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Abstract—By using two new fixed point theorems for mixed
monotone operators, the positive solution of nonlinear fractional
differential equation boundary value problem is studied. Its
existence and uniqueness is proved, and an iterative scheme is
constructed to approximate it.

I. INTRODUCTION

FRACTIONAL differential equations are used in various

variety of boundary value problems for fractional differential

In particular, by using contraction map principle and some
Lipschitz-type conditions, Zhanbing Bai [9] investigated the
existence and uniqueness of positive solutions for a nonlocal
boundary value problem of fractional differential equation:{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, βu(η) = u(1),
(1)

where 1 < α ≤ 2, 0 < βηα−1 < 1, 0 < η < 1,Dα
0+ is the

standard Riemann-Liouville fractional derivative of order α
and the function f is continuous on [0, 1]× [0,∞).

Inspired by the above literature, we study the existence and
uniqueness of positive solutions for the following problem:{

Dα
0+u(t) + f(t, u(t), u(t)) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, βu(η) = u(1),
(2)

where 1 < α ≤ 2, 0 < βηα−1 < 1, 0 < η < 1,Dα
0+ is the

standard Riemann-Liouville fractional derivative of order α
and f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) is continuous
and g : [0, 1] × [0,+∞) → [0,+∞) is also continuous.

Reference [9] gived the Green function for the problem
(2), this paper gets good properties of the Green function.
By means of two new fixed point theorems for mixed
monotone operators, we obtain the existence and uniqueness
of positive solutions for the problem (2).

II. PRELIMINARIES AND PREVIOUS RESULTS

In this section, we present some definitions, lemmas and
basic results that will be used in the proofs of our main results.
Definition 1 [4] The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt,x > 0
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is called the Riemann-Liouville fractional integral of order α,
whereα > 0 and Γ(α)denotes the gamma function.
Definition 2 [4] For a function f(x) given in the interval
[0,∞), the expression

Dα
0+f(x) =

1

Γ(n− α)
(
d

dx
)n

∫ x

0

f(t)

(x− t)α−n+1
dt,

is called the Riemann-Liouville fractional derivative of order
α, where n = [α] + 1, [α] denotes the integer part of number
α.
Lemma 1 [9] Let y ∈ C[0, 1] and 1 < α ≤ 2, the unique
solution of the fractional differential equation{

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = 0, βu(η) = u(1),
(3)

is

u(t) =

∫ 1

0

G(t, s)y(s)ds, t ∈ [0, 1]

where

qΓ(α)G(t, s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t(1− s)]α−1 − βtα−1(η − s)α−1 − q(t− s)α−1,
0 ≤ s ≤ t ≤ 1, s ≤ η;

[t(1− s)]α−1 − q(t− s)α−1,
0 < η ≤ s ≤ t ≤ 1;

[t(1− s)]α−1 − βtα−1(η − s)α−1,
0 ≤ t ≤ s ≤ η < 1;

[t(1− s)]α−1,
0 ≤ t ≤ s ≤ 1, η ≤ s.

(4)
where q = 1 − βηα−1. Here G(t, s) is called the Green
function of boundary value problem (2) and
G(t, s) > 0, ∀t, s ∈ (0, 1).
Lemma 2 [9] Green function G(t, s) in Lemma 1 has the
following property:

tα−1[(1− q)(1− s)α−1 − β(η − s)α−1]
≤ qΓ(α)G(t, s)
≤ tα−1(1− s)α−1, ∀t, s ∈ (0, 1)

(5)

Proof: Evidently, From(4), the right inequality holds. So, we
only need to prove the left inequality. Classifications are
discussed below:

If
0 ≤ s ≤ t ≤ 1, s ≤ η,

then we have

0 ≤ t− s ≤ t− ts = t(1− s),
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and thus
(t− s)α−1 ≤ tα−1(1− s)α−1.

Hence,

qΓ(α)G(t, s)
= tα−1(1− s)α−1 − βtα−1(η − s)α−1 − q(t− s)α−1

≥ tα−1(1− s)α−1 − βtα−1(η − s)α−1 − qtα−1(1− s)α−1

= tα−1[(1− q)(1− s)α−1 − β(η − s)α−1].

when 0 < η ≤ s ≤ t ≤ 1,

qΓ(α)G(t, s)
= tα−1(1− s)α−1 − q(t− s)α−1

≥ tα−1(1− s)α−1 − βtα−1(η − s)α−1 − q(t− s)α−1

≥ tα−1[(1− q)(1− s)α−1 − β(η − s)α−1].

when 0 ≤ t ≤ s ≤ η < 1 and 0 ≤ t ≤ s ≤ 1, η ≤ s,it can
be proved similarly that above inequality is also true. So, the
proof is complete.

In the sequel, we present some basic concepts in ordered
Banach spaces for completeness and a fixed point theorem
which will be used later.

Suppose (E, || · ||) is a real Banach space which is partially
ordered by a cone P ⊂ E, i.e. x ≤ y if and only if y−x ∈ P .
If x ≤ y and x 	= y, then we denote x < y. We denote the zero
element of E by θ. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i)x ∈ P, λ ≥ 0 ⇒ λx ∈ P ;
(ii)x ∈ P,−x ∈ P ⇒ x = θ.

Putting P 0 = {x ∈ P |x is an interior point of P}, a
cone P is said to be solid if P 0 is non-empty. Moreover, P is
called normal if there exists a constant N > 0 such that, for
all x, y ∈ E, θ ≤ x ≤ y implies ||x|| ≤ N ||y||; in this case N
is called the normality constant of P . We say that an operator
A : E → E is increasing if x ≤ y implies Ax ≤ Ay.

For all x, y ∈ E, the notation x ∼ y means that there exist
λ > 0 and μ > 0 such that λx ≤ y ≤ μx. Clearly ∼ is an
equivalence relation. Given w > θ (i.e. w ≥ θ and w 	= θ),
we denote the set Pw = {x ∈ E|x ∼ w} by Pw. It is easy to
see that Pw ⊂ P for w ∈ P .
Definition 3 [14] A : P × P → P is said to be a mixed
monotone operator if A(x, y) is increasing in x and decreasing
in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2 imply
A(u1, v1) ≤ A(u2, v2).Element x ∈ P is called a fixed point
of A if A(x, x) = x.
Definition 4 [15] An operator A : P → P is said to be sub-
homogeneous if it is satisfies

A(tx) ≥ tA(x), ∀t ∈ (0, 1), x ∈ P. (6)

Definition 5 [15] Let D = P and β be a real number with
0 ≤ β < 1. An operator A : D → D is said to be β-concave
if it satisfies

A(tx) ≥ tβA(x), ∀t ∈ (0, 1), x ∈ D. (7)

Lemma 3 (Theorem 2.1 in [14]) Let w > θ, β ∈ (0, 1).
A : P × P → P is a mixed monotone operator and satifies

A(tx, t−1y) ≥ tβA(x, y), ∀t ∈ (0, 1), x, y ∈ P. (8)

B : P → P is an increasing sub-homogeneous operator.
Assume that
(i) there is w0 ∈ Pw such that A(w0, w0) ∈ Pw and
Bw0 ∈ Pw;
(ii) there exists a constant δ0 > 0 such that
A(x, y) ≥ δ0Bx, ∀x, y ∈ P.
Then:
(1) A : Pw × Pw → P and B : Pw → Pw;
(2) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0)+Bu0 ≤ A(v0, u0)+Bv0 ≤ v0.

(3) the operator equation A(x, x) + Bx = x has a unique
solution x∗ in Pw;
(4) for any initial values x0, y0 ∈ Pw,constructing successively
the sequences

xn = A(xn−1, yn−1) +Bxn−1,
yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, ...

we have xn → x∗ and yn → x∗ as n → ∞.
Lemma 4 (Theorem 2.4 in [14]) Letw > θ, β ∈ (0, 1). A :
P × P → P is a mixed monotone operator and satisfies

A(tx, t−1y) ≥ tA(x, y), ∀t ∈ (0, 1), x, y ∈ P. (9)

B : P → P is an increasing β-concave operator. Assume that
(i) there is w0 ∈ Pw such that A(w0, w0) ∈ Pw and
Bw0 ∈ Pw;
(ii) there exists a constant δ0 > 0 such that
A(x, y) ≤ δ0Bx, ∀x, y ∈ P.
Then:
(1) A : Pw × Pw → P and B : Pw → Pw;
(2) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0)+Bu0 ≤ A(v0, u0)+Bv0 ≤ v0.

(3) the operator equation A(x, x) + Bx = x has a unique
solution x∗ in Pw;
(4) for any initial values x0, y0 ∈ Pw,constructing successively
the sequences

xn = A(xn−1, yn−1) +Bxn−1,
yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, ...

we have xn → x∗ and yn → x∗ as n → ∞.
Remark 1 (i) If we take B = θ in Lemma 3, then the

corresponding conclusion is still true (Corollary 2.2 in
[14]);(ii) If we take A = θ in Lemma 4, then the
corresponding conclusion is also true (Corollary 2.7 in [16]).

III. MAIN RESULTS

In this section, we apply Lemma 3 and Lemma 4 to
investigate the problem (2), and we obtain some new results
on the existence and uniqueness of positive solutions.

In this paper, we will work in the Banach space
C[0, 1] = {x : [0, 1] → R is continuous} with the standard
norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that this space
can be endowed with a partial order given by
x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Let P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]} be the standard
cone. Evidently, P is a normal cone in C[0, 1] and the
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normality constant is 1.
Theorem 1 Assume that
(A1) f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) is
continuous and g : [0, 1] × [0,+∞) → [0,+∞) is also
continuous;
(A2) f(t, u, v) is increasing in u ∈ [0,+∞) for fixed
t ∈ [0, 1] and v ∈ [0,+∞),decreasing in v ∈ [0,+∞) for
fixed t ∈ [0, 1] and u ∈ [0,+∞),and g(t, u) is increasing in
u ∈ [0,+∞) for fixed t ∈ [0, 1];
(A3) g(t, 0) 	≡ 0 and g(t, μu) ≥ μg(t, u), ∀t ∈ [0, 1],
μ ∈ (0, 1), u ∈ [0,∞),and there exists a constant β ∈ (0, 1)
such that

f(t, λu, λ−1v) ≥ λβf(t, u, v), ∀λ ∈ (0, 1), u, v ∈ [0,∞);

(A4) there exists a constant δ0 > 0 such that f(t, u, v) ≥
δ0g(t, u),t ∈ [0, 1], u, v ≥ 0.
Then:
(a) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that rvo ≤
u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)[f(s, u0(s), v0(s)) + g(s, u0(s))]ds,

v0(t) ≥
∫ 1

0
G(t, s)[f(s, v0(s), u0(s)) + g(s, v0(s))]ds,

where w(t) = tα−1(1 − t), t ∈ [0, 1] and G(t, s) is given as
in (4);
(b)The problem (2) has a unique positive solution u∗ in Pw;
(c) for any x0, y0 ∈ Pw,constructing successively the
sequences

xn(t) =
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds

+
∫ 1

0
G(t, s)g(s, xn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)f(s, yn−1(s), xn−1(s))ds

+
∫ 1

0
G(t, s)g(s, yn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
Proof: To begin with, from Lemma 1, the problem (2) has an
integral formulation given by

u(t) =

∫ 1

0

G(t, s)[f(s, u(s), u(s)) + g(s, u(s))]ds,

where is given as in (4).
Define two operators A : P × P → E andB : P → E by

A(u, v)(t) =
∫ 1

0
G(t, s)f(s, u(s), v(s))ds,

Bu(t) =
∫ 1

0
G(t, s)g(s, u(s))ds.

It is easy to prove that is the solution of the problem (2) if
and only if u = A(u, u) + Bu. From (A1), we know that
A : P × P → E andB : P → E. In the sequel we check that
A,B satisfy all assumptions of Lemma 3.

Firstly, we prove that A is a mixed monotone operator. In
fact, for ui, vi(i = 1, 2) ∈ P with u1 ≥ u2, v1 ≤ v2, we
know that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1], and by
(A2) and Lemma1,

A(u1, v1)(t) =
∫ 1

0
G(t, s)f(s, u1(s), v1(s))ds

≥ ∫ 1

0
G(t, s)f(s, u2(s), v2(s))ds

= A(u2, v2)(t)

.

That is,A(u1, v1) ≥ A(u2, v2).
Further, it follows from (A2) and Lemma 1 that B is

increasing. Next we show that A satisfies the condition
(8).For any λ ∈ (0, 1) and u, v ∈ P , from (A3) we know that

A(λu, λ−1v)(t) =
∫ 1

0
G(t, s)f(s, λu(s), λ−1v(s))ds

≥ λβ
∫ 1

0
G(t, s)f(s, u(s), v(s))ds

= λβA(u, v)(t)

That is A(λu, λ−1v) ≥ λβA(u, v), for λ ∈ (0, 1) and u, v ∈
P .So, the operator A satisfies (8).Also, for any μ ∈ (0, 1) and
u ∈ P , from (A3) we have

B(μu)(t) =
∫ 1

0
G(t, s)g(s, μu(s))ds

≥ μ
∫ 1

0
G(t, s)g(s, u(s))ds

= μBu(t)

,

That is B(μu) ≥ μBu, for μ ∈ (0, 1) and u ∈ P . So the
operator B is a sub-homogeneous operator. Now we show that
A(w,w) ∈ Pw and Bw ∈ Pw, where w(t) = tα−1, t ∈ [0, 1].
By (A1), (A2) and Lemma 2,

w(t)
∫ 1

0
[(1− q)(1− s)

α−1 − β(η − s)
α−1

]f(s, 0, 1)ds
≤ qΓ(α)A(w,w)(t)

= qΓ(α)
∫ 1

0
G(t, s)f(s, w(s), w(s))ds

≤ w(t)
∫ 1

0
(1− s)

α−1
f(s, 1, 0)ds

,

From (A2) and (A4), we have
f(s, 1, 0) ≥ f(s, 0, 1) ≥ δ0g(s, 0) ≥ 0.

Since g(t, 0) 	≡ 0, we get
∫ 1

0

f(s, 1, 0)ds ≥
∫ 1

0

f(s, 0, 1)ds ≥ δ0

∫ 1

0

g(s, 0)ds > 0,

and in consequence,

l1 := 1
qΓ(α)

∫ 1

0
(1− s)

α−1
f(s, 1, 0)ds > 0

l2 := 1
qΓ(α)

∫ 1

0
(1− q)(1− s)

α−1
f(s, 0, 1)ds

− 1
qΓ(α)

∫ 1

0
β(η − s)

α−1
f(s, 0, 1)ds > 0

So l2w(t) ≤ A(w,w)(t) ≤ l1w(t), t ∈ [0, 1]; and hence we
have A(w,w) ∈ Pw.Similarly,

w(t)
∫ 1

0
[(1− q)(1− s)

α−1 − β(η − s)
α−1

]g(s, 0)ds
≤ qΓ(α)Bw(t)

= qΓ(α)
∫ 1

0
G(t, s)f(s, w(s), w(s))ds

≤ w(t)
∫ 1

0
(1− s)

α−1
g(s, 1)ds

,

from g(t, 0) 	≡ 0, we easily prove Bw ∈ Pw.Hence the
condition (i) of Lemma 3 is satisfied.

In the following, we show that the condition (ii) of
Lemma 3 is also satisfied. For u, v ∈ P and any t ∈ [0, 1] by
(A4),

A(u, v)(t) =
∫ 1

0
G(t, s)f(s, u(s), v(s))ds

≥ δ0
∫ 1

0
G(t, s)g(s, u(s))ds

= δ0Bu(t)

.

Then we get A(u, v) ≥ δ0Bu, u, v ∈ P .
Finally, an application of Lemma 3 implies: there exist

u0, v0 ∈ Pw and γ ∈ (0, 1) such that

rv0 ≤ u0 < v0,
u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +Bv0 ≤ v0.
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the operator equation A(u, u)+Bu = u has a unique solution
u∗ inPw ; for any initial values x0, y0 ∈ Pw, constructing
successively the sequences

xn = A(xn−1, yn−1) +Bxn−1,
yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, ...

,

We have xn → u∗ and yn → u∗ as n → ∞.That is, there
exist u0, v0 ∈ Pw and γ ∈ (0, 1) such thatrvo ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)[f(s, u0(s), v0(s)) + g(s, u0(s))]ds,

v0(t) ≥
∫ 1

0
G(t, s)[f(s, v0(s), u0(s)) + g(s, v0(s))]ds,

The problem (2) has a unique positive solution u∗ in Pw;
for any initial values x0, y0 ∈ Pw, constructing successively
the sequences

xn(t) =
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds

+
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)f(s, yn−1(s), xn−1(s))ds

+
∫ 1

0
G(t, s)g(s, yn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
Theorem 2 Assume that (A1), (A2) and
(A5) f(t, λu, λ−1v) ≥ λf(t, u, v), ∀t ∈ [0, 1], λ ∈
(0, 1), u, v ∈ [0,∞),and there exists a constant β ∈ (0, 1)
such that

g(t, μu) ≥ μβg(t, u), ∀t ∈ [0, 1], μ ∈ (0, 1), u ∈ [0,∞);

(A6) f(t, 0, 1) 	≡ 0 for t ∈ [0, 1] and there exists a constant
δ0 > 0 such that

f(t, u, v) ≤ δ0g(t, u), t ∈ [0, 1], u, v ≥ 0.

Then:
(a) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that rvo ≤
u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)[f(s, u0(s), v0(s)) + g(s, u0(s))]ds,

v0(t) ≥
∫ 1

0
G(t, s)[f(s, v0(s), u0(s)) + g(s, v0(s))]ds,

where w(t) = tα−1(1 − t), t ∈ [0, 1] and G(t, s) is given as
in (3);
(b)The problem (1) has a unique positive solution u∗ in Pw;
(c) for any x0, y0 ∈ Pw,constructing successively the
sequences

xn(t) =
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds

+
∫ 1

0
G(t, s)g(s, xn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)f(s, yn−1(s), xn−1(s))ds

+
∫ 1

0
G(t, s)g(s, yn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
Proof: Consider two operators A,B defined in the proof of
Theorem 1. Similarly, from (A1), (A2), we obtain that A :
P × P → E is a mixed monotone operator and B : P → E
is increasing. From (A5), we have

A(λu, λ−1v) ≥ λA(u, v), λ ∈ (0, 1), u, v ∈ P
B(μu) ≥ μβBu, μ ∈ (0, 1), u ∈ p.

From (A2) and (A6), we have

g(s, 0) ≥ 1
δ0
f(s, 0, 1),

f(s, 1, 0) ≥ f(s, 0, 1), s ∈ [0, 1].

Since f(t, 0, 1) 	≡ 0,we get
∫ 1

0
f(s, 1, 0)ds ≥ ∫ 1

0
f(s, 0, 1)ds > 0,∫ 1

0
g(s, 1)ds ≥ ∫ 1

0
g(s, 0)ds ≥ 1

δ0

∫ 1

0
f(s, 0, 1)ds > 0,

and in consequence,

1
qΓ(α)

∫ 1

0
(1− s)

α−1
f(s, 1, 0)ds

≥ 1
qΓ(α)

∫ 1

0
[(1− q)(1− s)

α−1 − β(η − s)
α−1

]f(s, 0, 1)ds

> 0,
1

qΓ(α)

∫ 1

0
(1− s)

α−1
g(s, 1)ds

≥ 1
qΓ(α)

∫ 1

0
[(1− q)(1− s)

α−1 − β(η − s)
α−1

]g(s, 0)ds

> 0.

So, we can easily prove that A(w,w) ∈ Pw and Bw ∈ Pw.
For u, v ∈ P , and any t ∈ [0, 1] by (A6),

A(u, v)(t) =
∫ 1

0
G(t, s)f(s, u(s), v(s))ds

≤ δ0
∫ 1

0
G(t, s)g(s, u(s))ds

= δ0Bu(t)

.

Then we get A(u, v) ≤ δ0Bu, u, v ∈ P .
Finally, an application of Lemma 4 implies: there exist

u0, v0 ∈ Pw and γ ∈ (0, 1) such that

rv0 ≤ u0 < v0,
u0 ≤ A(u0, v0) +Bu0 ≤ A(v0, u0) +Bv0 ≤ v0.

the operator equation A(u, u)+Bu = u has a unique solution
u∗ inPw ; for any initial values x0, y0 ∈ Pw, constructing
successively the sequences

xn = A(xn−1, yn−1) +Bxn−1,
yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, ...

,

We have xn → u∗ and yn → u∗ as n → ∞.That is, there
exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that rvo ≤ u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)[f(s, u0(s), v0(s)) + g(s, u0(s))]ds,

v0(t) ≥
∫ 1

0
G(t, s)[f(s, v0(s), u0(s)) + g(s, v0(s))]ds,

The problem (2) has a unique positive solution u∗ in Pw;
for any initial values x0, y0 ∈ Pw, constructing successively
the sequences

xn(t) =
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds

+
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)f(s, yn−1(s), xn−1(s))ds

+
∫ 1

0
G(t, s)g(s, yn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
From Remark 1 and similar to the proofs of Theorems 1-2,

we can prove the following conclusions.
Corollary 1 Let g ≡ 0.Assume that f satisfies the conditions
of Theorem 1 and f(t, 0, 1) 	≡ 0.
Then:
(i) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that rvo ≤
u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)f(s, u0(s), v0(s))ds,

v0(t) ≥
∫ 1

0
G(t, s)f(s, v0(s), u0(s))ds,



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:11, 2013

1626

where w(t) = tα−1(1 − t), t ∈ [0, 1] and G(t, s) is given as
in (3);
(ii)The problem{

Dα
0+u(t) + f(t, u(t), u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, βu(η) = u(1),

has a unique positive solution u∗ in Pw;
(iii) for any x0, y0 ∈ Pw,constructing successively the
sequences

xn(t) =
∫ 1

0
G(t, s)f(s, xn−1(s), yn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)f(s, yn−1(s), xn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
Corollary 2 Let f ≡ 0.Assume that g satisfies the conditions
of Theorem 2 and g(t, 0) 	≡ 0,for t ∈ [0, 1].
Then:
(i) there exist u0, v0 ∈ Pw and γ ∈ (0, 1) such that rvo ≤
u0 < v0 and

u0(t) ≤
∫ 1

0
G(t, s)g(s, u0(s))ds,

v0(t) ≥
∫ 1

0
G(t, s)g(s, v0(s))ds,

where w(t) = tα−1(1 − t), t ∈ [0, 1] and G(t, s) is given as
in (4);
(ii)The problem{

Dα
0+u(t) + g(t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = 0, βu(η) = u(1),

has a unique positive solution u∗ in Pw;
(iii) for any x0, y0 ∈ Pw,constructing successively the
sequences

xn(t) =
∫ 1

0
G(t, s)g(s, xn−1(s))ds, n = 1, 2, · · · ,

yn(t) =
∫ 1

0
G(t, s)g(s, yn−1(s))ds, n = 1, 2, · · ·

We have xn(t) → u∗(t) and yn(t) → u∗(t)as n → ∞.
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