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Abstract—We present in this paper a useful strategy to solve
stochastic partial differential equations (SPDEs) involving stochastic
coefficients. Using the Wick-product of higher order and the
Wiener-Itô chaos expansion, the SPDEs is reformulated as a large
system of deterministic partial differential equations. To reduce
the computational complexity of this system, we shall use a
decomposition-coordination method. To obtain the chaos coefficients
in the corresponding deterministic equations, we use a least square
formulation. Once this approximation is performed, the statistics of
the numerical solution can be easily evaluated.

Keywords—Least squares, Wick product, SPDEs, finite element,
Wiener chaos expansion, gradient method.

I. INTRODUCTION

THE purpose of this paper is to give a finite
element approximation of a linear stochastic partial

differential equation (SPDE) under the framework of the
white noise analysis. We study the following problem:
Find u(x, ω) solution of the linear SPDE{

−∇ · (κ(x, ω)∇u(x, ω) = f(x, ω) in D × Ω

u(x, ω) = 0 on ∂D × Ω
(1)

where u is a scalar field, f is the stochastic source term, κ
is the diffusion of the medium, Ω is the set of random events,
D ⊂ R

d (d = 1, 2 or 3) an open bounded domain with a
smooth boundary ∂D.

Equation (1), is a linearized model for the evolution of a
scalar field in a random medium. It arises in several physical
and mathematical problems like:

• Flow in a porous medium where u(x, ω) denotes
the pressure, κ is the permeability of the medium, f
represents the external forces (for example sources
or sinks in an oil-reservoir). We allow κ, f to be
stochastic processes.
The pressure equation was introduced in [3] as a
stochastic model for single-phase flow in an isotropic
porous medium.
• Stochastic heat equation with white noise potential
and where u(x, ω) denotes the temperature, κ is the
conductivity of the medium, f is the source term [5].

We will study a formulation of (1) based on the same
family of spaces as in [6]. We shall reformulate this stochastic
problem as an infinite set of deterministic variational problems,
using the properties of the Wick product. Each of these
variational problems will give one of the coefficients in the
Wiener-Itô chaos expansion of the solution of (1). The method
we shall use is based on the ideas of Fourier analysis on
Wiener space. In fact, Wiener Chaos expansion represents a
stochastic function u(x, ω)x as a Fourier series with respect
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to an orthonormal basis Hα, i.e., u(x, ω) =
∑
α∈I

uα(x)Hα(ω)

where I denotes the set of multi -indices α = (αj)
where all αj ∈ N and only finitely many αj �= 0, the
uα’s are deterministic coefficients and the Hα’s are the
stochastic variables Hα(ω) = Π∞

j=1hαj (〈ω, ηj(x)〉) , ω ∈
S ′(Rd) where hn denotes the Hermite polynomial and the
family {ηj}∞j=1 ⊂ S(Rd) forms an orthonormal basis for
L2(Rd). This decomposition separates the deterministic effects
(described by the coefficients uα) from the randomness ( that
is covered by the base Hα). The orthogonality of Hα and the
properties of the Wick product enable us to reduce SPDEs like
(1) to a system of uncoupled deterministic equations for the
coefficients uα(x). Standard deterministic numerical methods
can be applied to solve it sufficiently accurately. The main
statistics, such as mean, covariance and higher order statistical
moments can be calculated by simple formulas involving only
these deterministic coefficients. Moreover, in the procedure de
scribed above, there is no randomness directly involved in the
simulations. One does not have to deal with the selection of
random number generators, and there is no need to solve the
SPDE equations realization by realization. Instead, uncoupled
coefficient equations are solved once and for all. Moreover,
one can reconstruct particular realizations of the solution
directly from Wiener chaos expansions once the coefficients
are available.

using a least squares approach and a gradient method, we split
the equation (1) into a cascade of stochastic partial differential

element approximation of our problem.

II. ELEMENTS OF WHITE NOISE ANALYSIS

Let R
d the set of spatial parameters equipped with the

Lebesgue measure. We shall construct a Wiener process
indexed by Rd, i.e. a Gaussian white noise and describe
the associated Hilbert space of quadratic integrable random
variables w.r.t. this process.

Let S = S(Rd) be the Schwartz space of smooth, rapidly
decreasing functions on R

d, and let S ′ = S ′( R
d) be the

dual space of tempered distributions. By the Bochner-Minlos
theorem, cf. [4], there exists a unique probability measure
μ, called the white noise porbability measure, on the Borel
σ-algebra on S ′ with characteristic functional

C(η) = E[ei〈·,η〉] :=
∫
S′

ei〈ω,η〉dμ(ω) = e
− 1

2‖η‖2

L2(Rd) (2)
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An outline of the paper is as follows. In Section II we review
notation and introduce some white noise spaces. In Section III,

equations of Wick type. Finally, in Section IV we give a finite

A. White noise space
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The random variable 〈·, η〉S′ defined on the probability
space (S ′,B(S ′), μ) thus follows a Gaussian distribution with
mean zero and variance ‖η‖2L2(Rd), and can be interpreted as
the stochastic integral w.r.t a Brownian sheet Bt,x defined on
R

d, i.e. 〈ω, η〉S′ =
∫
Rd η(x)dBt,x(ω), ω ∈ S ′, η ∈ S .

B. Chaos decomposition

A chaos decomposition is an orthonormal expansion in
the Hilbert space L2(S ′) of quadratic integrable functions
defined on (S ′,B(S ′), μ). For n ∈ N0, x ∈ R define the

Hermite polynomial hn(x) = (−1)nex
2/2 dn

dxn
(e−x2/2), and

for n ∈ N define the Hermite functions ξn(x) = π−1/4((n −
1)!)−1/2e−x2/2hn−1(

√
2x).. It is well-known that ξn ∈ S(R),

‖ξn‖∞ ≤ 1 (n ∈ N), and that {ξn : n ∈ N} constitutes an
orthonormal basis in L2(R, dx). We let {ηj}j∈N ⊂ S(Rd)
denote the orthonormal basis for L2(Rd, dx) constructed by
taking tensor-products of Hermite functions [4]:

ηj(x) = ξ
δ
(j)
1
(x1)ξδ(j)1

(x2) · · · ξδ(j)d

(xd) , j = 1, 2, · · ·

where δ(j) = (δ
(j)
1 , δ

(j)
2 , · · · , δ(j)d ) is the jth multi-index

number in some fixed ordering of all d-dimensional
multi-indices δ = (δ1, · · · , δd).

Let I denote the set of all matrix multi-indices α = (αj)
with αj ∈ N0 (j ∈ N) with finite length l(α) = max{j;αj �=
0}, and as usual we define α+ β = (αj + βj), α! =

∏
j αj !,

and |α| := ∑
j αj . For each α ∈ I we define the stochastic

variable

Hα(ω) :=

l(α)∏
j=1

hαj (〈ω, ηj〉), ω ∈ S ′ (3)

The family {Hα : α ∈ I} constitutes an orthogonal basis
for L2(S ′,B(S ′), μ) and it holds E[HαHβ ] = α!δαβ [4].
Thus, any f in L2(μ) := L2(S ′,B(S ′), μ) has a unique
representation

f =
∑
α∈I

fαHα (4)

where fα ∈ R and ‖f‖2L2(μ) =
∑

α∈I c2αα!. The expansion
in (4) is often referred to as the Wiener-Itô chaos expansion.
We will in the following adopt the notation fα to denote the
αth chaos coefficient of a random variable f .

Next, we introduce a family of stochastic Banach spaces
needed for variational problems. This type of spaces are often
used for the Hilbert space treatment of SPDEs of Wick type,
other references include [1]–[7]–[8]–[9].

C. Stochastic Sobolev spaces

For m a non-negative integer, let Hm(D) denote the usual
Sobolev space of order m defined on D. The norm in the space

Hm(D) is defined as ‖v‖Hm(D) =

⎛
⎝ ∑

|β|=m

‖Dβv‖2L2(D)

⎞
⎠

1
2

.

For p ∈ [1,∞[, let Lp(D) denote the usual Banach space of
order p defined on D. The norm in the space Lp(D) is defined

as ‖v‖Lp(D) =

(∫
D
| v(x) |p dx

) 1
p

.

Let C∞
0 (D) denote the space of infinitely differentiable

functions having compact support and let H1
0 (D) denote the

closure of C∞
0 (D) in H1(D). We denote the dual of H1

0 (D)
by H−1(D).

We shall use the notation (2N)α :=
∞∏
k=1

(2k)αk

We have the following result [12]:
Lemma 1: We have that∑

α∈I
(2N)−pα < ∞

if and only if p > 1.
Definition 1: Let p ∈ [1,∞[ , −1 ≤ ρ ≤ 1 and k ∈ R and

let V be a Banach space. We define the stochastic Banach
spaces (S)ρ,k,V as the set of all formal sums

(S)ρ,k,V :=

{
v =

∑
α∈I

vαHα : vα ∈ V and ‖v‖ρ,k,V < ∞
}

where ‖ · ‖ρ,k,V denote the norm

‖u‖ρ,k,V :=

(∑
α∈I

(α!)1+ρ‖uα‖2V (2N)kα

) 1
2

Theorem 1: If V is a separable Hilbert space, then the
space Sρ,k,V with the inner product

(u, v)ρ,k,V :
∑
α∈I

(uα, vα)V (α!)
1+ρ(2N)kα

is a separable Hilbert space. If k′ ≤ k then Sρ,k,V ↪→ Sρ,k′,V .
Finally, If H is a Hilbert space such that V ↪→ H , then
Sρ,k,V ↪→ Sρ,k,H .

D. Wiener chaos expansion of a log normal process

In this work we focus on equation (1) with random
coefficient κ wich satisfy the following condition : there exist
two positive constants C1, C2 > 0 such that

0 < C1 ≤ κ(x, ω) ≤ C2 < ∞, a.e and a.s

Using the Lax-Milgarm theorem it can be shown, that there
exists a unique solution of (1) in the stochastic Sobolev space
S−1,0,H1

0 (D) ≈ H1
0 (D)⊗ L2(μ).

We assume also that κ has the following Karhunen-Loeve
(K-L) expansion

κ(x, ω) =
∞∑
k=0

√
λkβk(ω)φk(x) (5)

where βk(ω) are the uncorrelated zero mean and unite variance
random variables, (λi, φi) is the pair of eigenvalues and
eigenfunctions of the covariance function. Since each βi ∈
L2(μ), it my be expanded in its Wiener chaos exansion

βk(ω) =
∑
α∈I

βk,αHα(ω) (6)
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By substituting (7) in (6) we obtain

κ(x, ω) =
∑
α∈I

( ∞∑
k=0

√
λkβk,αφk(x)

)
Hα(ω)

:=
∑
α∈I

κα(x)Hα(ω)
(7)

E. Ordinary and Wick products

Definition 2: The Wick product f � g of two formal series
f =

∑
α

fαHα, g =
∑

α gαHα is defined as

f � g :=
∑

α,β∈I
fαgβHα+β . (8)

From [11] we have the following result:
Theorem 2: Suppose u =

∑
α∈I

uαHα, v =
∑
α∈I

vβHβ . If

Eμ | uv |2) < ∞, then the product uv has the Wiener chaos
expansion

uv =
∑
θ∈I

⎛
⎝∑

p∈I

∑
0≤β≤θ

C(θ, β, p)uθ−β+pvβ+p

⎞
⎠Hθ

where
C(θ, β, p) =

(θ − β + p)!(β + p)!

β!p!(θ − β)!

Since
u � v =

∑
α∈I

∑
β∈I

uαvβHα+β

=
∑
θ∈I

∑
0≤β≤θ

uθ−βvβHθ

we have
Theorem 3:

uv = u�v+
∑
θ∈I

⎛
⎝ ∑

p∈I,p 	=0

∑
0≤β≤α

C(θ, β, p)uθ−β+pvβ+p

⎞
⎠Hθ

III. LEAST SQUARES FORMULATION

For any k ∈ N we introduce the Hilbert spaces X =
S−1,−k,H1

0 (D), X ′ = S−1,−k,H−1(D), Y = S−1,−k,L2(D).
Using Theorem 3, we can now formulate problem (1) as :

Find u(x, ω) ∈ X solution of the linear SPDE
⎧⎪⎨
⎪⎩

−∇ · (κ(x, ω) � ∇u(x, ω) = f(x, ω) + T (u(x, ω))

u(x, ω) = 0

(9)

where we have put

T (u(x, ω)) =
∑
θ∈I

⎛
⎝ ∑

p∈I,p �=0

∑
0≤β≤α

C(θ, β, p)∇ · (κθ−β+p∇uβ+p)

⎞
⎠

Solving problem (9) is a non-trivial task for the following reasons
• numerical approximation of (9) results in solving large and

dense system of equations
• strong coupling structure related to the chaos coefficients of the

solution
We shall split problem (9) into the solution of a cascade of SPDEs

of Wick type using a least square approach. The later systems can

be approximated efficiently because Wick SPDEs when discretized
have a lower-triangular system structure.

Let v ∈ X . To v we associate the solution y = y(v) ∈ X of
⎧⎪⎨
⎪⎩

−∇ · (κ � ∇y(v)) = f +∇ · (κ � ∇v) + T (v)

y(v) = 0

(10)

Using standard results on Wick SPDEs theory [6]–[7]–[10], we
have the following result:

Theorem 4: Let k ∈ N such that κ ∈ S−1,−(k+1),L∞(D) and f ∈
S−1,−k,L2(D). Then there exists a unique solution u ∈ S−1,−k,H1

0 (D)

of (10).
Suppose now that v is a solution of (9); the corresponding y

obtained from (10) is clearly y = 0. As a consequence, we introduce
the following least-squares formulation of (9): find u ∈ X such that

J(u) ≤ J(v), ∀v ∈ X (11)

where the functional J : X −→ R is defined by

J(v) =
1

2
(κ � ∇y(v),∇y(v))−1,−k,L2(D)

where y(v) is defined from v by (10). To solve (11) we shall use a
conjugate gradient algorithme:

• Step 0: Initialisation
u0given

Then compute g0 from

−∇ · (κ � ∇g0) = J ′(u0) (12)

and set z0 = g0 by: Then for n ≥ 0, assuming un, gn, zn

known, compute un+1, gn+1, zn+1

• Step 1: Descent
un+1 = un − λnz

n

where λn is the solution of the one-dimensional minimisation
problem

λn ∈ R, J(un − λnz
n) ≤ J(un − λzn) ∀λ ∈ R

• Step 2: Construction of the new descent direction
Define gn+1 by

−∇(κ � ∇gn+1) = J ′(un+1) (13)

Then

γn = (κ � ∇gn+1,∇(gn+1 − gn))/(κ � ∇gn,∇gn)

zn+1 = gn+1 + γnz
n

n = n+ 1 and go to Step 1

For the convergence of this algorithm see [2].
The calculation of gn+1 from un+1 requires the solution of two

linear Wick equations (10) with v = un+1 and (13).
Since the operator T is linear, the calculation of J ′(v) is

straightforward. Let w ∈ X , then

〈J ′(v), w〉X′,X = lim
t−→0

J(v + tw)− J(v)

t

For v ∈ X and w ∈ X we have

−∇·(κ�∇y(v+ tw)) = f+∇·(κ�∇(v+ tw))+T (v+ tw) (14)

and

−∇ · (κ � ∇y(v)) = f +∇ · (κ � ∇(v)) + T (v) (15)

and we have y(v + tw) = y(v) + tδ where δ is the solution of

−∇ · (κ � ∇δ) = T (w) (16)
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Hence we have

J(v + tw)− J(v) = 1
2
(κ � ∇(y(v) + tδ),∇(y(v) + tδ))

− 1
2
(κ � ∇(y(v)),∇(y(v)))

= t
2
((κ � ∇y,∇δ) + (κ � ∇δ,∇y))

+ t2

2
(κ � ∇δ,∇δ)

We obtain

〈J ′(v), w〉 = 1
2
((κ � ∇y,∇δ) + (κ � ∇δ,∇y))

= 1
2
((κ � ∇y,∇δ) + 1

2
(T (w), y)

(17)

IV. THE FINITE ELEMENT APPROXIMATION

A. The model problem
At each iteration of the conjugate gradient algorithm, we have to

solve many Wick SPDEs such as

−∇ · (κ � ∇g) = F (18)

where F is known from the previous iteration of the algorithm. Let
us now introduce a discrete version of this model problem using the
finite element method. Let {Xh}h>0 be a family of finite dimensional
vector spaces such that Xh ⊂ X . Let Mh a finite element sub-space
of H1

0 (D). For N,K ∈ N, we define the subset

IN,K = {0} ∪
N⋃

n=1

K⋃
k=1

{
α ∈ N

k
0 : |α| = n and αk 
= 0

}
⊂ I

Next, for each h ∈]0, 1[ and N,K ∈ N, we define the
finite-dimensional space

Xh := {v =
∑

α∈IN,K

vαHα ∈ X : vα ∈ Mh, α ∈ IN,K}

We approximate (18) as follows: seek gh ∈ Xh such that:

(κ � ∇gh,∇vh)Y = (F, vh)Y , ∀vh ∈ Xh (19)

Thus, if gh solves the problem (19), then the chaos coefficients of
the solution gh,γ : γ ∈ IN,K must solve the following cascade of
variational problems: for each γ ∈ IN,K , find gh,γ ∈ Mh such that

A0 (gh,γ , wh) = (F,wh)L2(D) −
∑
α<γ

Aγ−α (gh,α, wh) (20)

where
Aβ(gh,α, wh) = (κβ∇gh,α,∇wh)L2(D)

We assume that the set IN,K is ordered in such a way that
{gh,α, α ≺ γ} has been calculated when the γ-th equation in
(13) is considered. This enable us to solve (18) as a sequence of
(N +K)!/(N !K!) problems. Moreover, since the matrix associated
to the left hand side of (13) is the same for all problems which
leads to a considerable reduction in the required work-load. For the
implementation of the method described above [6]–[8].

Once we have calculated the chaos coefficients {(gh,γ) : γ ∈
IN,K} using (20), we may do stochastic simulations of the solution
as follows: first, generate M independent standard Gaussian variables
X(ω) = (Xi(ω)) (i = 1, . . . ,M ) using some random number
generator, and then form the sums

gh(x, ω) :=
∑

α∈IN,K

gh,α(x)Hα(X(ω)) (21)

where Hα(X(ω)) :=
∏M

j=1 hαj (Xj(ω))
The advantage of this approach is that it enables us to generate

random samples easy and fast. For example, in situations where one
is interested in repeated simulations of g, one may compute the
chaos coefficients in advance, store them, and produce the simulations
whenever they are needed. The resulting stochastic variable can be
viewed as the best approximation of the stochastic object g(x, ω) we
can achieve by including only the chaos-coefficients corresponding
to multi-indices in IN,K .

V. CONCLUSION

We presented in this paper a new method to solve stochastic partial
differential equations with random data. This method is based on
a decomposition-coordination approach by using the least squares
methods. We have shown that the computational cost of the original
equation can be drastically reduced using a gradient method. This
iterative method decompose the original equation by solving only
linear deterministic partial differential equations of Wick type.
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