of G obtained by deleting this vertex
together with the vertex adjacent to it, then, n(G)= n(H). In this
paper, a high zero-sum weighting technique and the endvertex
procedure are applied to evaluate the nullity of t-tupple and
generalized t-tupple graphs are derived and determined for some
special types of graphs,

Also, we introduce and prove some important results about the t-
tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords—Graph theory, Graph spectra, Nullity of graphs.

I. INTRODUCTION

HE eigenvalues of the adjacency matrix A(G) are said to

be the eigenvalues of the graph G, the occurrence of zero
as an eigenvalue in the spectrum of the graph G is called the
“nullity” of G, it is denoted by 1n(G). Brown and others [2]
proved that a graph G is singular if, and only if, G possesses a
non-trivial zero-sum weighting, and asked, what causes a
graph to be singular and what the effects of this on its
properties are. Rashid [6] proved that the maximum number of
non zero independent variables used in a high zero- sum
weighting for a graph G, is equal to the nullity of G.
Definition 1:[2],[6, p.16] A vertex weighting of a graph G is a
function f: V(G)—R where R is the set of real numbers, which
assigns a real number (weight) to each vertex. The weighting
of G is said to be non-trivial if there is at least one vertex
veV(G) for which f(v) # 0.
Definition 2:[2, p.16] A non-trivial vertex weighting of a
graph G is called a zero-sum weighting provided that for each
veV(G), 2f(w) = 0, where the summation is taken over all
weNg(v).

Clearly, the following weighting for G is a non-trivial zero-
sum weighting where X;, X,, X3, X4, and xs are weights and
provided that (x;, Xz, X3, X4, X5) # (0, 0, 0, 0, O)as indicated in
Fig.1.
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Fig. 1 A non-trivial zero-sum weighting for a graph G

Theorem 1: A graph G is Singular if, and only if there is a
non-trivial zero sum weighting for G.m
Out of all zero-sum weightings of a graph G, a high zero-sum
weighting of G is one that uses maximum number of non-zero
independent variables.
Lemma 1: [6, p.35] In any graph G, the maximum number
MV(G) of non zero independent variables in a high zero-sum
weighting equals the number of zeros as an eigenvalues of the
adjacency matrix of G, (i.e. MV(G)=1(G)).m
In Fig.1, the weighting for the graph G is a high zero-sum
weighting that uses 5 independent variables, hence, n(G) = 5.
This is a very active method to characterize the degree of
singularity (nullity) of a chemical compound Graph, the
carbohydrate graph C,Hj,;, with n=5, has two bonding
graphs, (a) where the 5 carbon atoms induces a path of order
5, n(G) = 7 this is a more stable case which is usually present
in the nature, while in (b) where the 5 carbon atoms induces a
star of order 5, with n(G) = 9 which has different physical
properties as in case a,as well as more instability.
Lemma 2:[1, p.72],[3]
1. The eigenvalues of the cycle C, are of the form 2cos

E, r =0, 1,...,p-1. According to this, n(Cp)= 2 if
p
p=0(mod4) and 0 otherwise.
ii. ~ The eigenvalues of the path P, are of the form 2cos
T r=12, ... p. And thus, n(Pp)=1 if p is odd and 0
p+1
otherwise.
iil. The spectrum of the complete graph K, consists of p-1
and -1 with multiplicity p-1.
iv. The spectrum of the complete bipartite graph Ky,
consists of vmn, - vmn and zero m+n-2 times
Lemma 3: (Endvertex Lemma)[4, p.234] If G is graph with an
end vertex, and if H is an induced subgraph of G obtained by
deleting this vertex together with the vertex adjacent to it, then

n(G) =n(H). =
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Lemma 4: (Coneighbor Lemma) If two vertices u and v have
the same neighbors in a graph G, then n(G)= n(G-u)+1=n(G-
v)+l.m

Definition 3: [7] Let (G4, u) and (G,, v) be two graphs rooted
at vertices u and v, respectively. We attach G, to G, (or G, to
G)) by identifying the vertex u of G; with the vertex v of G,.
Vertices u and v are called vertices of attachment. The vertex
formed by their identification is called the coalescence vertex.
The resulting graph G; o G, is called the coalescence (vertex
identification) of G; and G,.

Definition 4: [7] Let {(G1, V1), (Ga, V2),...,(G,, v} be a family
of not necessary distinct connected graphs with roots v, vy,
..., Vi, respectively. A connected graph G= G;0G,0...0G;
is called the multiple coalescence of Gi, Gy,...,G, provided
that the vertices vy, vy, ..., v; are identified to reform the
coalescence vertex v. The t-tupple coalescence graph is

1
denoted by G is the multiple coalescence of t isomorphic
I

copies of a graph G. In the same ways G1 o (5, is the multiple

coalescence of G; and t copies of Go.

Remark 1: [7] All coalesced graphs have v as a common cut
vertex. Some graphs and their operations will, herein, be
illustrated in Fig.2.

Vi Vs
V2 :
&
& 2 Gy
\4 o
% 2
v 3| | |
. i G oo G
Gy & &y WGy < 17

Fig. 2 Multiple coalescence G1 ° G2 ° G3 , t-tupple coalescence
Bl |2
G] and coalescence of both G1 o G2

Definition 5: [7] Let G be a graph consisting of n vertices and
L = {H, H,, ...,H,} be a family of rooted graphs. Then the
graph formed by attaching H, to the k-th (1 <k <n) vertex of
G is called the generalized rooted product and is denoted by
G(L); G itself is called the core of G(L). If each member of L
is isomorphic to the rooted graph H, then the graph G(L) is
denoted by G(H). Recall G, G, and G; from Fig. 3. Then, we
have

@, (3))
Ty (L), L= (35 Ty 00y, 0yl

Fig. 3 Generalized rooted product graphs

II.NULLITY OF T-TUPPLE GRAPHS
In this section, we determine the nullity of t-Tupple graphs
of some known graphs such as Cp, P,, K, and K .

A.t-Tupple Coalescence for Cycles
I
t-tupple coalescence graph Cp has order t(p—1)+1 and
I .
size IP, and the diameter of C is equal to 2d|am(Cp),
I
for t>2. The nullity of C, is determined in the next

proposition.
t
Proposition 1:For a t-tupple coalescence graph C, t =1, we

have:

_ _ K
oo PN =02 e (C, ) =t 1

_ _ Il
i ap P=ANE2 =12 en (Cy) =t—1.

Il

ii.  Ifpisodd, then 7(Cp) =0
Proof:
i Let X, i=12,.,t and j=12,...,4Nn, where

X1 =Xy, =...= Xy, be a weighting of a t-tupple
I
coalescence graphC, ,n=1,2,...,as indicated in Fig. 4.

'\’1.411—1

I

Fig. 4 A weightingof C,,,, n=1,2,...
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Then, from the condition that z f(w)=0, forall v in
weNg (V)

|t

ams N=12,..., wehave:
fori=1,2,..,t and j=12,...,4n-3
X|j+Xi j+2_0:>XIJ__Xi,j+2 (1
since,
Xig =X ==Xy @
then, from (1) and (2), we get:
fori=1,2,...,t and j=1,5,...,.4n -3
Xi i =X, 3)

X=X, “)

Also, from the condition that Z f(w)=0, for all v in
we Ng (V)
|t
s N=L12,..., wehave:

fori=1,2,...,t and j=2,4,...,4n-2
X j+X j2=0=X%;==X . %)

thus, from (5), we get:
for j =2,6, ...,4n—2

X i =Xz

X, . =X
2, 2,2

. (6)
Xi.j =X 2

and, for | =4,8,...,4n

X i ==X,

X, . =—X

2, 2,2

: )

X j == X2

Then, from (3) and (4) we use only one independent variable,
and from (6) and (7), we use t independent variables, for a
I
zero-sum weighting of C,,, N =1,2,....
Thus, the maximum number of non zero independent
variables wused in a high zero-sum weighting of

Il
C,,» N=1,2,..., is equal to t+1. Hence, by Proposition
N
1.4, n(C,)=t+1.
It

On the other hand,C,,,N=12,.., is multiple

coalescence of t isomorphic copies of a graph C,_,
n=12,..,since 77(C,,) =2, by Lemma 2 (i). Then, we
need 2t variables for a weighting of C4n . But by (3) and (4),

one variable is occurred t times. In such a case, we must use
this variable exactly once. Therefore,

N
nC,)=2t-(t-)=t+1.
ii. There a high

I
ania>s N=L12,..., which uses t—1 independent

exists zero-sum  weighting  for

I
variables. Hence, by Lemma 1, 77(C,,,) =t —1.
iii. If p is odd, there exists no non-trivial zero-sum
Y Y

weighting for C . Thus, by Lemma 1, C is non

singular. m
B. t-Tupple Coalescence for Paths
It
t-Tupple coalescence graphs Pp have order t(p—1)+1

. :
and size t(p—1), and the diam(P,)<2diam(P,).
Besides, equality holds where the rooted vertex of Pp is an
end vertex.
il
The nullity of P is determined in the next proposition.
It
Proposition 2: For a t-tupple coalescence graph P, t>1,
we have:
i. Ifpiseven, p=2n,n=12,...
I
is at any vertex, then 77(P,,) =t —1.
ii. If p is odd,p=2n+1, n=12,..., and the
attachment is at a vertex with zero weight ,then
Il
n(Py,,,)=2t-1.
ili. If p is odd,p=2n+1,

attachment is at a vertex with
|

, and the attachment

n=1,2,..., and the

non-zero weight ,then

77(P2n+1) =L

Proof:

i. Let the attachment is at end vertex, and let X j>
i=12,.,t and j=12,..,2n+1, where
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It
X =X, =...= X, be a weighting of P, ,

n=1,2,..., as indicated in Fig. 5.

) xl.ln ®
"\'1.211 ®
o,
l-? 5 . e}
X2 Q\ |
/”’712
X T X ==X

N
Fig. 5 A weighting of Pzn , N=1,2,..., where the attachment is

an end vertex

Then, from the condition that Z f(w)=0, for all vin
weNg (V)
|t

n-N=12,..., wehave:

Xiont = Xpong == Xiop = 0 ®)
and, for i =1,2,...,t and j=1,3,...,2n -3

X .+ X

X =02 X=X 0 ©)

Hence, from (8) and (9), we get:
fori=1,2,...,t and j=13,...,2n—1

X, =0 (10)
Also, for i=1,2,...,t and j=2,4,...,2n-2

X i +X

i i,j+2=0:>xi,j ==X jn (11

and
2t Xt t X, =0. (12)
Then,

X=X =Xt X = _Z X2 (13)

i=1

Thus, from (11) and (13), we use only T —1 independent
Il
variables for a high zero-sum weighting of P,, . Hence, by
It
Lemma 1, P,, =t 1.

ii. Let the attachment vertex be a neighbor of an end
vertex, —and let X, i=12,..,t and
j=12,..,2n+1, where X, =Xy p ==X ,, be

1
a weighting of a t-tupple coalescence graph P.

2n+l1
n=1,2,..., we use (t—1)+1 independent variable
Il

for a high zero-sum weighting of P

sl -HeEnce

It
P, =(t-1)+t=2t—1 where the attachment is a

vertex with zero weight.

iii. Let the attachment be at an end vertex, and let X, i
i=12,.,t and j=12,..,2n+1, where
X1 =Xy =...= X1, be a weighting of the graph
't
s N=12,...,

|t

Then, a high zero-sum weighting of P2 is obtained

n+1
which uses exactly one independent variable.
K
Therefore, by Lemma 1, 7(P,,,,) =1.m

C.t-Tupple Coalescence for Complete Graphs
It

The t-tupple coalescence graph K _ is not a complete

P
graph, and it contains one cut vertex of degree t(p-1) , with
tp(p-1
order t(p—1)+1 and size tq, tq= % and

It
diam(K,)=2, for t>2.

It
The nullity of K p is determined in the next proposition.
It
Proposition 3:For a t-tupple coalescence graph K oo 1>1, we
have:
[
i. If p=2,then n(K,)=t-1..
I
ii. If p>3,then 7(K ) =0.
Proof:
i.  Forp=2, then, K, = P,, therefore, the proof is a
special case of Prop.2 (i).
ii. Forp=>3, there exists no non-trivial zero-sum
I Il
weighting of the graph K, thus by Th. 1, K is a
I
non singular. Hence, 7(K ) =0.m
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D.t-Tupple Coalescence for Complete Bipartite Graphs
Y

The t-tupple coalescence graph Km,n has order

l
t(m+n—1)+1 and size t(mn)and diam(K, ,) <2diam(K, ),

in which strictly holds where K is a star graph and the

m,n

coalescence vertex is the central. And equality holds
It

otherwise. The nullity of Kmn is determined in the next

proposition.

It

Proposition 4: For a t-tupple coalescence graph K t>1,

m,n 2
m, N > 1 ,we have: the following cases:

|t |t

i e MW= hen p(K, ) =n(P)=t-1.

. If (m,n)=(1,2) , we have two cases:
a) Ifthe attachment is at a vertex in a set that has one vertex,
It It
then (K, ,)=n(P)=2t-1.
b) If the attachment is at a vertex in a set that has two
It It
vertices, then 7(K, ,) =n(P)=1.
I I
iii.  for, MN=2, if(mn)=(2,2), then n(K,,)=n(C,)=t+1,
I
and n(K, ) =t(m+n-3)+1, otherwise.
Proof: Parts (i) and (ii) are special cases of Prop. 2.

iii.  For (M,n)=(2,2),then K,, =C,, which is a special
case of  Prop.3 (i). Form=>2and N >3, let X ; and

Yiso i,r=12,...t, j=12,..,m, and

s=1,2,..,n. Where,X;; =X,; =...= X, be a

I
weighting of a t-tupple coalescence graph Km’n , as
indicated in Fig.6.

I
Fig. 6 A weighting of K

for M>2andN >3

m,n >

Then, from the condition that Z f(w)=0, for all v in

weNg (V)

Y

Km,n , we have:

Yt Yo tetYin= 0
Yoot Yo, et Yo = 0

Yoot Yottt Yin = 0
then,

n-1
Yin =Y Y2 Y = Z Yis
s=I

n—|
Yon="Yo1 =Yoo =" You = _Z Yas (14)
s=1

n-1
Yin="Yoi Yoo Y = Z Yis
s=1

and, we have:
X+ X+t X, =0

X1 ¥ X0+t X, =0

Xig + X+t X = 0

then,
m-1
Xim ==X =X oo = Xy =— z X
j=1
m-1
Xy ==Xy = Xgg ==Xy o == Xy
2,m 2,1 2,2 7T Ao mel 2,
0 (15)
m-1
Xom = X1 = Xo == X = X
j=1
with, X1,1 = XZ‘1 =...= X[,r

Then, from (14) we use (N —1) ,t times, and from (15), we
use (M—1), one times and (M—2), (t—1) times. Thus,
the maximum number of non-zero independent variables used

Il
in a high zero-sum weighting of K
equal to t((n—1)+t(m-2)+1.

Therefore, by Lemma 4 (iv),

(m,n)=(1,1), is

m,n >

n(l‘é‘m‘n)zt(n—l)+t(m—2)+1 =tin+m-3)+1,
I

where, (M, N) # (1,1).0n the other ~ hand, K

m,n >

(m,n) = (1,1) is a multiple coalescence of t isomorphic
copies of a graph Km’n, then, we need t(M+n-2)
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I
variables for a weighting of K . But by (15), one variable
is occurred t times. In such a case, we must use this variable
exactly once. Therefore,
Il

nKy)=ttm+n=-2)-(t-)=t(m+n-3)+1.m

E. t-Tupple Coalescence for Star Graphs
It

The t-tupple coalescence graph S]qu has order

1
t(n—1)+1 and size t(N—1) and the diameter of S, is

equal to 2 if the rooted vertex of Sl n_ 18 a central vertex and

equals 4 if the rooted vertex of Sl,n—l is a non central vertex.

It
The nullity of Sl,n_1 is determined in the next proposition.

|t

Proposition 5: For a t-tupple coalescence graph Sl,n—l ,t>1,
n=>4, we have:
i If the attachment is at central vertex, then:

|
7S, ) =th-1)—-1.
ii. If the attachment is at non-central vertex, then:
It
(S, ) =t(n=3)+1.
Proof:
1. If the attachment vertex is the central vertex, then the t-
|l
tupple S, | is a star graph with order t(n-1)+1 and
nullity t(n-1)-1.
ii. The proof is similar to that of Prop. 4.m

III. NULLITY OF GENERALIZED ROOTED GRAPHS
In this section, we study the nullity of generalized rooted
product graphs, for some known graphs suchas C, P, K

and Km’n .

A. Generalized Rooted Product Graphs for Cycles
A generalized rooted product graph G(H) where G = Cp

p.-p(H) p+pa(H)
mNMCMHDS§+2mMMthp is even, and

has order and size with

diam(Cp(H )< pT_l +2diam(H) if p is odd. Equality

holds in both cases if coalescence vertices of H are diametrical
vertices.

Proposition 6:LetK,t € Z*, then:

i. If the rooted vertex of P2t .1 has zero weight, then,

MG, (Pu)=mC,(Pyy) —E(C))=p
i 7(C,(P)=0.

1ii. If the rooted vertex of P2t .1 has non-zero weight, then,
N(Ca (Py11)) =2.

Proof:
i. Let €,6,,...,€, be the edges of the graph Cp, then

we remove all these edges to obtain the graph
(C,(Py.) —E(C))). Clearly, (C,(Py)) —EC,)

=B, B, \.B,, is the union of P paths each of order
2t +1. See Fig. 7.

Vi Vi
L L]
Vi 2ot Vis lvl s Vi, zl Viz Vo201
o V. o - o ... o
1
e al
» O,
e
-1
e - @ “f " e ... @
Voan Vo3 .2 L2 Vo Voun
¢ ®
Vot Vo1

Fig. 7 The graph C,(P,,,)

In a high zero-sum weighting of Cp(P2t +]), we can use

exactly P non-zero independent variables; hence,

U(Cp (P2t+1 )) = P . On the right side, it is clear that
Co(Pyy) —E(Cp) =Py, UPy, L..UP

2t+1 -
Hence,

U(Cp(sz) _E(Cp)) ZU(PZHI o P2t+1 V... P2t+1).

N(Py)=1 by
1By, YR, Y. UB, ) =1(Ry,)) +1(Py.y) +.+ 1Py, ). Therefore,
n(C,(Py,,) —E(C,))=1+1+..+1=p.

ii. The proof is similar to that of Prop.6 (iii).

iii.  Let X, i=12,..,4K and j=1,2,...,2t+1,bea
weighting of a generalized rooted product graph
C,(Py.), kiteZ", Thus, we use 2 independent
variables, for a high =zero-sum weighting of
Cu(Pyy), Kt eZ" Hence, 7(Cyy (Pyy, ) =2 .m

Proposition 7: Let G=C and H =K, n>1, we have:

i. n(Cp(K3))=1..
ii. Ifn#3, then 7(Cy(Ky)=0.

Since, Lemma 2 (i) and
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Proof: The proof of (i) and (ii) are determined by weights
technique.m
Proposition 8: LetG=Cyand H =K, ,,mn>2, we consider

the following cases:

i. Ifp=4k, ke Z", then 7C, (K ,))=4K(m+n-3)+2.
i. If p # 4k, KeZ", then

MG (Knn) =1HCp(Kinn) -V(G) = pim+n—3).

Proof:
i LetX j, Y, . where, i,r=12..4k, j=L2,...m,

and §=1,2,..,n be a weighting for C,, (K ),

k € Z" as indicated in Fig. 8.

Vin ...

¢ X,
Xaia i

Vieca Varans  Vakan

Vizn Vaza

,1':4»(.’.!1

Fig. 8 A weighting of the generalized rooted product graph
C4k ( Km,n )

Then, from the condition that Z f(w)=0, forall vin

weNg (V)
Cu(Kpn). keZ™, wehave:
X+ Xttt X, =0

Xo0 X, +ot X, =0

Xgpr T Xqeo Fooet Xy = 0

then,
Xim = X = X2 == X oy
Xy o ==Xy =Xy —— X
2, 2.1 2,2 T Aamal
m m (16)
Xaem = ~ Ko — Xai2 ~ o ™ Xygoma
and,

Yt Yt tY, = 0
Yort Yo, Tt Yon = 0

Yai t Yako Tt Yo =0
then,

Yin="Yu—"Yo— Y

yz,n == Yo =Yoo =7 Yo a7
Yakn = 7 Yaka = Yak2 77 Yakna
Also, we have: For i =2,4,...,4k -2
Xignt X = 0=Xx,=- Xis2,1 (18)
and, for i=1,3,...,4k -3,
X1t X, = 0= X1 =~ X2 (19)

Thus, from (16) and (17), we use 4k(m—1)+4k(n—-1)

variables. But from (18) and (19), 4t —2 variables are
iterated. Therefore, the maximum number of non-zero
independent variables used in a high zero-sum weighting for

C4k(Km,n), keZ",isequal to:

4k(m—-1)+4k(n-1)—(4k —-2)
=4k(m-1)+4k(n—-1)—4k +2
=4k(m+n-3)+2.

Hence, by Lemma 1,

n(Cu (K, ) =4k(m+n-3)+2.

ii. The proof'is similar to that of Proposition 6 (i).m
Corollary 1: [5, p.44] If the rooted vertex of a graph Sl’nfl is

a central vertex, then:
(Cy (S, n))=1(C, (S, ) —E(Cy)) = p(n-2).

Proof: Follows by applying End vertex Corollary.m

B. Generalized Rooted Product Graphs for Paths

A generalized rooted product graph G(H), where G = Pp
plH| p+pa(H)—1 and
diam(P,(H)) < p+2diam(H) - 1. Equality holds if
coalescence vertices of H are diametrical vertices.

Proposition 9:LetK,t € Z™, then:

has  order and  size
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(P (Cy)) =n(Py (Cyy) =V (Py)) =2t .
NP1 (Cu)) =11(Pyr i (Cy) =V (Py,)) +1

ii.

=2t+2.
iii. For each and n = 4k, n7(P,(C,)) =0.
Proof:
i. We can use exactly 2t distinct independent variables

for a high zero-sum weighting of P, (C,,) ., we have

n(Py(Cy)) =2t.

On the other hand, (B,(C,)-V(R,) =(B, , P, , U..UB, )..
Hence, (B, (C, ) V(B))=n(P,, VP, L..UP, ).
Since, 77(P,,_,;) =1 by Lemma 2 (ii), and

NP, VP, v..UP, )
=n(P,)+nP, ) +...+n(P, )

=l+1+..+1+1=2t
Therefore, 1(P, (C,,)) = 2t.

il. The proof is similar to part (i).

ii. The proof'is similar to that of Prop.8 (ii).m
Proposition ~ 10:Let G=PandH =K,
n(P,(K))=0

Proof: The proof follows from the fact that in any high zero-

N > 1then

sum weighting, each vertex of P (K) must be zero

weighted, and then Pp (K,) has no non-trivial zero-sum
weighting.m
Proposition 11:Letm,n>2,te Z", then:
1Py (K 0)) = 1(Fy (Ky, 1) =V (By))
=2t(m+n-3).
NPy (Km,n ) =1(Py., (Km,n) =V(Py,)+1
=2t(m+n-3)+1.

Proof:
i If the rooted vertex of K belongs to the set of

ii.

vertices with cardinality m, then from the removal of

all vertices of P, we obtain a disconnected graph with

2t components and each component is K and by

m-1,n">

Lemma 4 (iv), n(K (m+n-3). Therefore, we

m—l,n) =
can use exactly
(M+n=-3)+(M+n-3)+...-(mn-3)=2t(mH+-n-3).

independent variables for a high zero-sum weighting of
Py (Kpn)- Therefore, by Lemma 1, we have:

NPy (K 1)) =2t(M+n~3) m

Note: It is clear that ift G=P,, H =S5, | |,n>3, and the
rooted vertex of a graph S]»n_] is a central vertex , then
(P (Si0)) =1(Ry (S, 1) —E(R) = p(n-2).

C.Generalized Rooted Product Graphs for Complete
Graphs

A generalized rooted product graph G(H) where G = Kp

-1

has order P(P(H)) and size % + pg(H) and
diam(K,(H)) <1+2diam(H). Equality —holds if
coalescence vertices are diametrical vertices.
Proposition 12:Lett € Z*, then:

L (K (C)) =n(K, (Cyp)-V(K,)) = p.

ii. n(K;(Cy ) =1..
iii. n(K,(C,)=0,,for p=0andn=4t+1,4t+2.
Proof:
The proof of (i), (ii), and (iii) are similar to that of Proposition
5 (i), 7 (iii) and 3 (ii), respectively.m
Proposition 13:Lett € Z*, then:

i If the rooted vertex of F’2t .1 has zero weight, then,

77(Kp(P2t+1)) = U(Kp(sz) - E(Kp)) =p.
ii. n(K,(R,)) =0, otherwise.
Proof: The proof of (i) and (ii) are determined by applying
End vertex Lemma.m
Proposition 14:Let p>1, mn=2, then

(K, (K =n(K (K 0) =V(K)) = p(m+n-3).
Proof: The proof follows by applying Coneighbour Lemma.m
Note: If N >3 and the rooted vertex of SUH is the central

vertex, then (K, (S,.,,) = 7(K, (S,,.) ~E(K,)) = p(n-2).

D.Generalized Rooted Product Graphs for Complete
Bipartite Graphs

The necessary and sufficient condition for a connected
bipartite graph G to be a complete bipartite graph is that G
does not contain a path of order four as an induced subgraph.
Moreover, the generalized rooted product graph G(H) where

G=K,, has order (M+n)p(H) and size
mn+(m+mag(H) and diam(K,, ,(H)) <diam(K_, ,)+2diam(H).

Equality holds if coalescence vertex of H is diametrical

vertex.
Proposition 15:Lett € Z*, and m,Nn > 2, then:
i. If (m,n)=(2,2), then: 7(K,,(C,_))=1.
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I

ii. for, m,nx=2, if(m,n)=(2,2),thenyp(K,,(C,)) =6,

It I

and p(K, (C,)=n(K,,(C,)—E)=(Mm+n=-2)+(m-+n),
otherwise.

where E is the set of edges of C,, which are adjacent with

K., . after the coalescence.

i. (K, a(C,)) =0, otherwise.

Proof:
i The proof is similar to that of Proposition 7 (i).

il. Since K2’2 ~ C4 , then the proof is similar to that of
Proposition 7(i), we can use exactly 2(m+n)—2
+(m+n) independent variables for a high zero-sum
weighting of Km’n (Ch).

Therefore, by Lemmal, we have:

Ky, (Cy)) =(M+n=2)+(M+n).

On the right side, it is obvious that: (K (C,)-E)
= (Km,n v P4t—1 U P4t—1 V.. P4t—l)-

Hence, n(K,, ,(C,)-E) = (K, VP UP UL UP, ).

Since, (K, ,)=mM+Nn-2 by Lemma 2 (iv), and
17(P,,)=1by Lemma 2 (ii). Then:
(Ko YR WP U UPR, )

= U(Km,n)+77(P4t—l)+77(P4t—1)+"'+77(P4t—1)
=M+n-2)+1+1+..+1=2(m+n)-2.
Therefore,

(Ko (Cy)) =(M+n=2)+(m+n) =n(K, (C,)-E).
iii. The proof is similar to that of Proposition 8 (ii).m

Proposition 16:Lett € Z*, and m,n > 2, then:

i. If the rooted vertex of P,

n(Km,n(PZHI)) = U(Km,n(PﬂH)_ E(Km,n)) =m+n.

ii. If the rooted vertex of P2t 1 has non-zero weight, then:

(Ko 0 (Pt ) = 170K (Pry) — B (K 1)) =2
=m+n-2.

iil. (K, .(Py))=0.

Proof: The proof of (i) and (ii) follows by applying Endvertex

Lemma m+n times which leaves such number of odd paths.
The prove of (iii) is similar to that of Proposition 8.m

has zero-weight, then:

A. More Generalized Rooted Products
We are going to study more generalized rooted product
graphs

Proposition 17:LetteZ”, and U;,U,,...,U

»Up) be the

vertices of the non-trivial graph G, then:

i. If the rooted vertex of PZt 41 has zero weight, then:
N(G(Py,))) =1(G(Py,) ~E(G)) = p(G).
ii.  If the rooted vertex of P, ,
1(G(Py..)) = 1(G).
i n(G(Py) =0.
Proof: The proof of (i), (ii) and (iii) follows by applying
Endvertex Lemma. m

We are going to prove more generalized rooted products to
Prop, 8, 11 and 14.

Proposition 18: Let U;,U,,...,U,g, be the vertices of a graph
Gand H =K, , then:n(G(K_ )= p(G)m+n-3)+7,(G).

has non-zero weight, then:

m,n >

Proof: If G is non-singular, then each vertex U,

i=1,2,..p(G), has a zero weight in a high zero-sum
weighting for G(Km’n) . Therefore, removal of all vertices of
G will not change the number of independent variables in any
high zero-sum weighting of the graph G( Km’n) , which is
(M+n-3)+(M+n-3)+...+(M+n-3) p(G) times.
Hence,

n(G(K, ) =1(G(K, ) =V(G)) = p(G)(m+n-3)
But, if 77(G) > 0, then 3 more 77 independent variables in a

high zero-sum weighting for G( Km’n) .

IV. NUT GRAPHS AND THEIR COALESCENCE

In this section, we introduce and prove some results on the
nullity of coalescence of nut graphs such as coalescence at
vertex, generalization rooted, edge introduced, Cartesian
product and tensor product. It is clear that it is clear that in [6,
Theorem 4] that a nut graph is connected with no end vertex

and it is not bipartite. We can assume that K, is also a nut

graph. The smallest nut graph has order 7.

Some basic nut graphs with order 7 is Cs0C;, with order
3m, M2>3is C,(C;) and whose orders 8, 10 and are
illustrated in the next figure.
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Fig. 9 Some basic nut graphs

Lemma 5: In the above nut graphs, if T or Tj, i=1, 2, 3 is
replaced by C Akl > K >1, then the resulting graph is again a
nut graph.

Proof: The weighting of the triangle T {or any T;} is {-x, X, x}
can be replaced by {-x, X, X, -X, -X, X, X,...,-X, -X, X, X} in the
weighting of the cycle C,,_,.m

Theorem 2: For any two rooted nut graphs (G,,U)and

(G,, V), the coalescence graph G =G, o G, is a nut graph.

Let f(U)=X, f(v)=y;,
j=L2,...,p, be a non-zero weighting for G,andG,.
Without loss of generality, let f(U)=Xand f(V)=Y. In G,
usv and Y fw= > fw+ Y fw=0Now,

we Ng (u=v) we NGl (u) we NGz w)

Proof: i=L2,..,p, and

for each U; € N(31 (U) and each UL NGZ (V), we have:
—x= >  fWad-y= >  f(w).
WU € Ng; (U;) wle Ng, (V)
Hence, X=1Y and a non-trivial zero-sum weighting for G

exists which uses exactly one variable say x. See Fig. 10.
Therefore, G is a nut graph.m

(G,.v)

(G.u)

Fig. 10 The coalescence of two nut graphs

Thus, due to Lemma 5, and above basic nut graphs, given
any number N > 7, there exists a nut graph of order n. Now
we assert and answer the following question.

Question: Given a number n can one construct a nut graph of
order n?

The answer: Due to Lemma 5, Th.2 and basic nut graphs given
in Fig. 9, there exist a nut graph of order n, for each positive
integer n, N > 7. Because the nut graphs of order 7, 8, 9 and
10 are given in the Fig. 9 where m=3. Nut graphs of order 11

are obtained from G7 , 12 are obtained from G while of

3m>

order 13 and 14 are obtained from the coalescence of G7 and
G,, G, and Gg, and all other orders are obtained by

replacing a cycle C an DYy acycle C 4ns3 in the last above 4

cases.
Theorem 3: For any two rooted nut graphs (G,,U)and

(G,,Vv), both generalized rooted graphs G,(G,) and

G, (G,) are nut graphs.
Proof: The prove is an extension of that of Th.2, and hence is
omitted.m
Theorem 4: For any two rooted nut graphs (G,,U)and
(G,,V), the edge introduced graph G =G, : G, (obtained
by introducing the edge UV ) is a non-singular graph.
Proof: Weights G, and G, as in Th.2, then:
D> ofw= D fw+y=0=y=0
we Ng (u) we Ng, (U)
and
> o fw= D f(w) +x=0=x=0.
we Ng (v) we Ng, (V)
Hence, X=Y =0 and there exist no non-trivial zero-

sum weighting for G. Thus, G is non-singular by Th.1 m

Let G, = (V), E)) and G, = (V,, E,) be vertex disjoint non-
trivial graphs. The Cartesian productG,xG, of the two graphs
G, and G, is the graph with a vertex set V(GxG,) = VXV,
and two vertices (u;, v;) and (u,, v,) are adjacent in G;xG; if,
and only if, [u; = u, and v,v,€E(G,)] or [uju,€E(G,) and v, =
v,]. See [8].

In [5, Th. 3.4.4], it is proved that the Cartesian product
G =G, xG, of two singular graphs is a singular graph.

334



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:8, No:2, 2014

Hence, it follows that the Cartesian product of any two nut
graphs is a singular graph. A necessary condition for the
Cartesian product to be a nut graph is given by the following
Theorem:

Theorem 5:If for all eigenvalues ﬂi Ja=12,.., P, of the nut

graph (G,,U) and all eigenvalues £, J=12,...,p, of the

nut graph (G,,v) LA E - j except the zero eigenvalue for
both, then the Cartesian product G =G, xG, of the nut
graphs G, and G, is a nut graph.

Proof: The proof follows from Th. 1, and [5, Lemma 3.4.3].m

This means that the Cartesian product of bipartite graph by
itself is never a nut graph.

Let G; = (Vy, E)) and G, = (V,, E,) be vertex disjoint non-
trivial graphs. The tensor productG,®G, of two graphs G, and
G, is the graph with vertex set V(G;®G,) = VxV, and two
vertices (uy, vi) and (u,, v) are adjacent in G;®G; if, and only
if, [uju,€E(G)) and vv,€E(G,)]. It is also called the direct
product or the Kronecker product. See [8].

The next theorem is a result that follows from the definition
of tensor product G;®G, and nut graph.

Theorem 6: The tensor product G=G,®G, of two nut

graphs cannot be a nut graph, except where G, =G, =K,.
Proof: Assume that G, and G, are nut graphs and G =G, ®G,.

Then by [5, Th. 3.2.9],7(G) = py, + P77, =17, = P, + P, — 1.
If G is a nut graph, thenz(G)=1.Since, p,+ p, —-1=1

= p,+pP,=2,hence p,=p,=1.m
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