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Abstract—In this work, a new family of time marching 

procedures based on Green’s function matrices is presented. The 
formulation is based on the development of new recurrence 
relationships, which employ time integral terms to treat initial 
condition values. These integral terms are numerically evaluated 
taking into account Newton-Cotes formulas. The Green’s matrices of 
the model are also numerically computed, taking into account the 
generalized-α method and subcycling techniques. As it is discussed 
and illustrated along the text, the proposed procedure is efficient and 
accurate, providing a very attractive time marching technique.  

 
Keywords—Dynamics, Time-Marching, Green’s Function, 

Generalized-α Method, Subcycling.  

I. INTRODUCTION 
IME dependent hyperbolic equations have numerous 
applications in various branches of science and in 

practical engineering design. Since it is usually very difficult 
to obtain analytical transient responses for these equations, 
numerical techniques must be applied to find approximate 
solutions, and step-by-step time integration algorithms are 
routinely employed when dynamic problems are focused, 
because of their various inherent advantages to solve a great 
deal of initial value problems. 

In this work, time marching algorithms based on 
numerically computed Green’s function matrices are focused. 
Recently, Tamma et al. [1] and Zhou and Tamma [2] derived a 
new family of unconditionally explicit/implicit algorithms 
based on analytical solution of first-order ordinary differential 
equations in which the concept of Green’s functions is 
implicitly present. Other similar approaches have been the 
subject of some papers discussion, and are usually referred to 
as ‘‘precise time-step integration methods’’ [3]-[5]. In Soares 
[6], [7] and Soares and Mansur [8], a formulation that 
implicitly computes Green’s function matrices taking into 
account standard time domain numerical procedures was 
presented, in order to obtain a new family of time marching 
schemes. Later on, step response and Green’s function 
matrices were computed explicitly by Mansur et al. [9], taking 
into account explicit time marching routines. The 
methodology was extended to analyze dynamic models 
discretized by different numerical techniques [10], [11] and to 
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efficiently analyze coupled problems [12]-[15]. The analysis 
of a variety of coupled problems by the proposed procedure 
could be carried out very effectively since it allows coupled 
sub-domains to be treated independently, at each time step 
(similarly, it also allows a quite efficient analysis of some 
non-linear models [6]-[8]). The direct computation of Green’s 
function matrices in order to develop time marching routines 
to analyze hyperbolic models has been carried out in 
transformed domains as well, being the frequency [16]-[18] 
and the Laplace [19] domain mostly focused. Recently, the 
methodology has been generalized [20] and also applied to 
analyze heat conduction models [21]-[23], extrapolating the 
initially focused context of wave propagation problems and 
structural dynamic analyses. 

In the present work a family of time marching algorithms 
based on Green’s function matrices is discussed. Here, 
dynamic models are studied and time step relationships based 
on Green’s function matrices are presented, allowing more 
efficient and accurate time marching techniques to be 
developed. 

II. TIME MARCHING PROCEDURE BASED ON NUMERICALLY 
COMPUTED GREEN’S FUNCTIONS 

The governing system of equations describing a linear 
dynamic model is given by [24]:  

 
)()()()( tttt FKUUCUM =++                   (1) 

 
where M, C and K are mass, damping and stiffness matrices, 
respectively, F(t) stands for the force vector and ),(tU  )(tU  

and )(tU  are displacement, velocity and acceleration vectors, 
respectively.  
 Supposing that the analysis begins at a time instant t and 
that a Δt period of analysis is focused, the following analytical 
recurrence relationships can be obtained to compute 
displacements and velocities [20]: 
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where the Green’s function matrices that appear in (2) can be 
computed through the solution of the following initial 
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condition problem, within the time period Δt: 
 

0KGGCGM =++ )()()( ttt ; 0G =)0(  and 1)0( −=MG  (3) 
 

The solution of the dynamic problem described by (3) can 
be carried out numerically, providing the numerical 
computation of the Green’s functions of the model. The 
accuracy, stability and efficiency of the recurrence relations 
(2) are intimately related to the computation of these Green’s 
matrices. Once the Green’s function matrices and the time 
convolution integrals expressed in (2) are properly computed, 
this time marching procedure may become extremely accurate, 
providing a very attractive methodology (one should observe 
that recurrence relations (2) are the analytical solutions of the 
dynamic model, hence, a very accurate procedure is expected, 
once the terms in relations (2) are properly computed). 

In this work, the generalized-α method is employed to 
compute the Green’s matrices of the model (one should 
observe that several other numerical procedures could be 
employed, which would result in different time marching 
techniques). In the generalized-α method, the time discrete 
equation of motion employed to compute the Green’s matrices 
of the model is written as:  
 

1 1 1[ (1 ) ] [ (1 ) ] [ (1 ) ]m m k k k k
η η η η η ηα α α α α α+ + ++ − + + − + + − =M G G C G G K G G 0  (4) 

 
and the finite difference formulas of the Newmark method are 
retained, as described below: 
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where 1μ  and 2μ  stand for the Newmark’s parameters and 

mα  and kα  describe the generalized-α method. By 
substituting approximations (5) into (4), the following time-
marching procedure arises, which enables the computation of 
the Green’s function matrix of accelerations: 
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In the generalized-α method, second-order accuracy and 

maximal high-frequency dissipation are achieved if 
4/)1( 2

1 mk ααμ −+=  and mk ααμ −+= 2/12  are adopted. 
For 0== mk αα , the method reduces to the Newmark 
method; for 0=mα , the method reduces to the HHT method; 
and for 0=kα , the method reduces to the Bossak method.  

In order to achieve a more accurate numerical procedure, 
the Green’s matrices of the model can be computed within a 
time step Δt, taking into account a subcycling technique, i.e.: 
the system of equations (6) is solved n times (as well as the 

actualizations described by (5)), considering a time sub-step 
of Δt/n. As a consequence, the following matrices are 
computed considering the subcycling technique: 1G , 2G , …, 

nG  etc; which are the numerical approximations to the 
following Green’s matrices: )/( ntΔG , )/2( ntΔG , …, 

)( tΔG  etc. To numerically evaluate the time integrals 
described in (2), the trapezoidal rule is considered here, taking 
into account the n sub-steps employed to evaluate the Green’s 
function matrices, allowing to obtain the following recurrence 
relationships: 
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and n

1L , n
2L  and nJ  can be analogously computed. In (7), the 

L terms are evaluated considering a linear behavior of the 
acting forces within the time interval [t,t+Δt], i.e.: 

tttttt Δ−−+= Δ+ /))(()( ττ FFFF , for ttt Δ+<< τ . 
The time marching procedure (7) becomes extremely 

accurate once high values of n are selected, allowing 
considerably large values of Δt to be considered, without 
damaging the accuracy and the stability of the time marching 
technique. Once considerably larger time steps Δt are allowed, 
the time marching procedure (7) may become highly efficient 
to analyse long period responses. In Fig. 1, the spectral radius 
of the amplification matrix of the new procedure are depicted 
taking into account several 1μ , 2μ , mα  and kα  values, as 
well as n = 1, 4 and 10. Results of the standard generalized-α 
method are also depicted in the figure, for reference. 

III. NUMERICAL APPLICATIONS 
 In this section, two numerical applications are presented to 
further illustrate some aspects of the proposed methodology. 
In the first application, a shear-building model is analyzed and 
results are computed taking into account the Newmark’s 
trapezoidal rule and linear acceleration methodologies. In the 
second application, a more complex physical model is 
focused. In this case, a clamped beam discretized by finite 
elements is considered and the Central Difference Method is 
employed to compute the related results. 
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(f) 

Fig. 1 Spectral radius: (a) Central Difference Method ( 01 =μ , 2/12 =μ , 0== mk αα ); (b) Trapezoidal Rule ( 4/11 =μ , 2/12 =μ , 

0== mk αα ); (c) Linear Acceleration Method ( 6/11 =μ , 2/12 =μ , 0== mk αα ); (d) Damped Newmark ( 4/)2/1( 2
21 += μμ , 

6.02 =μ , 0== mk αα ); (e) HHT Method ( 4/)1( 2
1 mk ααμ −+= , mk ααμ −+= 2/12 , 3.0=kα , 0=mα ); (f) Bossak Method 

( 4/)1( 2
1 mk ααμ −+= , mk ααμ −+= 2/12 , 0=kα , 3.0−=mα ) 

 
A. Application 1 

 A simple four-store shear building is analyzed here. A 
sketch of the model is depicted in Fig. 2. The mass and the 
stiffness values are adopted the same for all floors, they are: 

kgm 4105 ⋅=  and mNk /105.2 7⋅= . A force, whose time 
dependence is shown in Fig. 2 (c), is applied at the fourth 
floor of the model. Several numerical techniques are 
considered to analyse the shear building. In the first analyses, 
the standard Newmark’s trapezoidal rule and linear 
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acceleration method are applied to analyze the model 
considering a small time step ( st 0025.0=Δ ), in order to 
provide reference results for comparisons. Next, the same 
standard procedures are applied to analyze the model 
considering a larger time step ( st 25.0=Δ ). Taking into 
account this large time step, the model is finally analyzed 
considering the proposed formulation, adopting n = 10. The 
obtained results are depicted in Fig. 3. 
 

  

(a) (b) 

  

 

(c) 

Fig. 2 Shear building: (a) four-store shear building model; (b) load 
applied at the fourth floor; (c) equivalent spring-dashpot-mass model 
 

As can be observed in Fig. 3, for the larger time step, 
standard procedures provide very inaccurate results: an 
expressive period elongation takes place considering the 
trapezoidal rule, as depicted in Fig. 3 (a); and unstable results 
arise considering the linear acceleration method, as described 
in Fig. 3 (b). On the other hand, even for a large time step, 
stability and accuracy are observed in Fig. 3 taking into 
account the proposed methodology. As a matter of fact, by 
adopting an appropriate number of sub-steps n, the proposed 
methodology can become as accurate as one wishes and 
critical time steps (above which instabilities arise) can be 
made as high as it may be desired (as illustrated, for instance, 
in Figs. 1 (a) and (c)). 
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Fig. 3 Displacement time history results considering the new (n = 
10) and the standard time marching procedures: (a) Trapezoidal Rule; 

(b) Linear Acceleration Method 

B. Application 2 
In this application a clamped beam is analyzed. The 

geometry, boundary conditions and finite element mesh 
adopted for the model is depicted in Figs. 4 (a) and (b) (400 
linear triangular finite elements are employed). The geometry 
of the beam is defined by a = 1.0m and b = 0.5m. The model 
is submitted to a suddenly applied load, which is kept constant 
along time. The material properties of the beam are: ν = 0.0 
(Poisson’s ratio); E = 100.0 N/m2 (Young modulus); ρ = 1.5 
kg/m3 (mass density).  

As before, several numerical approaches are employed to 
analyze the model. First, in order to provide reference results, 
the standard Central Difference Method is considered, 
adopting st 001.0=Δ  and st 005.0=Δ . Next, the proposed 
formulation (associated with the Central Difference Method) 
is employed to analyse the beam, adopting st 020.0=Δ  and n 
= 5. The obtained results are depicted in Fig. 4 (c). Fig. 4 (c) 
shows the vertical displacements obtained at point A (see Fig. 
4 (a)). As can be observed, unstable results arise considering 
the Central Difference Method with st 005.0=Δ , whereas 
stable and accurate results are obtained by the proposed 
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methodology with the much larger time step st 020.0=Δ . 
These results illustrate once again the previously highlighted 
fact that the proposed methodology can become as accurate as 
one wishes and critical time steps can be made as high as it 
may be desired. 
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Fig. 4 Clamped beam: (a) sketch of the model; (b) finite element 
mesh; (c) displacement time history results considering the proposed 

procedure (n = 5) and the Central Difference Method (results are 
plotted just for sts 5.00 ≤≤  when st 005.0=Δ ) 

IV.  CONCLUSIONS 
In this work, a time marching procedure based on Green’s 

functions matrices is discussed. It considers the numerical 
evaluation of the Green’s matrices, as well as their time 
integrations. In the present methodology, time integral terms 
are employed not only to treat external forces, but also to take 
into account initial displacement contributions. The 
generalized-α method is considered to compute the Green’s 
matrices of the model and the 2 points Newton-Cotes 
quadrature rule (trapezoidal rule) is employed to numerically 
evaluate the required time integrals. Both procedures take into 
account a sub-step technique, which is applied in order to 
improve the accuracy and stability of the methodology. 

As it is discussed and illustrated along the text, the 
proposed formulation is efficient and accurate. It only requires 
the solution of one initial condition problem to compute the 
fundamental matrices of the recurrence relationships, 
rendering more efficient procedures than formulations based 
on step response matrices [5], [9]. At the same time, the 

procedure maintains the good accuracy and stability aspects 
that are obtained by adopting step response matrices (briefly, 
it can be said that the procedure inherits the merits of the step 
response matrices, without inheriting its drawbacks). 
Moreover, by adopting a sub-step technique, the accuracy and 
stability of the methodology can be chosen as good as one 
wishes. 

It is important to highlight that several numerical methods 
and combinations are possible to compute the discussed terms 
of the recurrence relationships, rendering different time 
marching techniques. This vast field of possibilities can be 
explored in future works, allowing more effective time 
marching procedures to be developed.  
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