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Kalman Filter for Bilinear Systems with Application
Abdullah E. Al-Mazrooei

Abstract—In this paper, we present a new kind of the bilinear
systems in the form of state space model. The evolution of this
system depends on the product of state vector by its self. The well
known Lotak Volterra and Lorenz models are special cases of this
new model. We also present here a generalization of Kalman filter
which is suitable to work with the new bilinear model. An application
to real measurements is introduced to illustrate the efficiency of the
proposed algorithm.
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I. INTRODUCTION

B nonlinear systems. It appears in many applications in
science, engineering, economic and control system. It have
used recently in weather forecasting, atmospheric studies and
ocean studies [5],[6]. In recent years, the bilinear systems
captured the attention in the research and application. Because,
they are applicable in various aspects of real life. They also
provide more flexible approximations to nonlinear systems
than do linear systems. Moreover, bilinear systems have rich
geometric and algebraic structures that create a fruitful field
of research.
The bilinear systems were introduced in control theory in
1960’s. Yet, their nonlinearity is subject to the product between
the state vector and the input of the systems[6]. The kind of
these systems are easier to deal, because they are reduced
to linear systems according to use of a certain of Kronecker
product. In this paper, we present a new bilinear model, the
nonlinearity is subject to the product of the state of the system
by its self. This technique allows for this model to generalize
the Lotka-Volterra models and Lorenz models which they
have applications in science and weather prediction [3],[4].
This means that, this bilinear model applicable more widely.
Kalman filter is the optimal estimator that is used to estimate
the state in linear systems. It was introduced by Kalman in
1970 [2]. Since, the system is nonlinear, then the classical
Kalman filter is not suitable to be used, because it works
with linear systems only. Here, we have a nonlinear model
of a bilinear class, thus, Kalman filter does not work with
our model. Therefore, we need to develop Kalman filter to
work with the new bilinear model. The direct development of
the recursions for the nonlinear filters is very complicated if
not impossible altogether[1],[7],[8]. Instead, we develop our
recursions based on a linearization of the quadratic term that
uses the most current state estimate available.

The paper is organized as follows: In Section II, the new
bilinear model is presented. In Section III, we describe a new
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generalization of Kalman filter algorithm. In section IV, a new
application to real data is introduced to illustrate the efficiency
of the proposed algorithm.

II. THE NEW BILINEAR MODEL
In this section, we present a new sort of the bilinear

system. The nonlinearity of this model consists of bilinear
interaction between the states of the model themselves. While,
the nonlinearity of the earlier bilinear systems is interaction
between the state of the systems and the system input. The
well- known Lotka-Volterra models and Lorenz models are
considered to be special cases of the new bilinear model.
Here, considering a bilinear model in discrete state space form
Which is given as follows

xk+1 = Axk +B(xk ⊗ xk) + wk; (1)

yk = Cxk + vk; (2)

where;
xk ∈ R

n is the state vector,
yk ∈ R

p is the measurements vector,
while the matrices A ∈ R

n×n, B ∈ R
n×n(n+1)

2 and C ∈ R
p×n

are the parameters of the model.
The noise corruption signals wk ∈ R

n and vk ∈ R
p are white,

uncorrelated and Gaussian with zero mean and covariances Q
and R respectively. That is

wk ∼ N(0, Q)

vk ∼ N(0, R)

Also,

E(wkw
T
l ) =

{
Q, for k=l
0, for k �=l,

E(vkv
T
l ) =

{
R, for k=l
0, for k �=l,

and

E(wkv
T
k ) = 0.

Here, xk ⊗ xk represents the Kronecker product of the state
xk with itself without repetition of the entries.

Note, for example, Lorenz model-69 with n = 3 can be
written in the form of our bilinear model with

A = −I3
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and

B =

⎡
⎣ 0 0 0 0 0 0

0 0 0 0 0 0
0 −1 0 0 1 0

⎤
⎦

Now by using Taylor polynomial expansion for the bilinear
term zk = xk ⊗ xk at x0 we get,

zk = z0 + z′(x0)(xk − x0) +
1

2
H(xk, x0)(xk − x0) (3)

where z′ (x) is the n(n+1)
2 × n gradient of z (x) given by

z′(x) = [
∂xixj

∂xl
]i,j,l=1,2,...,m,

and H(xk, x0) is given by

H(xk, x0) =

⎡
⎢⎢⎢⎣

(xk − x0)
TD1

(xk − x0)
TD2

...
(xk − x0)

TDm

⎤
⎥⎥⎥⎦

and, D1, D2, ..., Dm is the matrices of second derivatives
of the entries of zk, and m = n

n+1

To illustrate,suppose n = 3. Then

z(x) = (x2
1, x1x2, x1x3, x

2
2, x2x3, x

2
3)

T ,

z′ (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2x1 0 0
x2 x1 0
x3 0 x1

0 2x2 0
0 x3 x2

0 0 2x3

⎤
⎥⎥⎥⎥⎥⎥⎦

and

D1 =

⎡
⎣ 2 0 0

0 0 0
0 0 0

⎤
⎦ , D2 =

⎡
⎣ 0 1 0

1 0 0
0 0 0

⎤
⎦ ,

D3 =

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ , D4 =

⎡
⎣ 0 0 0

0 2 0
0 0 0

⎤
⎦ ,

D5 =

⎡
⎣ 0 0 0

0 0 1
0 1 0

⎤
⎦ , D6 =

⎡
⎣ 0 0 0

0 0 0
0 0 2

⎤
⎦ .

III. A GENERALIZATION OF KALMAN FILTER

In this work, we have a nonlinear system, and thus using
the classical Kalman filter is not possible in this case since it
is appropriate only for linear systems. Thus, we will derive a
development of Kalman filter for the bilinear system (1) and
(2).
We will adopt the following notations:

zk = xk ⊗ xk

xt
k = E{xk|{y}t1} = Et(xt)

P t
k = Et{(xk − xt

k)(xk − xt
k)

T }
ztk = E{zk|{y}t1} = Et(zt)

Ṗ t
k = Et{(zk − ztk)(zk − ztk)

T }
P̈ t
k = Et{(xk − xt

k)(zk − ztk)
T },

where,

1 ≤ k ≤ t

1 ≤ t ≤ n

and, {y}t1 is the measurements sequence

{y}t1 = {y1, ..., yt}.
Now to compute equation(3), we approximate the second

degree term H(xk, x0) by using the most current available
state estimation of xk. So we have two different cases.

• In the case of prediction, we take,

(xk − x0) ≈ (xk−2
k − x0),

with x0 = xk−1
k and x−1

1 = 0. This means that,

zk ≈ zk−1
k + z′(xk−1

k )(xk − xk−1
k )

+
1

2
H(xk−2

k , xk−1
k )(xk − xk−1

k ),

• In the case of filtering, we take,

(xk − x0) ≈ (xk−1
k − x0).

with x0 = xk
k, this means that,

zk ≈ zkk + z′(xk
k)(xk − xk

k) +
1

2
H(xk−1

k , xk
k)(xk − xk

k),

Thus, these cases can be summarized in the following
linearization:

zk ≈ zjk + z′(xj
k)(xk − xj

k) +
1

2
H(xj−1

k , xj
k)(xk − xj

k)

= zjk + V j
k (xk − xj

k), (4)

where,

V j
k = z′(xj

k) +
1

2
H(xj−1

k , xj
k). (5)

In the next theorem, we introduce a bilinear Kalman filter
algorithm.

Theorem. For the bilinear state-space model defined
by (1) and (2), we have

xk
k+1 = Axk

k +Bzkk (6)

P k
k+1 = AP k

kA
T +AP̈ k

kB
T +B(P̈ k

k )
TAT +BṖ k

kB
T +Q.

(7)
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with,

xk+1
k+1 = xk

k+1 +Kk+1[yk − Cxk
k+1] (8)

P k+1
k+1 = [I −Kk+1C]P k

k+1 (9)

P̈ k+1
k+1 = P k+1

k+1 [V
k+1
k+1 ]

T (10)

Ṗ k+1
k+1 = (V k+1

k+1 )P̈
k+1
k+1 (11)

where,

Kk+1 = P k
k+1C

T [CP k
k+1C

T +R]−1 (12)

and,

V k+1
k+1 = z′(xk+1

k+1) +
1

2
H(xk

k+1, x
k+1
k+1), (13)

for k = 0, ..., t.
Proof. First, to derive the forecast steps which are given

by (5) and (6), we consider the case t < k in the previous
notations. By applying the conditional expectation to (1):

xk
k+1 = Ek(xk+1)

= Ek(Axk +Bzk + wk)

= AEk(xk) +BEk(zk) + Ek(wk)

= Axk
k +Bzkk .

To obtain the error recursion (6), we proceed as follows

P k
k+1 = Ek{(xk+1 − xk

k+1)(xk+1 − xk
k+1)

T }
= Ek{(Axk +Bzk + wk −Axk

k −Bzkk)

(Axk +Bzk + wk −Axk
k −Bzkk)

T }
= Ek{[A(xk − xk

k) +B(zk − zkk) + wk]

[A(xk − xk
k) +B(zk − zkk) + wk]

T }
= Ek{[A(xk − xk

k) +B(zk − zkk) + wk]

[(xk − xk
k)

TAT + (zk − zkk)
TBT + wT

k ]}
= Ek{A(xk − xk

k)(xk − xk
k)

TAT +A(xk − xk
k)

(zk − zkk)
TBT +B(zk − zkk)(xk − xk

k)
TAT

+B(zk − zkk)(zk − zkk)
TBT + wkw

T
k }

= AP k
kA

T +AP̈ k
kB

T +B(P̈ k
k )

TAT +BṖ k
kB

T

+Q,

Second, when t = k, we derive the filtering steps. Let

ρk = yk − Ek−1(yk)

= yk − Ek−1(Cxk − vk)

= yk − Cxk−1
k

= Cxk − Cxk−1
k + vk

= C(xk − xk−1
k ) + vk,

for k = 1, ..., t. Thus, we note that,

Ek−1(ρk) = ρk−1
k = 0 (14)

and

Σk+1 = Var(ρk+1)

= E{[C(xk+1 − xk
k+1) + vk][C(xk+1 − xk

k+1) + vk]
T }

= CE{[xk+1 − xk
k+1][xk+1 − xk

k+1]
T }CT + E(vkv

T
k )

= CP k
k+1C

T +R.

We also note that,

Ek(ρk+1y
T
k ) = Ek((yk+1 − ykk+1)y

T
k ) = 0,

which means that the innovations are independent of the past
measurements. On the other hand, the conditional covariance
between xk+1 and ρk+1 is computed as follows

Cov(xk+1, ρk+1) = Cov(xk+1 − xk
k+1, C(xk+1 − xk

k+1) + vk)

= E{[(xk+1 − xk
k+1)− Ek(xk+1 − xk

k+1)]

= [C(xk+1 − xk
k+1) + vk − CEk(xk+1 − xk

k+1)]
T }

= P k
k+1C

T .

From theses results, we conclude that xk+1 and ρk+1 have a
Gaussian joint distribution conditional on {y}k1 . That is ,

{
(

xk+1

ρk+1

)
|{y}k1} ∼ N{

(
xk
k+1

0

)
,

(
P k
k+1 P k

k+1C
T

CP k
k+1 Σk+1

)
}.

(15)

Now, since ρk+1 and yk are independent,

xk+1
k+1 = Ek+1(xk+1)

= Ek{xk+1|ρk+1}
= Ek(xk+1) + Cov(xk+1, ρk+1)Σ

−1
k+1ρk+1

= xk
k+1 + P k

k+1C
T [CP k

k+1C
T +R]−1ρk+1

= xk
k+1 +Kk+1[yk+1 − Cxk

k+1];

where,

Kk+1 = P k
k+1C

T [CP k
k+1C

T +R]−1

is the Kalman gain.
To derive (8), we will use the information of (15), We get

P k+1
k+1 = Cov(xk+1, ρk+1)

= Cov(xk+1)− Cov(xk+1, ρk+1)Σ
−1
k+1Cov(ρk+1, xk+1)

= P k
k+1 − P k

k+1C
T [CP k

k+1C
T +R]−1CP k

k+1

= P k
k+1 −Kk+1CP k

k+1

= [I −Kk+1C]P k
k+1

To derive (9), we have,

P̈ k+1
k+1 = E((xk+1 − xk+1

k+1)(zk+1 − zk+1
k+1)

T )

= E(((xk+1 − xk+1
k+1)(xk+1 − xk+1

k+1)
T )[V k+1

k+1 ]
T

= P k+1
k+1 [V

k+1
k+1 ]

T

By using the same argument for deriving (10), we obtain,

Ṗ k+1
k+1 = E((zk+1 − zk+1

k+1)(zk+1 − zk+1
k+1)

T )

= (V k+1
k+1 )E((xk+1 − xk+1

k+1)(xk+1 − xk+1
k+1)

T )[V k+1
k+1 ]

T

= (V k+1
k+1 )P

k+1
k+1 [V

k+1
k+1 ]

T

= (V k+1
k+1 )P̈

k+1
k+1
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In this section, we will show the efficiency of the
proposed algorithm by applying it to real measurements. These
measurements are the daily average temperature for Jeddah
city, which is located in western region of Saudi Arabia. Here,
we have true measurements for a period of five years. By
comparing the true measurements with the estimated values
from the proposed algorithm , we find that the algorithm gives
good results. The results are shown below in two figures. The
first figure is for a period of hundred days. The second figure
is for the whole period.

The paper has introduced a new bilinear state space model.
The bilinearity of this model depends on the product of the
state vector by itself. This model generalizes Lotka volterra
models and Lorenz models which have many applications in
real life. Since the linear Kalman filter does not work with
nonlinear systems, the paper has derived a new generalization
of Kalman filter which work with the new bilinear model.
The new algorithm depends on a linearization of the second

order term by making use of the best available information
about the state of the system. A new application to real data
of temperatures are presented, which demonstrated that the
proposed algorithm gives good results.

The author acknowledge with thanks King Abdulaziz
University KAU for supporting.
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Fig. 1 Real data vs. estimated data for 100 days
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