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New Approaches on Stability Analysis for Neural
Networks with Time-Varying Delay
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Abstract—Utilizing the Lyapunov functional method and
combining linear matrix inequality (LMI) techniques and integral
inequality approach (IIA) to analyze the global asymptotic stability
for delayed neural networks (DNNs),a new sufficient criterion
ensuring the global stability of DNNs is obtained.The criteria are
formulated in terms of a set of linear matrix inequalities,which can
be checked efficiently by use of some standard numercial
packages.In order to show the stability condition in this paper gives
much less conservative results than those in the literature,numerical
examples are considered.
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1. INTRODUCTION

EURAL networks have attracted many researchers

attention during the past decades and have found
successful applications in many various areas. such as signal
processing,static image processing,combinatorial optimization
and associative memory [1,2].the occurrence of time delays
is unavoidable during the processing and transmission of the
signals because of the finite switching speed of amplifiers in
electronic networks or finite speed for signal propagation in
biological networks ,the existence of time delay may cause
instability and oscillation of neural networks.Therefore
stability analysis of delayed neural networks has been
extensively investigated by many researchers [3-30].

In this regard, many sufficient conditions ensuring global
asymptotic stability and global exponential stability for
delayed neural networks have been derived [3-25]. However
in most of the known results,the time-varying delay varies
from O to an upper bound.In factithe lower bound of
time-varying delay is not restricted to be zero. A typical
example of dynamic with interval time-varying delays is
networked control systems [18]. [19] pointed that the
stability conditions are hardly improved by using the same
Lyapunov-Krasovskii functional, delay-partitioning approach,
which was firstly introduced by Gu [21], has attracted by
many researchers. Now, some researchers found many new
approaches on stability analysis for neural networks with
time-varying delay. Such as by estimating more tighter upper
bounds,introducing new Lyapunov functional,dividing delay
interval and so on.
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Motivated by this mentioned above, in this paper, two new
delay-dependent stability criteria for neural networks with
interval time-varying delay will be proposed by dividing the
delay interval [qo,<,,] into four itervals [qp, W]
[W,g(t)],[g(t), w},[%‘m,gm}, constructing new
Lyapunov-Krasovskii functional which contains some new
integral and triple-integral terms and establishing some new
zero equalities,two new delay-dependent stability criteria for
neural networks with interval time-varying delay will be
proposed by employing different approaches.Finally
numerical examples are given to show the effectiveness and
less conservativeness of the proposed methods.

Notations: The notations in this paper are quite standard.
I denotes the identity matrix with appropriate dimensions,R"
denotes the n dimensional Euclid space, and R™*"is the set
of all m x n real matrices, * denotes the elements below the
main diagonal of a symmetric block matrix. For symmetric
matrices A and B.the notation A > B(respectively,A > B )
means that the matrix A — B is positive definite (respectively,
nonnegative).

s

II. PROBLEM STATEMENT

Consider the following neural networks with interval time
varying delays:

£(t) = —C=(t) + Ag(2(t)) + Bg(z(t — <(1))) + lo (1)

where z(t) = [21 (1), 22(), . . ., 2, (t)]T € R™ is the neuron state
vector,g(z(t)) = [g1(21()), g2(22(t)), .. .. gn(za(t))]" € R”
denotes the neuron activation function ,and Iy =|[I1, Io, .. .,
I,,JT € R™ is a constant input vector,C' = diag{c;} € R" is a
positive diagonal matrix , A= (a;;)nxn € R™ is the connection
weight matrix,B = (b;;)nxn € R™ is the delayed connection
weight matrix.

The following assumptions are adopted throughout the paper.
Assumption 1: The delay is time-varying continuous function
and satisfies:

0 < <s(t) <gm,s(t) <p<1 (2)

where ¢, ;n,and o are constants.
Assumption 2: Each neuron activation function g;(-), in (1)
satisfies the following condition:

N < gi(a) — gi(B)
i = a— 5
where v, ,'yj' ;¢ = 1,2,...,n are constants,and assume that

ST =diag{V e s 1 2T = diag{y v, vt )
Based on Assumption 1-2, it can be easily proven that there

<~f Vo,fERa#f 3)
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exists one equilibrium point for (1) by Brouwer‘s fixed-point
theorem. Assuming that 2* = [2f,25,...,2%]Tis the
equilibrium point of (1) and using the transformation
y(-) = z(-) — z*,the system (1) can be converted to the
following system :

y(t) = =Cy(t) + Af(y(1)) + Bf (y(t — <(1))) )
where y(t) = [y1 (), y2(t), ...,y (DT, (y(1)) = [fL (11 (1)),
fz(yf(;)) e Fnln OV Fil () =i () +20) — i),

From Eq.(S),fi(-) satisfies the following condition:

_SMSW/j_vva?é07Z:172a7n )
«

Due to the disturbance frequent occurs in many applications,so
by translating A, B and C' to function A(t), B(t) and C(t)
respectively,we have

y(t) = —C)y(t) + A) f(y(#) + B)f(y(t —<(t))  (6)
Assumption 3: Letting A(t) = A + AA(t),B(t) =
B + AB(t),C(t) = C + AC(t),and AA(t), AB(t), AC(t)
are unknown constant matrices representing time-varying
parametric uncertainties, and are of linear fractional forms:

[AC(t), AA(t), AB(t)] = GA(t)[E., Eq, E) 7

with

Aty =A®)T —JA@)Y, T—-JFT>0 (8)

where G, J, E,, Ey, E.,are known constant matrices of
appropriate dimensions,A(¢) is an unknown time-varying
matrix function satisfying AT (¢)A(t) < I.

Lemma 1 [10]. For any constant matrices (), S satisfy that
S =5T.Q = QT > 0, and 0 < ¢ < Gn.the following
inequality hold:

t—so
T
— (G — d
(s §o)/ti§m y (s)Qy(s)ds
<o T <o
<_ Ji= sy u(s)ds {Q S} S uls)
T eas) L@ tiif,”yw)ds

t—Cm
Lemma 2 [20]. For any positive semi-definite matrices X =
X11 X2 X3
*  Xoo Xosz| >0,the following integral integral inequality
* * X33

holds:
t—<o
e X
t—g(t)
T
X1 X2 Xus|| y(t—<0)
t

t—<o y(t - §0)
< / gt —<)| |+ Xop Xos
=B y(s) x % 0 y(s)

©))

Lemma 3 [29]. Let I — GTG > 0 define the set T = {A(t)=
SOOI — GE()]7L ST (#)X(¢) < I},for given matrices H,J
and R of appropriate dimension and with H symmetrical,then

H+ JA@)R + RTAT(t)JT <0,if and only if there exists a
scalar p > 0 such that

H+ [p~'RT pJ}{ ! _G} { PR

—GT T pJT:| <0 (11)

III. MAIN RESULTS

In this section,a new Lyapunov functional is constructed
and a less conservative delay-dependent stability criterion is
obtained.  First, we take up the case where
AA(t) = 0,AB(t) = 0,AC(t) = 0 in system (6).

Denote

€1(0) = " (1) (0 — D) 4T (= o)yt — )
vt = <(0) 17 0) £ - <) 7 ()
where
)= [ v (6 [ T5 v (s)ds]
[f ;(;n)iqy (s)ds [I- ;Eﬂ T (s )ds]

Theorem 1 Given that the Assumption 1-2 hold, the system
(6) is globally asymptotic stability if there exist symmetric

positive definite matrices Sy,.S52,Q;,1 = 1,2,...,8 R;,i =
G’ G . . . .
6, P H, | G12 ,symmetric positive semi-definite
22

X1 X2 X13 Yii Y2 Yi3 Uin Ui Uss
¥ Xog Xog|,| * Yoo Yo3|,| % U Uss|,
* * Qs * * Qs * * Qs
Vii. Viz Vi
* Vo Vag|, positive diagonal matrices Wy, Wy, K =
* * Qs
diag{ki,ko,...,kn}, L = diag{ls,ls,...,l,},and any
symmetric matrix Ss, Sy, S5,S56 such that the following
LMIs hold:

:25 gﬂ >0 (12)
:26 gj >0 (13)
:27 gj >0 (14)
:115 1‘226] >0 (15)
f NEZZ} <0 (16)
1: N_TZZ} <0 (17)
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where
[(Ey; 0 0
x  Foy  Fog
* * E33
* * *
E=| x * *
* * *
* * *
* * *
* * *
(Fy1 0 0
* Iy I
* k F33
* * *
F=| x* * *
% * *
* * *
* * *
* * *
= [C 00 0 O
Sm — S0
g =

2
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Eoy

Eyy

E o R

Fyy

Fyy

* X X ¥ ¥

0 Ei Eir
FEos 0 0
FEss 0 0

0 0 0
Ess 0 Esy

*  Fgs  Eer

* % E77

k *

* *
0 Fis Fir

Fos 0 0
0 0 0
Fy5 0 0
Fs5 0 Fs7
*  Fge Fer
* * F77
* * *
* * *

-B 0 0]

Z = E[(gm + 3§0)Q8 + (3§m + §0)R6}

4

Eyn=—CTP— PC —2(XTL — S K)C — 25" W, 5+

+H+
+ (51 + 52)

Eig=PA+(STL-X"K)A -

+ W (ET+57)

S
Z[(gm + 3§O)Q7 + (3§m + gO)RS}

(K — L)C

Ey; =PB+ (YL -S"K)B

Eoy = Gaa — G11 + Q6 +cYoo + S5

Eo3 = Gy, B2y = —Gh2, Eos = Y15, Eag = Ya3

Es33=G11 +6Qs5 +¢X11 —H+ Q1+ Q2+ Q3+ Q4

Es5 = ¢X19, E33 = X13, B34 = —Go2 — Q4 — 55

Ess = —(1 -

Es7 = Wo (26T + 7), Ess = Xos, Esg = Y13

W)Q2 + s(Xao + Yiq) — 25" WoXt

E¢s =2(K — L)A+ Ry + Ry + R3 + Ry — 2W;

E¢7r = (K —L)B,Er; = —(1

1 1
Egg = —=851, Fgg = ——S3
S S

— H)RQ - 2W2

1
Eg9 = —=5
S

Fay = Goo — G11 + Q6 + Vi1 — Sg
Fos = cVia, Fag = Vi3

F33 = G11 +6Qs5 — H + Sg

Fuy = =Gz — Q4 +cGa

Fss = —(1—p)Q2 +s(Vag + Upp) — 25" WLt

1
Fsg = Va3, I'sg = Uss, Fyg = —?512

1 1
Fgg = ——=Sy, Fog = —— 53
S S

All the other items in matrix F satisfies Fj; # 0,we can get
Fyj=Eij,i,j=1,2,...,9.

Proof: Construct a new class of Lyapunov functional
candidate as follow:

= Z Vi(ys)
with
Vi) = y" (t)Py(t)

n

yi(t)
MU k() -

o)
biots = fi(s))ds]
e y(s) ﬂau GMH u(s) }
Vg(y”‘/tw;w[y(s—%m © Gaallyls — sags)|®

t t—<o
/ )ds+/ o4 y"
s(t S
t—co ¢—sltsq

Va(yr) =2 v; s)ds

+

S—

(5)Quy(s)ds

+/tt ! (5)Q2y(s )ds+/tij);smyT(5)Q3y(5)d5
+/ttCm 5)Quy(s)ds

/ s(fmo y(s)) R f(y(s))ds

+/t o $))Raf (y(s))ds

y(s))Rs f(y(s))ds

_|_
t— s(t)+sm

+fT

—Sm

s))Raf(y(s))ds
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—So t—<o
6(ye) / / $)Qsy(s)dsdb
Sm +<0 t+

7Sm+80 t— sm+so

" / ) [ v eausisio

t+6

"(we) /::+so/ /H $)Qry(s)+y" (5)Qsi(s))dsdAdo
/ ‘”“0/ / s)Rsy(s)+9" (s)Reg(s))dsdAdf

—Sm
Then, taking the time derivative of V(t) with respect to t along
the system (6) yield

7

V(yt) = Z Vi(yt)

i=1

where

Vilye) = 2y" () Py(t) (18)

Va(ye) =20/ (y(ONE — L)+y" (t)ETL - ST K)[§ (1)

(19)
. y(t — <o) ’ Gi1 Gz y(t — <)
Va(y) = L/( <m+<o )} { % Gzz} Lj(t— <m+<[)):|
y(t — == +<° [Gn Gual [y(t — &= Smren)
[ y(tfgm) :| |: * G22:| |: (tfgm) :|
(20)
Vilye) = " (t — 0)(Q1 + Q2 + Q3 + Qs — H)y(t — o)
yT(t)Hy(t) - yT(t - gm)Q4y(t - gm)
— =Byt - SO gy - e
—(1- g)yT(t _ §(t)2+ )yt — §(t)2+ “)
— (1= ) (" (t — () Qay(t — <(t))
20
Vs(ye) = fT(y(t))(R1 + R + Ra + Ra) f(y(t))
T (y(t = m))Raf (y(t — 5m))
—(1 =) fT(y(t — () Raf (y(t — s(t)))
=By - ) Ry - )
(e - S g gy - S sm)
(22)
Ve(y) = sy (t — <0))Qsy(t — o)
eyl = ) Qe — )
S AACCET @3
[ s

§(§m + 3§0)

Va(y:) = 1 (y" (O)Qry(t) + " (1) Qsy(t))
n “gm““)( (O Rsy(t) + i (1) Res(1))
[ @@ T st dsas
smtsq +9
/ / $)Rsy(s) +37 (5) Rei(5))dsdo
—Sm +9

(24)

The following four zero equalities with symmetric positive
definite matrices S ,52,and any symmetric matrix S;, S¢ are
considered:

Sm + S
yT(t— TO)Sg)y(t— ) —yT(t_§m)SSy(t_§m)

_sotsm
t 2

-2 y"(s)S59(s)ds = 0
e (25)

Sm + <0
2

§m+§0)
2

(s)Sey(s)ds =0
(26)

Sm + <o

y'(t— )Sey(t —

t—<o
-9 yT
t_sm +<o0
2

y" (s)S1y(s)ds

y7 (t —c0)Sey(t — s0) —

/S0 - /

<m+so
-2
J_sm +s0 t+9
sm+so
2

t_
<o (6)Sau(t) - / y7 (3)Say(s)ds
e (28)
0

$)S2y(s)dsdd = 0

27
$)S19(s)dsdd =0

Sm +s0

2f L

From (27)-(28),we can obtain the following equality:

Va(w) = 39 (T (1) Qry ) 457 ()80

+ W(yT(t)Rsy(t) +9" (1) R (1))

+syT(8)(S) + Sa)y(t) — /

__ sm+so
2

y''(s)S1y(s)ds
_ §m;§0

- / y7'(s)Say(s)ds

S |

sm +<0

LN T[]

From (5), we can get that there exist positive diagonal matrices
Wi, Wy such that the following inequalities holds:

=2fT(y(O)WLf(y(2)) + 2" (OWL(E™ +3%) f(y(t
~2y" (O WIETy(t) >

)
0
29
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=21 (y(t — <(t))Waf(y(t — <(t))) + 29" (t — <(t)) Wa (S~

+30) Fy(t — < (1) =247 (¢ — c(£)Z~WaETy(t — <(£))>0
(30
Using Lemma 1,0one can obtain
t—<o
[ S
tism+&o
t—<o T t—<o
<_ { <§t)y (sKs {51 53} tt Ctt)y(s)ds
S TS | L S| [T u(s)ds
3D
f,fgm;go
[T e saes
t—Sm
t7§m+§0 T — S‘m+<0
<71 ft <(t) y(s)s {SQ S4} ft ot y(s)Ms
Tl S yens | L S [Ty s)ds
(32)
(1) when ¢y < ¢(t) < gmg'go ,one can obtain
t—<o
—/ y" (5)Qsy(s)ds
t—c(t)
so [ y(t — <o) Trxy X Xus y(t — <o)
S/ y(t ()) * X22 X23 y(tfg(t)) dS
t—s(t)|  y(s) * * 0 y(s)
(33)

t—q(t) -
N /;7 s'm;rco Y

t=s(t) [ y(t—<(t))
_ Sm+tso
Sl |:y(t 2 )

_ sm;rsn y(s)

(5)Qsy(s)ds

T

Y11 Y2 Yis
* Yoy Yo3
* * 0

y(t — (1)) }
(t _ §m.+§0) dS
y(s)

(34

From (18)-(25),(29)-(32),and (34)-(35) one can obtain

V(yt) < gf(t)Efl(t) - fT(y(t - g’m))Rﬁlf(y(t - g’rn))
- %)yT(t_ c(t)2+<m)Q3y(t B c(t);%)
—- By~ (e - L

M

)
2

—0 =B - O R gy O

-1 §>fT<y<t -

O xm)) rypiyte - g“’l* C")L)n
S Bl [ G
Y I el

<m+§0 t
LB R
e 4o (s) x  Rg| |y(s

where

En=-CTP—-PC—-2(XTL-%"K)C-22"W,ST + H
+ <(S1+ 82) + 3 (6m + 3%0) Q7 + (3 + <0) Rl
+cTzc

()+€0

Eig=PA+ (STL—-%"K)A -
—CTzA

(K—L)C+ W (2T +%7)

Eyy=PB+(X"L-Y K)B-C"ZB

Fes =2(K —L)A+ Ry + Ry + Ry + Ry — 2W, + ATZA
Eer = (K —L)B+ ATZB

Erp=—(1—p)Ry —2Wo + BT ZB

All the other items in matrix £ ,we can get E;; = Eyj,i,j =
1,2,...,9.
(2) when "";' 2 < ¢(t) < Gp,0ne can obtain

sm+so

t— 2
- / vy (5)Qey(s)ds
t—q(t)

t,m y(t— w) r Uiy Uip Uss
< y(t —<(t)) * Uz Uss

t—s(t) y(s) * * 0

y(s)
(35)

y(t — ==5=0)
y(t —<(t) |ds

t—q(t)
- / yT (5)Qey(s)ds

o ly@ — o Vi Via Vig y(t—g(t))}
S/ y(t - grrL) * V22 V23 y(t - gnL) ds
t—6m y(s) * * 0 y(s)

From (18)-(24),(26),(29)-(31),(33) and (37)-(38) one can
obtain

V(ye) <& (OF&() = T (y(t = on)) Raf (y(t =)

-0yt - SOy - e
(- ng(t WD) gy - R
—0- B - %»Rlﬂy(t RUURE)
(- H)fT( (¢~ O ) g py(e - <O Fsm))

N e 2
/ L 8] e

)
y
e e ]

where

Fll = E117F16 :E167F17 :E17

FGG = EﬁGaFGW = E67>F77 :E77

All the other items in matrix F' ,we can get F =Fy,i,j =

1,2,...,9.
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Hence,combined with the Schur Complement and (12)-(15),
we can obtain

Viy) <0

This means that the system (6) is asymptotically stable, which
complete the proof. |

Based on Theorem 1,we have the following result for
neural networks with time-varying.
Theorem 2 Given that the Assumption 1-3 hold, the system
(6) is globally asymptotic stability if there exist symmetric
positive definite matrices @;,7 =1,...,8, R;,1=1,...,6,
G*u g;i ,P,H,Sy,S,, symmetric positive semi-definite
X1 X2 Xy Yin Y2 Yig Un U Uis
*  Xoo Xog|,| * Yoo Yog|,| * Ux Uss
* * Q5 * * Q5 * * QG
Viin. Viz Vig
Voo Vo
* k 6
liag{ki,ka,...,kn}, L = diag{ly,la,...,1,},any symmetric
matrix Ss3,S4, 55,5 and p; > 0,5 = 1,2,such that the
following LMIs hold:

,positive diagonal matrices Wy, Wy, K =

Qs Se
P S >0 37
[Qs S5
P SJ >0 (38)
Q7 S
>0 39

| * Qs (39
_R5 52
B R6:| >0 (40)
(B N'Z prtef  p] ]

* -7 0 plzG

% * -1 J <0 @D

* * * -7

F X'Z pylef  pab] ]

x  —Z 0 p2ZG

* * —1 J <0 “2)
| * * * —I |

where

¢ =[E. 00 00 —E, —E, 0 0]
®=[® 0

01 =[-GT"P-StL+%"K 000 0 L-K 0 0 0
0=, a"z]"

Proof: Replacing C,A and B
cit) = C + GAQR)E,Alt) =

in (14),(15) with
A + GA(t)E,,and

I

B(t) = B+ GA(t)Ep,respectively,it follows that,the LMIs in
(14),(15) are equivalent to

- o

f biZZ +0A()D + dTAT (10T <0
([F RTZ]

. 7 +0AH)D + dTAT ()T <0

By Lemma 3,there exists two positive scalars p;, ¢ = 1, 2,such
that
E NTZ] . o I =g e

o oz | Tl | e T | <0

F NTZ] i, I —J) ' pyte
% 7z_ +[P2 o P29] 7JT I p29T <0

By Schur Complement,the inequalities (46),(47) are equivalent
to the LMIs in (44),(45) .This completes the proof. |

Remark 1 Theorem 1 and Theorem 2 proposes an improved
global asymptotic stability for delayed neural networks.This
paper not only divide the delay interval [g0,<,] into
[c0, o] [sotem ¢ T but divides the interval [, Gp,] into
fs0, 5[5 (1)) s (1), =W [0 G, ], Bach
segments has a different Lyapunov matrix in function
V ,which have potential to yield less conservative results.
Remark 2 In this paper,Theorem 1 and Theorem 2 require
the upper bound g of the time-varying delay <(t) to be
known.However,in many cases p is unknown,considering this
situation,we can set Q; = R; = 0,45 = 1,2,3 in V(y;).and
employ the similar methods in Theorem 1 and Theorem
2,we can obtain that satisfy delay-dependent and
delay-derivative-independent stability criteria.

Remark 3 When J = 0,the Assumption 3 can be reduced
to the popular expression such as GA(t)E. = GA(t)E..in
which AT (t)A(t) = AT (t)A(t) < I.Thus,the form includes
the norm-bounded uncertainty as its special case.

IV. NUMERICAL EXAMPLES

In this section,we provide three numerical examples to
demonstrate the effectiveness and less conservatism of our
delay-dependent stability criteria.

Example 1 Consider a delayed recurrent neural networks
with the following parameters:

y(t) = =Cy(t) + Af(y(t)) + Bf (y(t — <(2)))

where
2 0 1 1 0.88 1

o=t a2 =P ]
The neuron activation functions are assumed to satisfy
Assumption 2 with ¥~ = diag{0,0}, " = diag{0.4,0.8}.
For the case of ¢y = 0,the upper bounds of ¢, for different x
is derived by Theorem 1,According to Table I,this example
shows that the stability condition in this paper gives much
less conservative results than those in the literature.

Example 2 Consider a delayed recurrent neural networks
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TABLE I TABLE III
ALLOWABLE UPPER BOUND OF ¢;,, FOR EXAMPLE 1. ALLOW UPPER BOUND OF ¢, IN EXAMPLE 3.
Method n=0.8 w=20.9 Unknown S0 n=0.6 n=0.7 n=0.8 n=20.9
5] 2.3534 1.6050 1.5103 so=0.2 6.5216 6.1651 5.5750 4.9461
6] 2.8854 1.9631 1.7810 so =0.4 6.8570 6.4083 6.1695 5.1135
7] 3.0604 1.9956 1.7860 so =10.6 7.0145 6.9649 6.3215 5.3438
18] 4.1626 3.9766 3.1690
Theorem 1 5.0145 4.3630 3.7893
TABLE 11 V. CONCLUSION

COMPARIONS THE UPPER BOUND OF ¢, FOR VARIOUS 1IN EXAMPLE 2.

Method =04 =045 =05 1w =0.55
[7] 52420 Z4301 41055 39231
(8] 7.9626 7.6766 7.1690 6.9895

Theorem 1 8.4870 8.2450 7.6975 7.0875

with the following parameters:

y(t) = —Cy(t) + Af(y(t)) + Bf(y(t —<(1)))
where

02{1.5 0] A_{0.0503 0.0454}

B 0.2381 0.9320
0 0.7/ 0.0987 0.2075|’

~|0.0388 0.5062

The neuron activation functions are assumed to satisfy
Assumption 2 with ¥~ = diag{0,0}, % = diag{0.3,0.8}.
According to Table II ,we can see the comparison results on
the maximum delay bound allowed via the method in recent
papers [7,8] and our new study,and this example shows that
the stability criterion in the paper can lead to less
conservative results than [7,8].

Example 3 Consider a delayed recurrent neural networks
with the following parameters:

y(t) = =Cy(t) + Af(y(1)) + Bf (y(t — <(1)))

where
[0.6321 0 0
C = 0 0.9230 0
0 0 0.4480
[ 0.5988 —0.3224 1.2352 ]
A= {-0.0860 —0.3824 —0.5785
| 0.3253  —0.9534 —0.5015
[—0.9164 0.0360  0.9816 ]
B= 26117 —0.3788 0.8428
| 05179 1.1734  —0.2775]

The neuron activation functions are assumed to satisfy
Assumption 2 with
¥~ = diag{—0.1279, —0.7994, —0.2368},

Yt = diag{0.1279,0.7994, 0.2368}.

Table III provides the maximum allowable delay bounds with
the variables ¢p,and p.

In this paper, a new delay-dependent asymptotic stability
criterion for neural networks with time-delaying has been
investigated.By dividing the delay interval and constructing
new Lyapunov-Krasovskii functional which contains some
new integral terms and triple-integral terms ,and fully uses
the information about the bounding technique of integral
terms with different free-weighting matrices in different
delay intervals to reduce the conservatism of stability
criteria. Finally, numerical examples have presented to
illustrate the benefits and less conservativeness of the
proposed method.
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