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Abstract—Many researchers have suggested the use of zero 

inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) 
models in modeling overdispersed medical count data with extra 
variations caused by extra zeros and unobserved heterogeneity. The 
studies indicate that ZIP and ZINB always provide better fit than 
using the normal Poisson and negative binomial models in modeling 
overdispersed medical count data. In this study, we proposed the use 
of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson 
Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in 
modeling overdispered medical count data. These proposed models 
are not widely used by many researchers especially in the medical 
field. The results show that these three suggested models can serve as 
alternative models in modeling overdispersed medical count data. 
This is supported by the application of these suggested models to a 
real life medical data set. Inverse trinomial, Poisson inverse Gaussian 
and strict arcsine are discrete distributions with cubic variance 
function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to 
accommodate data with excess zeros and very heavy tailed. They are 
recommended to be used in modeling overdispersed medical count 
data when ZIP and ZINB are inadequate. 
 

Keywords—Zero inflated, inverse trinomial distribution, Poisson 
inverse Gaussian distribution, strict arcsine distribution, Pearson’s 
goodness of fit. 

I. INTRODUCTION 
ANY medical count data are found overdispersed with 
variance bigger than the mean. In view of this, the 

commonly used Poisson model is no longer appropriate to be 
used in analysis. Negative binomial is recommended for 
overdispersed count data with extra variations caused by 
unobserved heterogeneity. For data with extra variations 
caused by the occurrence of extra zeros only, Zero Inflated 
Poisson (ZIP) is proposed assuming that the zeros come from 
structural zeros and sampling zeros. However, for 
overdispersed count data where the extra variations are 
contributed by the existence of extra zeros and unobserved 
heterogeneity, Zero Inflated Negative Binomial (ZINB) is 
recommended. Hurdle models are introduced when the zeros 
are contributed by structural zeros only. Sampling zeros are 
observed in the usual count distribution (Poisson, NB, etc) 
assuming that they occurred by chance. Structural zeros are 
observed due to some specific structure in the data. Hu et al. 
[1] provide a good explanation, and examples on sampling 
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zeros and structural zeros. Poisson hurdle (PH) and negative 
binomial hurdle (NBH) are commonly applied in modeling 
health care utilization data with the assumption that the initial 
process brings individuals into the at risk population [2]-[4]. 
Baughman [5] provides a good discussion in deciding whether 
a zero inflated or hurdle model is appropriate for a given data 
set requires close collaboration with subject matter experts. 

Rose et al. [6] applied Poisson, NB, ZIP, ZINB, PH and 
NBH models to a real life data set correspond to 4020 
observed systemic adverse events for four injections for each 
of the 1005 study participants and found that ZINB and NBH 
provide the best fit among all the models. Results of the 
Akaike Information Criterion model selection method are 
consistent with the Pearson’s chi-square goodness of fit 
suggesting that ZINB and NBH are the most suitable models 
in modeling this data set. Hu et al. [7] model count outcomes 
from HIV risk reduction intervention by comparing the 
competing models which involved, Poisson, NB, ZIP and 
ZINB claiming that ZIP and ZINB are not widely and 
effectively used in sex health research, especially in HIV 
prevention intervention and related studies. 

ZINB is found to be able to address issues involving extra 
zeros and unobserved heterogeneity. Dwivedi et al. [8] applied 
the various models to compare and test the ability of these 
models in predicting the number of involved nodes in breast 
cancer patients and found that ZINB and HNB are able to 
account for the excess zeros and provide better prediction in 
comparison with Poisson, NB, ZIP and HP. However, ZINB is 
recommended in this study due to the nature of the data 
assuming that the zeros come from a ‘high risk’ group. Lee et 
al. [9] illustrate the use of Poisson, NB, ZIP and ZINB for 
overdispersed count data dealing with the number of incidents 
involving human papillomavirus infection (HPV). ZIP and 
ZINB are widely used to analyze dental caries with many 
zeros [10]-[12]. Most of the studies show that ZINB models 
are able to provide better fit than ZIP especially in modeling 
data with extra variations coming from unobserved 
heterogeneity and excess zeros. 

So far, ZINB model has been commonly used and 
suggested for modeling overdispersed medical count data 
where the ZIP model is no longer adequate and not able to 
accommodate the extra variability caused by excess zeros and 
unobserved heterogeneity. Not many studies are found in the 
literature, which discuss the use of the appropriate statistical 
models for overdispersed medical count data with very heavy 
tailed where ZIP and ZINB models are inappropriate. 
Recently, Ahmad [13] introduced zero inflated generalized 
Poisson model together with ZIP and ZINB in modeling and 
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handling overdispersion count data among children with 
Thalassemia disease.  

In this study, we proposed the use of Zero Inflated Inverse 
Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian 
(ZIPIG) and zero inflated strict arcsine (ZISA) models in 
modeling overdispersed medical count data. Inverse Trinomial 
(IT), Poisson Inverse Gaussian (PIG), and Strict Arcsine (SA) 
models are generalized Poisson distribution which are natural 
extension of standard Poisson distribution. We applied these 
three models to a real life medical count data. Pearson’s 
goodness of fit is used in assessing the general fit of the 
model. Section II discusses the characteristics of inverse 
trinomial, Poisson inverse Gaussian and strict arcsine models. 
Section III shows the characteristics of zero inflated models. 
Section IV explains the application of ZINB, ZIIT, ZIPIG and 
ZISA models to an overdispersed medical count data set. 
Section V provides the results and concluding remarks.  

II.  PROPERTIES OF THE DISTRIBUTIONS  

A. Inverse Trinomial Distribution 
The inverse trinomial distribution may be derived from the 

Lagrangian expansion. The inverse trinomial is so named 
because its cumulant generating function is the inverse of that 
for the trinomial distribution [14]. 

B. Poisson Inverse Gaussian Distribution 
The Poisson-inverse Gaussian distribution is a mixed 

Poisson distribution derived from the Poisson distribution 
using the inverse Gaussian as a mixed distribution. It has 
received much attention in modeling overdispersed count data 
such as species abundance data which are usually 
characterized by extremely long tails. The theory and 
applications of PIG distribution are discussed in [15]-[20]. 

C. Strict Arcsine Distribution 
The strict arcsine distribution is introduced by [21]. 

Kokonendji and Khoudar [22] studied the properties of the SA 
distribution and found that the SA distribution is 
overdispersed, skewed to the right and leptokurtic. In addition, 
SA is a Poisson mixture. It can be obtained by introducing 
extra Poisson variation into a Poisson model. 

III. ZERO INFLATED MODELS 
Zero-inflated count models provide a way of modeling the 

excess zeros in addition to allowing for overdispersion. There 
are two data generating processes where process 1 generates 
only zeros with probability ω, and process 2 generates count 
from a statistical distribution such as Poisson, NB, IT, PIG or 
SA with probability 1-ω. In general: 
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where g(y) is the probability mass function for NB, IT, PIG or 
SA. Probability mass function for NB, IT, PIG and SA is 
given in Table I. 
 

TABLE I 
PROBABILITY MASS FUNCTION FOR NB, IT, PIG AND SA 
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IV. APPLICATIONS AND PARAMETER ESTIMATIONS 
We applied ZIIT, ZIPIG and ZISA to a vaccine adverse 

event count data [6]. The data are the frequencies which 
correspond to 4020 observed systemic adverse events for four 
injections for each of the 1005 study participants. Maximum 
likelihood estimation method is used in estimating the 
parameters for all the suggested models. Person’s chi square 
of fit test is used in assessing the general fit of the models. The 
null hypothesis is that the model fits the data and the 
alternative hypothesis is that the model does not fit the data. 
All the four models yield very small chi-square value which 
leads to the acceptance of the null hypothesis. The results 
indicate that all the suggested models provide a good fit to the 
data. Table II provides the actual and predicted frequencies by 
models and goodness of fit results for fitted models. 
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TABLE II 
THE ACTUAL FREQUENCIES CORRESPOND TO 4020 OBSERVED SYSTEMIC 

ADVERSE EVENTS FOR FOUR INJECTION FOR EACH OF TH E1005 STUDY 
PARTICIPANTS 

 Actual Expected frequency 
 ZINB ZIIT ZIPIG ZISA 

0 1437 1437 1437 1437.01 1437 
1 1010 1001.94 999.06 988.56 980.25 
2 660 684.02 687.96 703.61 721.32 
3 428 411.69 412.73 416.24 415.49 
4 236 231.15 230.46 226.82 220.90 
5 122 124.17 123.22 119.24 115.53 
6 62 64.70 64.09 61.83 60.39 
7 34 32.96 32.72 31.96 31.90 
8 14 16.51 16.49 16.56 16.98 
9 8 8.16 8.23 8.61 9.15 
10 4 3.99 4.08 4.50 4.96 
11 4 1.93 2.02 2.37 2.72 
12 1 1.77 1.94 2.67 3.41 

Pearson’s χ2 2.44 2.58 4.62 9.13 

V. RESULTS AND DISCUSSION 
ZINB exhibits the best fit (χ2 =2.44, p>0.05) among the 

fitted models followed by ZIIT (χ2 =2.58, p>0.05). ZIPIG (χ2 

=4.62, p>0.05) and ZISA (χ2 =9.13, p>0.05) also indicate good 
fit. ZINB is parsimonious in comparison with ZIIT, ZIPIG and 
ZISA. ZIIT, ZIPIG and ZISA are models with four parameters 
and they are more complicated than ZINB. In this study, ZINB 
appears as the best choice of model in fitting this vaccine 
adverse event count data due to its smallest chi-square value 
which indicates the best fit. However, the results suggest that 
ZIIT, ZIPIG and ZISA models can serve as alternative models 
in modeling overdispersed medical count data considering the 
extra variations come from the unobserved heterogeneity and 
excess zeros. They are recommended for data which are very 
heavy-tailed and with preponderance of zeros which ZINB 
cannot accommodate. This is because NB is a distribution 
where the variance is a quadratic function of mean, whereas 
IT, PIG, and SA are distributions where the variance is a cubic 
function of mean. 
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