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Abstract—This paper presents a new nonlinear integral-type 

sliding surface for synchronizing two different chaotic systems with 
parametric uncertainty. On the basis of Lyapunov theorem and 
average dwelling time method, we obtain the control gains of 
controllers which are derived to achieve chaos synchronization. In 
order to reduce the gains, the error system is modeled as a switching 
system. We obtain the sufficient condition drawn for the robust 
stability of the error dynamics by stability analysis. Then we apply it 
to guide the design of the controllers. Finally, numerical examples are 
used to show the robustness and effectiveness of the proposed control 
strategy.  
 

Keywords—Chaos synchronization, Nonlinear sliding surface, 
Control gains, Sliding mode control.  

I. INTRODUCTION 
INCE the seminal work of Pecoora and Carrall [1], there 
has been an increasing interest in the study of chaos 

synchronization in physics, mathematics and engineering 
mechanics, etc. The idea of synchronization [2]-[4] and is to 
use the output of the drive system to control the response 
system so that the output of the response system follows the 
output of the drive system asymptotically. Various effective 
techniques and methods such as OGY method [5], linear or 
nonlinear feedback control method [6], active control method 
[7], [8], time-delay feedback control [9], [10], adaptive control 
[11], and sliding mode control method [12]-[14] have been 
proposed over the last decades to realize chaos synchronization. 

The sliding mode control technique [15]-[17] is a 
discontinuous control strategy that involves, first, selecting a 
switching surface for the desired dynamics and, secondly, 
designing a discontinuous control law such that the system 
trajectory can reached the surface and then stays in it forever. 
However, most of researches mentioned above have 
concentrated on studying the active sliding mode control with 
linear sliding surface [18]. This method will divide out all the 
nonlinear parts of the chaotic systems and use linear sliding 
surface to control the system. In the practical applications, the 
method with linear reduction above cannot describe the 
nonlinear characteristics of the trajectories in some chaotic 
systems explicitly. 
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Motivated by the above analysis, we consider the chaotic 
synchronization using a new nonlinear integral-type sliding 
surface which incorporates a virtual nonlinear nominal control 
to achieve prescribed specifications. Based on the nonlinear 
sliding mode control technique, the sufficient conditions are 
given to assure the complete synchronization occurs and then 
the stability analysis of the proposed sliding mode for the 
chaotic systems is obtained. The corresponding numerical 
simulations are provided to illustrate the effectiveness of these 
sliding mode controllers. 

II. PROBLEM DESCRIPTION 
Let us define the following two uncertain chaotic systems as 

master and slave, respectively by: 
 

( ) ( )1 1 1 1( )x A A x g x g x= + Δ + + Δ�              (1)  
 

( ) ( )2 2 2 2( ) ( )y A A y g y g y u t= + Δ + + Δ +�       (2)            
 

where ( ) nx t R∈  and ( ) ny t R∈  denote state vectors of 

the system. 1A and 2
n nA R ×∈  represent the linear parts of 

the system dynamic, 1 : n ng R R→  and 2 : n ng R R→ are 

the nonlinear parts of the system and 2 ( )g y  satisfies the 
following Lipchitz condition 
 

2 2( ) ( )g y g x y xμ− ≤ −
 

 

for , nx y R∀ ∈ . 1
n nA R ×Δ ∈ and 2

n nA R ×Δ ∈ are unknown 

linear parts of matrices. 1 : n ng R RΔ → and 

2 : n ng R RΔ →  are unknown nonlinear parts of the master 

and slave systems respectively. To synchronize the state ( )ty  

with the state of the master system ( )tx , the controller 

( ) nu t R∈  has been added to the slave system.  

Remark 1: If 1 2 1 2, ( ) ( )A A g x g x= = , then ,x y are the 
states of two different chaotic systems due to the existence of 

1 2 1 2, , ( ), ( )A A g x g yΔ Δ Δ Δ. ,x y are the states of two 
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identical chaotic systems if and only if 

1 2 1 2, ( ) ( )A A g x g x= = , 1 2 1 2, ( ) ( )A A g x g xΔ = Δ Δ = Δ  

Define ( ) ( ) ( )e t y t x t= − , the dynamics of 
synchronization error can be expressed as  

 

2 2( ) ( ) ( ) ( , ) ( ) ( , ) ( )e t A A e t G x e H x M x y u t= + Δ + + + +�  (3) 
 
where  

2 2

2 1 2 1

2 1 2 1

( , ) ( ) ( ),
( ) ( ) ( ) ( ) ,
( , ) ( ) ( ) ( ).

G x e g y g x
H x g x g x A A x
M x y A A x g y g x

= −
= − + −

= Δ − Δ + Δ − Δ  
The synchronization problem is to design the controller 
( )tu  which synchronizes the states of the slave with that of the 

master. So the synchronization goal is as follows:  
 

( ) ( )lim ( ) lim 0
t t

e t x t y t
→∞ →∞

= − =  

 

where ⋅  is the Euclidean norm (2-norm) of the vector. 

III. METHODOLOGY OF SLIDING MODE CONTROL DESIGN 
In general, sliding mode control design methodology 

comprises two steps. First, the sliding surface is designed, so 
that not only the sliding mode can occur in the surface, but also 
the controlled system will yield the desired dynamic 
performance. The second phase is to design the sliding mode 
controller such that the trajectory of the system arrives at the 
sliding surface and remains on the sliding surface for all 
subsequent time. 

A. Sliding Surface and Equivalent Control Law Design 
In this subsection, our main aim is to design an appropriate 

nonlinear integral sliding surface for the error system (3). That 
is designing an integral sliding mode controller such that the 
sliding motion is asymptotically stable and the state trajectory 
of the error system (3) is driven onto the specified sliding 
surface and maintained there for all subsequent time. 

 An appropriate nonlinear integral-type sliding surface can 
be constructed as follows 

 

20
( ) ( ) (0) [( ) ( ) ( , )]

t
s t e t e A K e s G x e ds= − − + +∫     (4) 

 

where n nK R ×∈ is to be chosen suitally. 
Remark 2: The terms of (0)e  achieves the nice property that 

(0) 0s =  such that the reaching phase is eliminated. Since the 
sliding mode exists from the beginning, the system is more 
robust against perturbations than other sliding mode control 
systems with reaching phase. 

According to the sliding mode control theory, it is true that 
( ) 0s t =  and ( ) 0s t =�  as the state trajectory of the error 

system (3) enter into the sliding mode. An equivalent control 
law can be designed as  

            

2( ) ( ) ( , ) ( )equ Ke t H x M x y A e t= − − − Δ           (5) 
 

Substituting (5) into (3), the sliding mode dynamics can be 
obtained as  
 

2( ) ( ) ( ) ( , )e t A K e t G x e= + +�                 (6) 

B. Stability Analysis of the Sliding Motion 
In this subsection, the stability analysis of the sliding mode 

dynamics is investigated. 
Note that the function ( , )G x e  is a nonlinear function and 

satisfies ( , )G x e eμ≤ . If the constant μ  is large, then 

the feedback gain matrix will be large enough. In order to 
reduce the gain matrix as small as possible, we model the 
system (6) as a switch system. 

Define the following sets 
 

1 1

2 1

{ : ( , ) },

{ : ( , ) }.

t G x e e

t e G x e e

μ

μ μ

Ω = ≤

Ω = ≤ ≤
 

 
where 10 μ μ< <  
The system (6) is rewritten as follows 
 

2 1 1

2 2 2

( ) ( ) ( , ),
( )

( ) ( ) ( , ),
A K e t G x e t

e t
A K e t G x e t

+ + ∈Ω⎧
= ⎨ + + ∈Ω⎩

�     (7)            

 
where

1 1 2 2( , ) ( , ), , ( , ) ( , ), ,G x e G x e t G x e G x e t= ∈Ω = ∈Ω
then 

            

1 1 1 2( , ) , ( , ) .G x e e e G x e eμ μ μ≤ < ≤ (8)            
 

In order to express skimpily, we introduce the following 
notations. (0, )T t−  + (0, )T t  are denoted as the total length 

of 1 2,t t∈Ω ∈Ω  over the time interval [0, )t , respectively. 

(0, )N tσ  is denoted as the switching  number of the system 

in time interval [0, )t . 
(0, )a
tT

N tσ

=  is the average dwell 

time of the system.  Since for all ,t  1t ∈ Ω  or 2t ∈ Ω , 

without loss of general, we assume [ )0 1 1,t t ⊂ Ω  and   
 

1 2 2 1 2 2 1 2( 1)[ , ), [ , )j j j jt t t t+ + +Ω = Ω =∪ ∪ . 
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Next, we will investigate the asymptotically properties of the 
system 

 
 2 1( ) ( ) ( , ),e A K e t G x e= + +�            (9)                         

 
and 

 2 2( ) ( ) ( , ),e A K e t G x e= + +�           (10)                          
 
respectively. 
Lemma 1 The system (9) is exponentially asymptotically 
stable if there exist positive definite matrix 1,P such that  
 

2 1 1 2( ) ( )TA K P P A K I+ + + = −  
 
and  

 1
1 1 1 min 1(1 2 ) ( ) 0a P Pμ λ −= − > .           (11) 

 
 Furthermore, 

1
2 2 max 1

1 1
min 1

( )( ) (0) ,
( )

a t Pe t b e e b
P

λ
λ

−≤ =    (12)                        

 
Proof: Consider the following candidate Lyapunov function 

 

  1 1( ) ( ) ( )TV t e t Pe t=           (13)                              
 
Taking the derivative of 1( )V t  along the solution of (9), we 
get 
 

1 2 1 1 2 1
2

1 1

1 1

1
1 1 min 1 1 1

( ) ( )[( ) ( )] ( ) 2 ( ) ( , )

( ) ( ) 2 ( )

(1 2 ) ( ) ( )

(1 2 ) ( ) ( ) ( )

T T T

T

T

V t e t A K P P A K e t e t PG x e

e t e t P e t

P e t e t

P P V t a V t

μ

μ

μ λ −

= + + + +

≤ − +

= − −

≤ − − = −

�

 

where 1
1 1 1 max 1(1 2 ) ( )a P Pμ λ −= − . 

Then, we have that 

1 1
2 2

min 1 1 1 max 1( ) ( ) ( ) (0) ( ) (0)a t a tP e t V t e V e P eλ λ− −≤ ≤ ≤ (14) 
 
which means the system (9) is exponentially asymptotically 
stable. That completes the proof. 

Considering the system (10) and choose the following “so 
called” candidate Lyapunov function  

 

          2 2( ) ( )TV e t P e t=                (15)  
                                         

Along the trajectory of (10), it is obtained that 

2 2 2 2 2

2 2
2

2

2

1
2 max 2 2 2

( ) ( )[( ) ( )] ( )

2 ( ) ( , )

( ) ( ) 2 ( )

( 2 ) ( ) ( )

( 2 ) ) ( ) ( ) ( )

T T

T

T

T

V t e t A K P P A K e t

e t P G x e

e t Qe t P e t

c P e t e t

c P P V t a V t

μ

μ

μ λ −

= + + +

+

≤ +

≤ +

≤ + =

�

 

 
where  

2 2 2 2
1

2 2 max 2 max

( ) ( ),

( 2 ) ) ( ), ( ).

TQ A K P P A K

a c P P c Qμ λ λ−

= + + +

= + =
 

 
Hence, we get that 

2
2 2( ) (0)a tV t e V≤ . 

 
Now, we are in the position to investigate the stability of the 
system (7) 
Theorem 1 If the following conditions hold,  

1、
*

*1
1*

2

(0, ) , (0, )
(0, )

a aT t a a
T t a a

+

−

−
≤ ∈

+
 

2、 *ln , (0, ), 1aT a a
a
μ μ≥ ∈ ≥  

3、 1 2 2 1,P P P Pμ μ≤ ≤  
The system (7) is exponentially stable. 
Proof: Construct the piecewise Lyapunov function candidate as 
follows 
 

1 1 2 2 1

2 2 2 1 2( 1)

( ), [ , )
( )

( ), [ , )
j j

j j

V t t t t
V t

V t t t tσ
+

+ +

∈Ω =⎧
= ⎨ ∈Ω =⎩

∪
∪

 (16)            

 

where 1 1( ) ( ) ( )TV t e t Pe t= , 2 2( ) ( )TV e t P e t= . 
According to the condition 3, we have  

 

1 2 2 1( ) ( ), ( ) ( )V t V t V t V tμ μ≤ ≤ . 
 
Assume that 2t ∈Ω , then 

2 2 1 2 2 1

2 2 1 1 2 1 2

2 2 1 1 2 1 2

2 1

2 1

( ) ( )
2 2 2 1 1 2 1

( ) ( )
1 2

( ) ( )2
2 2

(0, ) (0, ) (0, )

(0, ) (0, ) (0, ) ln
1

( ) ( ) ( ) ( )

( )

( )

(0)

(0)

j j

j j j

j j j

a t t a t t
j j

a t t a t t
j

a t t a t t
j

N t a T t a T t

a T t a T t N t

V t V t V t e V t e

V t e

V t e

V e

V e

σ

σ

σ

σ

μ

μ

μ

μ

μ

+ +

+ +

+ +

+ −

+ −

− −
+ +

− − −

− − −

−

− +

= ≤ ≤

≤

≤ ≤

≤

=

"

2 1(0, ) (0, ) ln /
1(0) aa T t a T t t TV e μ+ −− +=

 

where  
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1
1 1 1 min 1(1 2 ) ( )a P Pμ λ −= − ,.

1
2 2 max 2( 2 ) ( )a c P Pμ λ −= +  

According to the condition 2, we have that 
ln

a

a
T

μ
≤ . Hence 

2 1

2 1

(0, ) (0, ) ln /

( ) (0, ) ( ) (0, )
aa T t a T t t T

a a T t a a T t

μ+ −

+ −

− +

≤ + − −
 

According to the condition 1, we get that 

2 1
*

2 1

(0, ) (0, ) ln /

( ) (0, ) ( ) (0, ) ( )
aa T t a T t t T

a a T t a a T t a a t

μ+ −

+ −

− +

≤ + − − ≤ − −
 

Therefore, 
*( )

1( ) (0) a a tV t V eσ
− −≤ . Noticing that 

1( ) ,V t c eσ ≥  where ( )1 min 1 min 2min ( ), ( )c P Pλ λ= , 

then 
*0.5( )1

1

(0) a a tVe e
c

− −≤   

C. Reachability Analysis and Sliding Mode Controller 
Design 

In this subsection, we are in a position to synthesize a sliding 
mode controller to drive the system trajectories onto the 
predefined sliding surface ( ) 0s t =  in (4) and have the 
following results. 

Assume that the unknown nonlinear parts 

1 2( ), ( )g x g yΔ Δ are Lipchitz, then there exist constants 

1 2,L L  such that ( ) , 1, 2i ig x L x iΔ ≤ = . 1 2,A AΔ Δ  

are bounded. Hence, we have that 
 

2 1 1 2

2 2

( , ) ( ) ( )

( ) ( )

M x y A A L L x t

A L e t

≤ Δ − Δ + +

+ Δ +
 

 
Theorem 2 Suppose the condition of Theorem 1 hold and the 
sliding surface is given by (4). Then the state of the system (3) 
can enter the sliding surface in finite time, and it subsequently 
remains on it by employing the following sliding mode 
controller  
 

( ) ( ) ( ) ( ) ( ( )) ( )u t Ke t H x t sign s t rs tρ= + − −  (17)                       
 

where 0r > , ( ) ( ) ( ) , 0t q x t e t qρ α β= + + >  

2 1 1 2 2 2,A A L L A Lα β≥ Δ − Δ + + ≥ Δ + . 
 
Proof: Let us consider the following candidate Lyapunov 
function 
 

1( ) ( ) ( )
2

TV t s t s t=              (18) 

 

Its derivative along the trajectory of (3) is  
 

2

2

2

( ) ( )[ ( ) ( ) ( ) ( , )]

( )[ ( ) ( ) ( , ) ( ) ( )]

( )[ ( ) ( ) ( )] ( ) [ ( )

( , ) ]

T

T

T

V t s t e t A K e t G x e

s t A e t H x M x y u t Ke t

s t u t Ke t H x s t A e t

M x y

= − + −

= Δ + + + −

≤ − + + Δ

+

� �

 (19) 

 
Note that  
 

2 1 2 1

1 2 2 1 2

( , ) ( ) ( ) ( )

( ) ( ) ( )

M x y g y g x A A x

L L A A x t L e t

= Δ − Δ + Δ − Δ

≤ + + Δ − Δ +
 

 
Applying the variable structure controllers (17) to (19) 

results in  
 

2( ) ( ) 0V t r s t≤ − <�            (20)  
            

Hence the state of the system (3) will reach the sliding 
surface (4) in finite time and subsequently remain on it. This 
completes the proof.  
Remark 3: If the system (1), (2) are two identical chaotic 
systems, then the controller in (17) has the form

( ) ( ) ( ( )) ( )u t Ke t qsign s t rs t= − − . We can find that only a 
linear feedback can stabilize the system (3) on the sliding 
surface ( ) 0s t = . Note that the controller must eliminate effect 
of the nonlinear part. Hence, the controller gains maybe larger. 
However, in [19], nonlinear feedback is needed in order to 
stabilize the system (3) although on the sliding surface

( ) 0s t = .  

If 1 2 1 2( ) ( ) 0,A A g x g yΔ = Δ = Δ = Δ = i.e. there are no 
uncertainties or disturbance, then the controller (17) has the 
form  
 

( ) ( ) ( ) ( ( )) ( )u t Ke t H x qsign s t rs t= + − −  (21) 
            

Remark 4: In [3], a modified active sliding mode control is 
used to realize the synchronization of chaotic system, where a 
robust controller is designed in order to stabilize the error 
system. No information on the uncertainties or disturbance is 
used when the controller is designed. In fact, the controller 
design using the information on the uncertainties or disturbance 
is more robust when the information on the uncertainties or 
disturbance can be used. A feasible substitute method is 
adaptive control. 

IV. NUMERICAL SIMULATION 
In this section, we present numerical simulation examples to 

illustrate the effectiveness of the developed control design 
strategy. A fourth order Runge-Kutta solver with time step size 
of 0.001 s is performed to solve the set of differential 
equations, concerning the master and slave system. 
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A. Synchronization of Different Chaotic Systems with the 
Perfect Model 

When the drive system and response system are 
non-identical chaotic systems, the Lorenz system and Chen 
system are considered as drive system and response system, 
respectively. They are described as follows: 
 

1 1 2

2 1 2 1 3

3 3 1 2

10 10
28
( 8 / 3)

x x x
x x x x x
x x x x

= − +⎧
⎪ = − −⎨
⎪ = − +⎩

�
�
�

              (22)                                                   

 
and 

1 1 2 1

2 1 2 1 3 2

3 3 1 2 3

35 35
7 28
3

y y y u
y y y y y u
y y y y u

= − + +⎧
⎪ = − + − +⎨
⎪ = − + +⎩

�
�
�

       (23)                                                

 
where 

[ ] [ ]

1 2

1 1 3 1 2 2 1 3 1 2

10 10 0 35 35 0
28 1 0 , 7 28 0 ,

8 0 0 30 0
3

( ) 0 , ( ) 0 .T T

A A

g x x x x x g y y y y y

⎡ ⎤
⎢ ⎥− −⎡ ⎤
⎢ ⎥ ⎢ ⎥= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦−⎢ ⎥
⎣ ⎦

= − = −

 

At first, choose the expected poles for the system (6) as 45−
, 20− , 30− . The corresponding gain matrix is

10 35 0
7 48 0
0 0 27

K
− −⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

. Solving the Lyapunov equation in 

Lemma 1, we get  
 

( )1 0.0111 0.025 0.0385P diag= . 
 

For simplicity, we choose 2 1P P=  , then 1μ =  which 
means there are no restrictions on the average dwell time, i.e. 
arbitrarily switching. Choose 1 12μ = , 85μ = ， then, 

1 1.976a = , 2 499.05a = . Choose * 0.976a = . According 
to the condition of Theorem 1, we get, if 

 

(0, ) / (0, ) 1/ 500.026T t T t+ − = , 
 
the system is exponentially stable and the biggest decay rate is 

* 0.976 / 2a = .  
The Lorenz system and Chen system without control of ( )u t  

exhibit chaotic behaviors, as shown in Figs. 1 and 2 with initial 

values ( ) ( )0 1 1 2 TX = −  and ( ) ( )0 2 3 1 TY = . 

Then the error state trajectories are depicted in Fig. 3. 

 
(a) Phase portrait on plane of ( )1 2,x x  

 

 
(b) Phase portrait on plane of ( )2 3,x x  

Fig. 1 Chaotic attractor of Lorenz system 
 

 
(a) Phase portrait on plane of ( )1 2,y y  

 

 
(b) Phase portrait on plane of ( )2 3,y y  

Fig. 2 Chaotic attractor of Chen system 
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Fig. 3 Dynamics of the variables 1e , 2e

 
and 3e  in error system 

with time t  

B. Synchronization of Different Chaotic Systems with 
Uncertain Parameters  

Similar to the above part, the master and slave systems are 
Lorenz and Chen respectively. Uncertainties will be considered 
in both the system dynamics in matrices of form, described as: 

 

( ) ( ) ( )( )
( ) ( ) ( )( )

1

2

0.09 0.06 0.11 ,

0.02 0.05 0.01 ,

A diag t t t

A diag t t t

δ δ δ

δ δ δ

Δ =

Δ = −

( )
( )

1 1 2 1

2 1 2 3

( ) 0.1sin 0.2cos 0.15sin ,

( ) 0.1cos 0.2sin 0.15cos .

T

T

f x x x x

f x x x x

Δ =

Δ =
 

 
Fig. 4 shows the simulation results. During the simulation, 

the control parameters are chosen the same as in the case of A. 
As seen, results are similar to that of Fig.3. The errors still 
finally converges to zero. 

 

 
Fig. 4 Dynamics of the variables 1e , 2e

 
and 3e of error system with 

time t  

V. CONCLUSION 
In this paper, a new method of designing a nonlinear integral 

sliding surface has been applied for synchronization of two 
different chaotic systems with parameters uncertainty. The 
nonlinear systems are highly unstable and the proposed 
algorithm of nonlinear sliding surface will have more 
effectiveness for solving the nonlinear systems. According to 
the boundedness of two different chaotic systems, we have 

derived a stabilization criterion for chaos sychronization and 
guaranteed exponential stability by using Lyapunov theorem. 
Furthermore, appropriate balanced coupling coefficients based 
on average dwelling time method are derived. Finally, the 
numerical simulations are given to demonstrate the 
effectiveness of the proposed nonlinear integral surface mode 
controllers although the chaotic systems involve the parameters 
uncertainty. 
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