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Abstract—In order to study the free vibration of simply 

supported circular cylindrical shells; an analytical procedure is 

developed and discussed in detail. To identify its’ validity, the exact 

technique was applied to four different shell theories 1) Soedel, 2) 

Flugge, 3) Morley-Koiter, and 4) Donnell. The exact procedure was 

compared favorably with experimental results and those obtained 

using the numerical finite element method. A literature review 

reveals that beam functions are used extensively as an approximation 

for simply supported boundary conditions. The effects of this 

approximate method were also investigated on the natural frequencies 

by comparing results with those of the exact analysis.  

 

Keywords—Circular Cylindrical Shell, Free Vibration, Natural 

Frequency.  

I. INTRODUCTION 

IMILAR to beams and plates, in many branches of 

engineering, cylindrical shells are the practical elements of 

various engineering structures such as pipes and ducts, bodies 

of cars, space shuttles, aircraft fuselages, ship hulls, 

submarines and construction buildings. However, analyzing 

the dynamic characteristics of cylindrical shells is more 

complicated than that of beams and plates. This is mainly 

because; the equations of motion of cylindrical shells 

combined with boundary conditions are more complex.  

A comprehensive summary and discussion of shell theories 

including natural frequencies and mode shape information has 

been done by Liessa [1] in 1973. More recently, Amabili and 

Paidoussis [2], Amabili [3], and Kurylov and Amabili [4] have 

presented noteworthy reviews with a non-linear point of view. 

Many investigations followed the pioneering work of Love [5] 

using his first approximation theory, such as Flugge [6]. The 

Flugge theory is based on Kirchhoff-Love hypothesis for thin 

elastic shells. By using this theory, the strain-displacement 

relations and changes of curvatures of the middle surface of a 

cylindrical shell can be obtained. The simplified Donnell’s 

theory would be achieved by neglecting few terms in Flugge 

equations 

Livanov [7] applied love’s assumption and used 

displacement functions to solve the problem of axisymmetrical 

vibrations of simply supported cylindrical shells. Rinehart and 

Wang [8] investigated the vibration of simply supported 

cylindrical shells stiffened by discrete longitudinal stiffeners 
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using Donnell’s approximate theory, Flugge’s more exact 

theory and Love’s assumption for longitudinal wave numbers. 

Thesis theories are not only concerned with simply supported 

end conditions, but they have also applied other boundaries, 

such as cantilever cylindrical shells [9], fixed free circular 

cylindrical shells [10], clamped-clamped shells [11] and 

infinite length shells [12]. Most researchers and those cited 

above, use beam function as an approximation for the simply 

supported boundary conditions and find natural frequencies of 

vibration by the approximate method. This approximation is 

also useful for finite element analysis of cylindrical shells by 

using Hermitain polynomial of beam function type [13]. In 

addition to the approximate method, there are other 

approaches to find natural frequencies, like the computer 

based numerical method [14], [15] to avoid cumbersome 

computational effort and the wave propagation technique [16]. 

More recently Farshidianfar et al. [17] used the advantage of 

acoustical excitation to find natural frequency of long 

cylindrical shells. 

In the present study, an exact analytical approach is 

proposed to investigate the free vibration of simply supported 

cylindrical shells. As cited above, in traditional analysis, beam 

functions with similar boundary conditions are used to 

approximate wave numbers in the axial direction. This method 

is considered as an approximate technique. The exact method 

is used to obtain the natural frequencies based on four 

different shell theories (Soedel, Flugge, Morley-Koiter and 

Donnell) and compared with the approximate method. Finally 

the results are compared with experimental and numerical 

results and show good agreement. 

II. THEORETICAL ANALYSIS 

The cylindrical shell under consideration is with constant 

thickness h, mean radius R, axial length L, Poisson’s ratioυ , 

density ρ  and Young’s modulus of elasticity E . Here the 

respective displacements in the axial, circumferential and 

radial directions are denoted by ( )txu ,,θ , ( )txv ,,θ  and 

( )txw ,,θ , and as shown in Fig. 1. 
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Fig. 1 Circular cylindrical shell: coordinate system and dimensions 

 

In order to study free vibration of a cylindrical shell, the 

equations of motion can be written in matrix form as follows: 
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where )3 ,2 ,1,( =jiLij  are differential operators with respect 

to x , θ  and t. 

Different systems of equations are used to model the 

vibration behavior of circular cylindrical shells. In this paper 

four of the most common theories namely: 1) Soedel [18], 2) 

Flugge [6], 3) Morley-Koiter [19], and 4) Donnell’s theory 

[3], are used to find natural frequencies.  

The first attempt in solving (1) is the assumption of a 

synchronous motion: 
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where ( )tf  is the scalar model coordinate corresponding to 

the mode shapes ( )θ,xU , ( )θ,xV  and ( )θ,xW . 

The next step is to use the separation of variables method in 

order to separate the spatial dependence of the modal shape 

between longitudinal and circumferential directions. Hence the 

axial, tangential and radial displacements of the wall vary 

according to: 

 

( )
( )
( )








=

=

=

)cos()sin(,,

)cos()cos(,,

)cos()sin(,,

tneCtxw

tneBtxv

tneAtxu

x

x

x

m

m

m

ωθθ

ωθθ
ωθθ

λ

λ

λ

 (3) 

 

in which mλ  and n  are the axial wavenumber and the 

circumferential wave parameter, respectively. BA,  and C  are 

the undetermined constants, and ω  is the circular frequency 

of the natural vibration. 

Substituting (3) into (1), using any of the shell theories, 

leads to a set of homogenous equations having the following 

matrix form:  
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in which [ ] )3 ,2 ,1,( =jiCij  
are functions of mn λ ,  and a 

frequency parameter Ω  that is defined as follows: 
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As an example, for Donnell theory [ ]ijC  can be written in 

matrix form as in (4). 
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For nontrivial solution the determinant of the coefficient 

matrix in (4) must be zero: 

 

[ ]( ) 0det =ijC ; 3 ,2 , 1, =ji . (7) 

 

The expansion of (7) will give the following two eigenvalue 

problems: 

• For a given value of there exists one or more proper 

values for so that the (7) vanishes.  

• For a given value of there exists one or more proper 

values for so that the (7) vanishes. 

Solving (7) leads to a cubic equation in terms of the 

nondimentional frequency parameter 2Ω  . Thus for a fixed 

value m  of and n  , three positive roots and three negative 

roots are yield for the nondimensional frequency. The three 

positive roots are the natural frequencies of the cylindrical 

shell that can be classified as primarily axial, circumferential 

or radial. The lowest frequency is usually associated with a 

motion that is primarily radial (or flextural). 
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III. THE APPROXIMATE BEAM FUNCTION METHOD 

In general, solving the roots of the characteristic equation of 

(7) for mλ  is not possible in closed form. Hence, researchers 

have often leaned to use approximate techniques. According to 

previous studies, beam functions have already been widely 

used to obtain natural frequencies and approximate 

displacements for closed circular cylindrical shells. According 

to the approximate method, for a simply supported shell at 

both ends, the nature of the axial mode can be defined as:  

 

1−=
L

R
mm πλ  (8) 

 

By substituting (8) into (7), the only unknown of the 

characteristic equation will be the frequency parameter 
2Ω  

for a fixed combination of m and n . 

However, this approach is straightforward; in fact it is an 

approximation for boundary condition of a simply supported 

circular cylindrical shell. However, since cylindrical shell 

vibration is totally different compared to beams of the same 

type, it is important to check the accuracy of this 

approximation.  

Thus, the exact analytical technique that uses the boundary 

condition equations is proposed and the results of both the 

approximate and exact method are compared with the 

experimental and numerical ones. 

IV. THE EXACT METHOD 

In this section an exact analysis is presented, which could 

be applied to any theory discussed. 

At each end of the cylindrical shell, four boundary 

conditions must be specified. For the simply supported shell 

the following boundary conditions are imposed: 

 

0,0,0,0 ==== xx NMvw  at Lx ,0= . (9) 

 

These conditions restraining the v  and w  components of 

shell displacements at their mutual boundaries and they would 

cause negligible internal bending moment xM  and membrane 

normal force xN , in the shell as the shell deforms. By using 

the approach mentioned in [3], and eliminating nonlinear 

terms, the simply supported boundary conditions for various 

shell theories are obtained as follows: 
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Morley-Koiter 
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Substituting the modal displacements into these constraints 

lead to a set of eight homogenous equations, expressed as 

follows: 

 

[ ] { } { }01888 =×× bH  (14) 

 

in which ω, λm and are the ten unknowns. For a nontrivial 

solution of (14) one requires: 

 

[ ] 0det =H  (15) 

 

The driving frequencies are obtained by simultaneously 

solving both the characteristic equations for the 3×3 

displacement coefficient matrix, (7) and the 8×8 boundary 

condition determinant, (15). 

V. VALIDATION OF THE EXACT ANALYSIS 

A Matlab program was written in order to obtain the 

resonance frequencies of a shell, using the exact method 

described in the section IV.  

First, exact resonance frequencies were obtained based on 

the Soedel theory. Consider a cylindrical shell with 

dimensions; 3=
R

L
, 

20

1
=

R

h
 and 

3

1
=ν . In order to yield the 

exact frequencies one has to solve (15) in terms of the non-

dimensional frequency parameter, Ω . In Figs. 2-6 the 

determinant of the boundary coefficient matrix, (15) is 

calculated for constant values of circumferential wave 

parameter (n=1,3,5,7 and 9). As pointed out in section IV, in 

order to obtain a nontrivial solution the boundary coefficient 

determinant should equal to zero at the resonance frequency, 

Ω . However, as it can be seen by Figs. 2-6, none of the 

determinants reach zero. This is completely explainable 

considering the sensitiveness of (15) with respect to Ω . To 
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obtain the determinant of the boundary coefficient matrix in 

Figs. 2-6, a frequency sweep was carried out using steps of 

001.0=∆Ω . On the other hand, (15) is very sensitive to 

frequency variations. Thus, the determinants represented in 

Figs. 2-6 should actually equal to zero, however, since 

frequency steps are not that much small they may not make 

the determinant exactly zero. Although in Figs. 2-6 at no 

frequency the determinants equal to zero, but, several 

minimum points are observed. These minimum points are 

actually the resonance frequencies of the shell at which the 

determinants are zero. However, as discussed in section IV, in 

order to be the resonance frequency of the system, the 

minimum points should also satisfy (7). Thus, in Figs. 2-6 the 

unmarked minimum points before m=7 are not a resonance 

frequency. 

Accordingly, at higher frequencies higher axial wave 

parameters (m) occur. Figs. 2-6 are graphical representations 

of how the exact resonance frequencies are obtained using the 

method described in this paper. According to the exact 

method, each minimum point in the diagrams represents a 

mode shape and its resonance frequency. For better 

understanding, resonance frequencies corresponding to each 

mode shape in Figs. 2-6 are presented numerically in Table II. 

Next, let us investigate the accuracy of using beam 

functions as an alternative to the exact method. In order to 

study such an approximation, natural frequencies were 

calculated using two methods; 1) the approximate method (in 

which 1−=
L

R
mm πλ  ) and 2) the exact method (15). A 

comparison of the values of the non-dimensional frequency 

parameter, Ω  , for a free vibrating circular cylindrical shell 

with the simply supported boundary conditions are shown 

through Tables I-VIII. Four diverse theories have been applied 

to compare their accuracy. All non-dimensional frequencies 

are calculated up to the fourth digit. As it can be seen, the 

approximate beam function analysis yields close results with 

the least errors. In Tables I-VIII mode shapes at which the 

approximate method obtains errors are marked by a (*) sign. 

 

 

Fig. 2 Determinant of the boundary coefficient matrix versus 

frequency parameter for n=1 

 

 

Fig. 3 Determinant of the boundary coefficient matrix versus 

frequency parameter for n=3 

 

 

Fig. 4 Determinant of the boundary coefficient matrix versus 

frequency parameter for n=5 

 

 

Fig. 5 Determinant of the boundary coefficient matrix versus 

frequency parameter for n=7 
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Fig. 6 Determinant of the boundary coefficient matrix versus 

frequency parameter for n=9 

 

As one can see from the comparisons of Tables I-VIII, there 

are some minute discrepancies, which can be classified into 

two groups for all theories. First, those that happen for the 

m=1 modes, and second, the differences related to the 2≥m  

modes. In m=1 modes, the values of the errors are between 

0.2-0.7 percent. However, for the 2≥m  modes, the errors are 
between 0.001-0.01 percent, which is mainly a rounding error 

to the fourth digit. Moreover, according to Tables I-VIII, as 

the axial wave parameter m increases, the number of 

resonance frequencies containing an error decrease. Hence, the 

approximation method is similar to the exact analysis for 

2≥m  modes and for low mode numbers of nm ≤= 5and 1 . 

On the hand, for low mode numbers of 41and 1 ≤≤= nm  , 

the approximate method is not that accurate. Therefore, the 

exact method is found to be more accurate for low mode 

numbers. Thus, the approximate method is only recommended 

to be used for high mode numbers and high resonance 

frequencies. 

Furthermore, comparing different theories in Tables I-VIII, 

it is noticeable that the approximate Soedel theory is the most 

accurate amongst all theories analyzed. On the other hand, the 

approximate Morley-Koiter theory yields the most errors. 

However, as explained above, as the frequency and mode 

numbers increase, the errors of the approximation decrease for 

all theories. 
 

TABLE I 
FREQUENCY PARAMETER FOR THE SOEDEL’S SHELL THEORY BY THE 

APPROXIMATION METHOD WITH 3=
R

L
,

20

1
=

R

h
,

3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3672 0.7045 0.8473 0.9213 0.9924 1.0859 1.2142 

2 0.1867 0.4647 0.6695 0.8097 0.9276 1.0533 1.2040 

3 0.1568 0.3384 0.5370 0.7098 0.8664 1.0258 1.2029 

4 0.2320 0.3339 0.4942 0.6682 0.8443 1.0275 1.2268 

5 0.3566 0.4233 0.5453 0.7029 0.8806 1.0748 1.2879 

6 0.5140 0.5683 0.6679 0.8075 0.9779 1.1732 1.3920 

7 0.7012 0.7510 0.8397 0.9670 1.1286 1.3203 1.5396 

8 0.9175 0.9656 1.0492 1.1691 1.3238 1.5109 1.7284 

9 1.1627 1.2102 1.2913 1.4070 1.5570 1.7402 1.9551 

10 1.4368 1.4840 1.5639 1.6772 1.8243 2.0044 2.2169 

TABLE II 

FREQUENCY PARAMETER FOR THE SOEDEL’S SHELL THEORY BY THE EXACT 

METHOD WITH 3=
R

L ,
20

1
=

R

h ,
3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3660* 0.7044* 0.8473 0.9213 0.9924 1.0859 1.2142 

2 0.1863* 0.4647 0.6695 0.8097 0.9276 1.0533 1.2040 

3 0.1520* 0.3382* 0.5370 0.7098 0.8664 1.0258 1.2029 

4 0.2320 0.3338* 0.4942 0.6682 0.8443 1.0275 1.2268 

5 0.3565* 0.4233 0.5453 0.7029 0.8806 1.0748 1.2879 

6 0.5140 0.5683 0.6679 0.8075 0.9779 1.1732 1.3920 

7 0.7012 0.7510 0.8397 0.9670 1.1286 1.3203 1.5396 

8 0.9174* 0.9655* 1.0491* 1.1690* 1.3238 1.5109 1.7284 

9 1.1627 1.2101* 1.2913 1.4069* 1.5570 1.7402 1.9550* 

10 1.4368 1.4840 1.5638* 1.6772 1.8242* 2.0044 2.2169 

 

TABLE III 
FREQUENCY PARAMETER FOR THE FLUGGE’S SHELL THEORY BY THE 

APPROXIMATION METHOD WITH 
3=

R

L ,
20

1
=

R

h ,
3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3676 0.7051 0.8479 0.9219 0.9929 1.0863 1.2147 

2 0.1907 0.4672 0.6718 0.8119 0.9297 1.0551 1.2057 

3 0.1680 0.3453 0.5425 0.7146 0.8708 1.0297 1.2064 

4 0.2458 0.3455 0.5037 0.6764 0.8515 1.0340 1.2325 

5 0.3709 0.4371 0.5578 0.7140 0.8906 1.0838 1.2959 

6 0.5285 0.5828 0.6818 0.8207 0.9900 1.1842 1.4020 

7 0.7158 0.7658 0.8543 0.9811 1.1421 1.3329 1.5514 

8 0.9322 0.9805 1.0641 1.1838 1.3382 1.5247 1.7414 

9 1.1775 1.2251 1.3064 1.4221 1.5719 1.7547 1.9691 

10 1.4517 1.4991 1.5791 1.6926 1.8395 2.0195 2.2316 

 

TABLE IV 
FREQUENCY PARAMETER FOR THE FLUGGE’S SHELL THEORY BY THE EXACT 

METHOD WITH 
3=

R

L ,
20

1
=

R

h ,
3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3649* 0.7050* 0.8479 0.9219 0.9929 1.0863 1.2147 

2 0.1900* 0.4672 0.6718 0.8119 0.9297 1.0551 1.2057 

3 0.1681* 0.3453 0.5425 0.7146 0.8708 1.0297 1.2064 

4 0.2457* 0.3455 0.5037 0.6764 0.8515 1.0340 1.2325 

5 0.3710* 0.4371 0.5578 0.7140 0.8906 1.0838 1.2959 

6 0.5285 0.5828 0.6818 0.8206* 0.9900 1.1842 1.4020 

7 0.7158 0.7658 0.8543 0.9811 1.1420* 1.3329 1.5513* 

8 0.9321* 0.9805 1.0641 1.1838 1.3381* 1.5246* 1.7414 

9 1.1775 1.2251 1.3063* 1.4220* 1.5719 1.7545* 1.9690* 

10 1.4517 1.4990* 1.5791 1.6925* 1.8395 2.0194* 2.2316 

 

TABLE V 
FREQUENCY PARAMETER FOR THE MORLEY-KOITER’S SHELL THEORY BY THE 

APPROXIMATION METHOD WITH 3=
R

L ,
20

1
=

R

h ,
3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3673  0.7044  0.8467  0.9201  0.9905  1.0834  1.2112  

2 0.1865  0.4644  0.6688  0.8085  0.9258  1.0508  1.2010  

3 0.1565  0.3378  0.5361  0.7084  0.8645  1.0233  1.2000  

4 0.2318  0.3332  0.4932  0.6668  0.8424  1.0252  1.2240  

5 0.3565  0.4228  0.5443  0.7015  0.8788  1.0727  1.2853  

6 0.5140  0.5680  0.6671  0.8064  0.9764  1.1713  1.3897  

7 0.7013  0.7509  0.8392  0.9661  1.1274  1.3187  1.5377  

8 0.9177  0.9656  1.0489  1.1685  1.3229  1.5097  1.7268  

9 1.1630  1.2103  1.2912  1.4066  1.5564  1.7393  1.9539  

10 1.4372  1.4843  1.5640  1.6771  1.8239  2.0038  2.2160  
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TABLE VI 

FREQUENCY PARAMETER FOR THE MORLEY-KOITER’S SHELL THEORY BY THE 

EXACT METHOD WITH 3=
R

L
,

20

1
=

R

h
,

3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3653* 0.7043* 0.8467 0.9201 0.9905 1.0834 1.2112 

2 0.1870* 0.4644 0.6688 0.8085 0.9258 1.0508 1.2010 

3 0.1563* 0.3377* 0.5361 0.7084 0.8645 1.0233 1.2000 

4 0.2314* 0.3330* 0.4932 0.6667* 0.8423* 1.0251* 1.2240 

5 0.3564* 0.4227* 0.5443 0.7014* 0.8788 1.0726* 1.2853 

6 0.5140 0.5680 0.6671 0.8064 0.9763* 1.1712* 1.3897 

7 0.7013 0.7509 0.8392 0.9661 1.1273* 1.3187 1.5377 

8 0.9176* 0.9656 1.0489 1.1684* 1.3228* 1.5096* 1.7268 

9 1.1630 1.2103 1.2912 1.4066 1.5564 1.7392* 1.9538* 

10 1.4372 1.4843 1.5639* 1.6771 1.8239 2.0038 2.2160 

 
TABLE VII 

FREQUENCY PARAMETER FOR THE DONNELL’S SHELL THEORY BY THE 

APPROXIMATION METHOD WITH 3=
R

L
,

20

1
=

R

h
,

3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3671 0.7039 0.8455 0.9179 0.9871 1.0787 1.2054 

2 0.1867 0.4643 0.6680 0.8067 0.9229 1.0467 1.1958 

3 0.1570 0.3382 0.5359 0.7074 0.8624 1.0201 1.1958 

4 0.2323 0.3341 0.4937 0.6666 0.8413 1.0231 1.2210 

5 0.3569 0.4237 0.5454 0.7021 0.8787 1.0717 1.2834 

6 0.5143 0.5688 0.6683 0.8075 0.9770 1.1712 1.3889 

7 0.7015 0.7516 0.8403 0.9673 1.1284 1.3193 1.5378 

8 0.9178 0.9662 1.0499 1.1697 1.3242 1.5108 1.7275 

9 1.1632 1.2108 1.2921 1.4079 1.5578 1.7406 1.9550 

10 1.4373 1.4847 1.5648 1.6783 1.8253 2.0053 2.2174 

 

TABLE VIII 

FREQUENCY PARAMETER FOR THE DONNELL’S SHELL THEORY BY THE EXACT 

METHOD WITH 3=
R

L
,

20

1
=

R

h
,

3

1
=ν  

n m=1 m=2 m=3 m=4 m=5 m=6 m=7 

1 0.3674* 0.7039 0.8455 0.9179 0.9871 1.0787 1.2054 

2 0.1858* 0.4642* 0.6680 0.8067 0.9229 1.0467 1.1958 

3 0.1563* 0.3381* 0.5359 0.7074 0.8624 1.0201 1.1957* 

4 0.2321* 0.3340* 0.4937 0.6666 0.8412* 1.0230* 1.2209* 

5 0.3568* 0.4236* 0.5453* 0.7021 0.8787 1.0716* 1.2834 

6 0.5143 0.5688 0.6683 0.8074* 0.9770 1.1712 1.3889 

7 0.7015 0.7515* 0.8403 0.9673 1.1284 1.3193 1.5377* 

8 0.9178 0.9662 1.0499 1.1697 1.3241* 1.5107* 1.7275 

9 1.1631* 1.2108 1.2920* 1.4078* 1.5577* 1.7406 1.9549* 

10 1.4373 1.4847 1.5647* 1.6782* 1.8252* 2.0052* 2.2174 

 

In Table IX, results calculated by the exact and approximate 

methods according to the Soedel theory, are compared with an 

experiment held by Farshidianfar et al. [17]. The simply 

supported circular cylindrical shell investigated in Table IX is 

made of aluminum with material properties; E=68.2GPa, 

3mKg2700=ρ  and 33.0=υ . The dimensions of the shell 

are; L=1.7272 m, R=0.0762 m and h=0.00147 m. Moreover, 

simulations were carried out using a Finite-Element model 

(FEM). The numerical results of the FEM are also presented in 

Table IX. The errors of all theories with respect to the 

experiment are also shown in this Table IX. It is observed that, 

the exact analysis yields very close results compared to the 

experiment as well. 

 

TABLE IX 

COMPARISON BETWEEN EXACT AND APPROXIMATION ANALYSIS WITH EXPERIMENTAL AND NUMERICAL DATA 

m n Experiment (Hz) Soedel (Exact) (Hz) Soedel (App) (Hz) Numerical(Hz) Error /Soedel 
(Exact) (%) 

Error/Soedel (App.) 

(%) 

Error 
Numerical (%) 

1 1 138.40 139.469 141.446 134.897 0.8 2.2 2.5 

1 2 190.30 172.351 176.692 184.280 9.4 -7.1 3.1 

1 3 502.20 481.811 481.811 512.032 4.1 -4.1 -1.9 

1 4 884.40 919.585 922.112 997.550 -4.0 4.3 -12.8 

2 1 464.70 467.163 527.358 505.000 -0.5 13.5 -8.7 

2 2 310.50 242.653 249.663  21.9 -19.6  

2 3 477.00 481.904 491.960 521.220 -1.0 3.1 -9.3 

3 2 496.60 494.376 432.010  0.4 -13.0 0.4 

3 3 558.90 490.975 525.499 551.305 12.1 -6.0 1.4 

4 2 679.80 647.452 700.852 677.063 4.8 3.1 0.4 

4 3 638.30 574.883 598.809 617.716 9.9 -6.2 3.2 

5 3 782.00 789.188 720.163 729.710 -0.9 -7.9 6.6 

 

As shown in Table IX, the exact method applied on the 

Soedel theory is found be much more accurate compared to 

the approximate method. It is very interesting that the exact 

method calculates the fundamental frequency { })1,1(),( =nm  

with nearly no errors. Moreover, it is remarkable that the exact 

analysis predicts five resonance modes; 

{ })3,5(),2,3(),3,2(),1,2(),1,1(),( =nm , with errors of equal or 

less than 1 percent. Although at some resonance frequencies 

the errors of the exact method are higher compared to the 

approximation, but, the difference in the errors are small and 

negligible. On the other hand the exact analysis has reduced 

the errors of most frequencies dramatically. For example at 

mode shapes; { })2,3(),1,2(),( =nm , by using the exact 

analysis the errors of the approximate theory are reduced from 

13 percent to less than 1 percent. On the contrary, some errors 

exist at low mode numbers for both the exact and approximate 

methods, especially for { })2,2(),( =nm . However, as the 

frequency increases the errors decrease. Thus, at high mode 

numbers the exact method of the Soedel theory is found to be 

in complete agreement with the experimental and numerical 

results. Such a trend is also observed for the approximate 

method, however, with higher errors for low mode numbers. 
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Finally, the FEM results are found to be in great agreement 

with the experimental results as well. It is interesting that the 

FEM is even more accurate than the theories discussed at 

some mode shapes. In Fig. 7 mode shapes are reported from 

the finite element analysis for { })3,3(),4,2(),1,1(),( =nm  

modes. 

In this section it was proved that, the exact method 

developed in this paper yields accurate results compared to 

experiment and theory. 

 

 

Fig. 7 Mode shapes of the circular cylindrical shell: (a) for m=1, n=1; 

(b) for m=2, n=4; (c) for m=3, n=3 

V.CONCLUSION 

The free vibration of circular cylindrical shells with simply 

supported boundary conditions has been studied using four 

different thin shell theories: Soedel, Flugge, Morley-Koiter 

and Donnell. The scope of the investigation was focused upon 

the exact analysis of natural frequencies. The approximate 

beam function method was also presented. First, a graphical 

representation of the exact analysis was presented, in order to 

find the natural frequencies of a shell. Next, exact results of 

the four theories were compared to approximate calculations. 

It was observed that, for low mode numbers the approximate 

method yield different results compared to the exact method 

whereas, for high mode numbers no significant discrepancies 

were noticed. Moreover, the approximate method based on the 

Soedel theory reviled better results compared to other theories. 

In order to check the accuracy of the exact method, a 

comparison was carried out with experimental and numerical 

results. According to this comparison the exact analysis 

predicted most of the resonance frequencies with errors of less 

than one percent. On the other hand the approximate method 

yields high errors. 
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