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Abstract—The general solution of the equations for a 

homogeneous isotropic microstretch thermo elastic medium with 
mass diffusion for two dimensional problems is obtained due to 
normal and tangential forces. The Integral transform technique is 
used to obtain the components of displacements, microrotation, stress 
and mass concentration, temperature change and mass concentration. 
A particular case of interest is deduced from the present 
investigation. 

 
Keywords—Normal and tangential force, Microstretch, 

thermoelastic, The Integral transform technique. 

I. INTRODUCTION 
RINGEN [1] developed the theory of micropolar elastic 
solid with stretch. He derived the equations of motion, 

constitutive equations and boundary conditions for a class of 
micropolar solids which can stretch and contract. This model 
introduced and explained the motion of certain class of 
granular and composite materials in which grains and fibers 
are elastic along the direction of their major axis. This theory 
is a generalization of the theory of micropolar elasticity and is 
a special case of the micromorphic theory. Eringen [5] 
developed a theory of thermomicrostretch elastic solids in 
which he included microstructural expansions and 
contractions. The material points of microstretch solids can 
stretch and contract independently of their translations and 
rotations. Microstretch continuum is a model for Bravious 
Lattice with a basis on the atomic level and a two phase 
dipolar solid with a care on the macroscopic level. For 
example, composite materials reinforce with chopped elastic 
fibers, porous medium where pores are filled with gas or in 
viscid liquids, asphalt or other inclusions and ‘solid-liquid’ 
crystals etc., are characterized as microstretch solids. Thus, in 
these solids, the motion is characterized by seven degrees of 
freedom namely three for translation, three for rotation and 
one for microstretch. In the frame work of the theory of 
thermomicrostretch solids, Eringen [3] established a 
uniqueness theorem for the mixed initial boundary valued 
problem. This theory was illustrated with the solution of one-
dimensional wave and compared with lattice dynamical 
results. The asymptotic behavior of solutions and an existence 
result were presented by Bofill and Quintanilla [1].Eringen [4] 
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studied the effect of Micropolar elastic solids with stretch.  
The transmission of the load across a differential element of 

the surface of a microstretch elastic solid is described by a 
force vector, a couple stress vector and a microstretch vector. 
The theory of microstretch elastic solid differs from the theory 
of micropolar elasticity in the sense that there is an additional 
degree of freedom called stretch and there is an additional 
kind of stress called microstretch vector. The materials like 
porous elastic materials filled with gas or in viscid fluid, 
asphalt, composite fibers etc. lie in the category of 
microstretch elastic solids. Diffusion is defined as the 
spontaneous movement of the particles from a high 
concentration region to the low concentration region, and it 
occurs in response to a concentration gradient expressed as the 
change in the concentration due to change in position. 
Thermal diffusion utilizes the transfer of heat across a thin 
liquid or gas to accomplish isotope separation. Today, thermal 
diffusion remains a practical process to separate isotopes of 
noble gases (e.g., Xenon) and other light isotopes (e.g., 
Carbon). Tomar and Garg [15] discussed the reflection and 
refraction of plane waves in microstretch elastic medium. 
Quintanilla [13] studied the spatial decay for the dynamical 
problem of thermo-microstretch elastic solids. Singh and 
Tomar [14] discussed Rayleigh-Lamb waves in a microstretch 
elastic plate cladded with liquid layers. Cicco [2] discussed the 
stress concentration effects in microstretch elastic bodies. A 
spherical inclusion in an infinite isotropic microstretch 
medium was discussed by Liu and Hu [12]. Kumar and Partap 
[7] analyzed free vibrations for Rayleigh-Lamb waves in a 
microstretch thermoelastic plate with two relaxation times. 
Kumar and Partap [6] discussed the dispersion of 
axisymmetric waves in thermo microstretch elastic plate. 
Othman [9] studied the effect of rotation on plane wave 
propagation in the context of Green-Naghdi (GN) theory type-
II by using the normal mode analysis. Ezzat and Awad 
adopted the normal mode analysis technique to obtain the 
temperature gradient, displacement, stresses, couple stress, 
micro rotation etc. Othman [10] studied the effect of diffusion 
on 2-dimensional problem of generalized thermoelastic with 
Green-Naghdi theory and obtained the expressions for 
displacement components, stresses, temperature fields, 
concentration and chemical potential by using normal mode 
analysis. Othman [11] used normal mode analysis technique to 
obtain the expressions for displacement components, force, 
stresses, temperature, couple stress, and microstress 
distribution in a thermomicrostretch elastic medium with 
temperature dependent properties for different theories.  
Kumar et al. [8] investigated the disturbance due to force in 
normal and tangential direction and porosity effect by using 
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normal mode analysis in fluid saturated porous medium. 
Kumar et al. [16] investigated the effect of viscosity on plane 
wave propagation in heat conducting transversely isotropic 
micropolar viscoelastic half space. Gravitational effect on 
plane waves in generalized thermo-microstretch elastic solid 
under green Naghdi theory was studied by Othman, Atwa, and 
Khan [12]. In the present paper general model of the equations 
of microstretch thermoelastic with mass diffusion for a 
homogeneous isotropic elastic solid is developed. The Normal 
mode analysis technique is used to obtain the expressions for 
the displacement components, couple stress, temperature, 
mass concentration and microstress distribution. Some special 
cases have been deduced from the present investigation. 

II. BASIC EQUATIONS 
The basic equations for homogeneous, isotropic 

microstretch generalized thermoelastic diffusive solids in the 
absence of body force, body couple, stretch force and heat 
source are given by: 

 
ሺߣ ൅ .׏ሺ׏ሻߤ ሻ࢛ ൅ ሺߤ ൅ ࢛ଶ׏ሻܭ ൅ ׏ܭ ൈ ࣘ ൅ כ߶׏଴ߣ െ ଵߚ ቀ1 ൅ ߬ଵ

డ
డ௧

ቁ ܶ׏ െ ଶߚ ቀ1 ൅

߬ଵ డ
డ௧

ቁ ܥ׏ ൌ  (1)               ߩ
 

ሺ׏ߛଶ െ ሻࣘܭ2 ൅ ሺߙ ൅ .׏ሺ׏ሻߚ ࣘሻ ൅ ׏ܭ ൈ ࢛ ൌ ݆ߩ ሷࣘ                 (2) 
 

ሺߙ଴׏ଶ െ λଵሻ߶כ െ .׏଴ߣ ࢛ ൅ ଵߥ ቀ1 ൅ ߬ଵ
డ
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ଶ
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൅ ߬଴

డమ

డ௧మቁ ܶ ൅ ଵߚ ଴ܶ ቀ డ
డ௧

൅ ଴߬ߝ
డమ

డ௧మቁ .׏ ࢛ ൅ ଵߥ ଴ܶ ቀ డ
డ௧

൅ ଴߬ߝ
డమ

డ௧మቁ כ߶ ൅

ܽ ଴ܶ ቀ డ
డ௧

൅ ଵߛ
డమ

డ௧మቁ  (4)         ܥ
 

.׏ଶሺ׏ଶߚܦ ሻ࢛ ൅ ܽܦ ቀ1 ൅ ߬ଵ
డ

డ௧
ቁ ଶܶ׏ ൅ ቀ డ

డ௧
൅ ଴߬ߝ డమ

డ௧మቁ ܥ െ ܾܦ ቀ1 ൅ ߬ଵ డ
డ௧

ቁ ܥଶ׏ ൌ 0(5) 
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݉௜௝ ൌ ௜௝ߜ௥,௥߶ߙ ൅ ௜,௝߶ߚ ൅ ௝,௜߶ߛ ൅ ܾ଴߳௠௝௜߶,௠
כ           (7) 

 
where ߣ, μ, ,ߙ ,ߚ ,ߛ ,ܭ ,଴ߣ  ,ଵߣ  ,଴ߙ   ܾ଴, are material 
constants, ߩ is mass density, ࢛ ൌ ሺݑଵ, ,ଶݑ  ଷሻ is theݑ
displacement vector and ࣘ ൌ ሺ߶ଵ, ߶ଶ, ߶ଷሻ is the microrotation 
vector,  ߶כ is the scalar microstretch function, ܶ is temperature 
and ଴ܶ is the reference temperature of the body chosen, ܥ is 
the concentration of the diffusion material in the elastic 
body,  כܭ is the coefficient of the thermal conductivity, ܿכ is 
the specific heat at constant strain,  ܦ is the thermoelastic 
diffusion constant,  ܽ is the coefficient describing the measure 
of thermo diffusion and ܾ is the coefficient describing the 
measure of mass diffusion effects,  ݆ is the microinertia, 
ଵߚ ൌ ሺ3ߣ ൅ ߤ2 ൅ ଶߚ ,௧ଵߙሻܭ ൌ ሺ3ߣ ൅ ߤ2 ൅ ଵߥ  ,௖ଵߙሻܭ ൌ
ሺ3ߣ ൅ ߤ2 ൅ ଶߥ  ,௧ଶߙሻܭ ൌ ሺ3ߣ ൅ ߤ2 ൅ ,௧ଵߙ ,௖ଶߙሻܭ  ௧ଶ  areߙ 
coefficients of linear thermal expansion and ߙ௖ଵ,  ௖ଶ  areߙ 
coefficients of linear diffusion expansion, ݆଴ is the 
microinertia for the microelements, ݐ௜௝ are components of 
stress, ݉௜௝ are components of couple stress,  ߣ௜

 is the כ
microstress tensor,  ݁௜௝ are components of strain, ݁௞௞ is the 

dilatation,  ߜ௜௝ is Kroneker delta function,  ߬଴, ߬ଵ are the 
diffusion relaxation times and ߬଴,  ߬ଵ are thermal relaxation 
times with ߬଴ ൒  ߬ଵ ൒ 0. Here   ߬଴ ൌ ߬ଵ ൌ ߬଴ ൌ  ߬ଵ ൌ ଵߛ ൌ 0 
for Coupled Thermoelastic theory (CT) model.  ߬ଵ ൌ ߬ଵ ൌ
ߝ   ,0 ൌ 1, ଵߛ ൌ ߬଴ For Lord-Shulman (LS) model and 
ߝ ൌ 0, ଵߛ ൌ  ߬଴ where  ߬଴ ൐ 0 for Green-Lindsay (GL) 
model. In the above equations symbol (“,”) followed by a 
suffix denotes differentiation with respect to spatial 
coordinates and a superposed dot (“ . ”) denotes the derivative 
with respect to time respectively. 

III. FORMULATION OF THE PROBLEM 
We consider a rectangular Cartesian coordinate system 

ܱܺଵܺଶܺଷ with ݔଷ-axis pointing vertically outward the 
medium. We consider a normal or tangential force to be acting 
at the free surface of microstretch thermoelastic medium with 
mass diffusion half space. For two dimensional problems the 
displacement and microrotation vectors are of the form: 

 
࢛ ൌ ሺݑଵ, 0, ࣘ ,ଷሻݑ ൌ ሺ0, ߶ଶ, 0ሻ,      (8) 

 
For further consideration it is convenient to introduce in 

(1)-(5) the dimensionless quantities defined as: 
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                                    (9) 
 

with the aid of (9) the (1)-(5) reduce to: 
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ଶ߶ଶ׏ െ 2ܽ଺߶ଶ ൅ ܽ଺ ቀడ௨భ

డ௫య
െ డ௨య

డ௫భ
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כ߶ଶ׏ െ כ߶଼ܽ െ ܽଽ݁ ൅ ܽଵ଴ ቀ1 ൅ ߬ଵ
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here, 
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ܽଵ଺ ൌ
ଵܿߩܽ

ସ

כܭଶߚכ߱ , ܽଵ଻ ൌ
ܽ ଴ܶ

ଶߚ
 , ܽଵ଼ ൌ

ଵܿߩ
ସ

ଶߚܦכ߱
ଶ  , ܽଵଽ ൌ

ଵܿߩܾ
ଶ

ଶߚ
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The displacement components ݑଵ and ݑଷ are related to 

potential functions ߶ and ߰ as: 
 

ଵݑ ൌ డథ
డ௫భ

െ డట
డ௫య

ଷݑ    ,   ൌ డథ
డ௫య

൅ డట
డ௫భ

     (16) 
 

Using the relation (16), in the (10)-(15), we obtain:  
 

ሺܽଵ ൅ ܽଶሻ׏ଶ߶ െ ߶ሷ ൅ ܽସ߶כ െ ቀ1 ൅ ߬ଵ
డ
డ௧

ቁ ܶ െ ܽଶ ቀ1 ൅ ߬ଵ డ
డ௧

ቁ ܥ ൌ 0  (17) 
 

ቀ2׏‐a8‐a12
∂2

∂t2ቁ Ԅ*‐a92׏Ԅ൅a10 ቀ1൅τ1
∂
∂t

ቁ T൅a11 ቀ1൅τ1 ∂
∂t

ቁ Cൌ0  (18) 
 

ܽଵଷ ቀ1 ൅ ߬଴
డ

డ௧
ቁ ሶܶ ൅ ܽଵସ ቀ డ

డ௧
൅ ଴߬ߝ

డమ

డ௧మቁ ߶ଶ׏ ൅ ܽଵହ ቀ1 ൅ ଴߬ߝ
డ
డ௧

ቁ ሶכ߶ ൅ ܽଵ଺ ቀ1 ൅ ଵߛ
డ
డ௧

ቁ ሶܥ െ
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߶ସ׏ ൅ ܽଵ଻ ቀ1 ൅ ߬ଵ
డ

డ௧
ቁ ଶܶ׏ ൅ ܽଵ଼ ቀ డ

డ௧
൅ ଴߬ߝ డమ

డ௧మቁ ܥ െ ܽଵଽ ቀ1 ൅ ߬ଵ డ
డ௧
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ܽଶ׏ଶ߰ െ ሷ߰ ൅ ܽଷ߶ଶ ൌ 0,                (21) 
 

ଶ߶ଶ׏ െ 2ܽ଺߶ଶ െ ܽ଺׏ଶψ ൌ ܽ଻߶ሷ ଶ,       (22) 
 

Here ׏ଶൌ డమ

డ௫భ
మ ൅ డమ

డ௫య
మ  is the Laplacian operator. Now, we 

define the Laplace transform: 
 

݂ҧሺݔ, ,ݖ ሻݏ ൌ ׬ ݂ሺݔ, ,ݖ ஶ.ݐሻ݁ି௦௧݀ݐ
଴     (23) 

 
So, the (10)-(15) become: 
 

ሺܽଵ ൅ ܽଶሻ׏ଶ߶ത െ ଶ߶തݏ ൅ ܽସ߶כതതതത െ ሺ1 ൅ ߬ଵݏሻ തܶ െ ܽଶሺ1 ൅ ߬ଵݏሻܥҧ ൌ 0 (24) 
 

൫2׏‐a8‐a12s2൯Ԅ*തതത‐a92׏Ԅഥ൅a10ሺ1൅τ1sሻTഥ൅a11൫1൅τ1s൯Cതൌ0  (25) 
 

ܽଵଷሺݏ ൅ ߬଴ݏଶሻ തܶ ൅ ܽଵସሺݏ ൅ ଶ߶ത׏ଶሻݏ଴߬ߝ ൅ ܽଵହሺݏ ൅ തതതതכ߶ଶሻݏ଴߬ߝ ൅ ܽଵ଺ሺݏ ൅ ҧܥଶሻݏଵߛ െ ଶ׏ തܶ ൌ
0            (26) 

 
ସ߶ത׏ ൅ ܽଵ଻ሺ1 ൅ ߬ଵݏሻ׏ଶ തܶ ൅ ܽଵ଼ሺݏ ൅ ҧܥଶሻݏ଴߬ߝ െ ܽଵଽሺ1 ൅ ߬ଵݏሻ׏ଶܥҧ ൌ 0  (27) 

 
ܽଶ׏ଶ ത߰ െ ଶݏ ത߰ ൅ ܽଷ߶ଶതതതത ൌ 0,                     (28) 

 
ଶ߶ଶതതതത׏ െ 2ܽ଺߶ଶതതതത െ ܽ଺׏ଶ ത߰ ൌ  ,ଶܽ଻߶ଶതതതതݏ           (29) 

 
now, we define the Fourier’s transform: 

 
መ݂ሺݖ, ,ߦ ሻݏ ൌ ׬ ݂ҧሺݔ, ,ݖ ஶݔሻ݁௜క௫݀ݏ

ିஶ        (30) 
 

Applying Fourier’s transform to (24)-(29), we obtain the 
equations: 

 
ሺܽଵ ൅ ܽଶሻ ቀ ௗమ

ௗ ௫య
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0          (32) 
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መܥଶሻݏଵߛ െ ቀ ௗమ

ௗ ௫య
మ െ ଶቁߦ ෠ܶ ൌ 0      (33) 

 

ቀ ௗ2

ௗ ௫32
െ 2ቁߦ

2
߶෠ ൅ ܽ17ሺ1൅ ሻݏ1߬ ቀ ௗ2

ௗ ௫32
െ 2ቁߦ ෠ܶ ൅ ܽ18ሺݏ ൅ መܥ2ሻݏ0߬ߝ െ ܽ19ሺ1൅ ሻݏ1߬ ቀ ௗ2

ௗ ௫32
െ

2ቁߦ መܥ ൌ 0,            (34) 
 

ܽଶ ቀ ௗమ

ௗ ௫య
మ െ ଶቁߦ ෠߰ െ ଶݏ ෠߰ ൅ ܽଷ߶ଶ෢ ൌ 0,      (35) 

 
ቀ ௗమ

ௗ ௫య
మ െ ଶቁߦ ߶ଶ෢ െ 2ܽ଺߶ଶ෢ െ ܽ଺ ቀ ௗమ

ௗ ௫య
మ െ ଶቁߦ ෠߰ ൌ ଶܽ଻߶ଶ.෢ݏ      (36) 

 
on solving (24)-(27), we obtain: 

 

ቂΑ0
ௗ8

ௗ ௫38
൅ Α1

ௗ6

ௗ ௫36
൅ Α2

ௗ4

ௗ ௫34
൅ Α3

ௗ2

ௗ ௫32
൅ Α5ቃ ൫߶෠, ෢כ߶  , ෠ܶ , መ൯ܥ ൌ 0, 

 
and on solving (31)-(34), we obtain:   
 

ቂ ௗ4

ௗ ௫34
൅ Α6

ௗ2

ௗ ௫32
൅ Α7ቃ ൫߶2෢, ෠߰൯ ൌ 0, 

 
the solution of the above system satisfying the radiation 
conditions that ൫߶෠, ෢כ߶  , ෠ܶ , ෡,ܥ ߶ଶ෢, ෠߰൯ ՜ 0 as ݔଷ ՜ ∞ are given 
as following: 
 

൫߶෠, ෢כ߶  , ෠ܶ, መ൯ܥ ൌ ∑ ሺ1, ,1௜ߙ 2௜ߙ , ௜݁ି௠೔ ௫34ܯ3௜ሻߙ
௜ୀ1 , 

 

൫߶2෢, ෠߰൯ ൌ ෍ሺ1, ௜ܯ1௜ሻߚ
′݁ି௠೔ ௫3

6

௜ୀ5

 , 

 
here, 

1௜ߙ  ൌ
1௜ܦ

0௜ܦ
2௜ߙ  ൌ

2௜ܦ

0௜ܦ
3௜ߙ  ൌ

3௜ܦ

0௜ܦ
             ݅ ൌ 1,2,3,4 

 

1௜ߚ ൌ െ
3൫݉௜ߜ

2 െ ݇2൯
൫݉௜

2 െ ݇2൯ ൅ 4ߜ
               ݅ ൌ 5,6 

IV. BOUNDARY CONDITIONS 
Consider normal and tangential force acting on the surface 

ଷݔ ൌ 0 along with vanishing of couple stress, microstress, 
mass diffusion and temperature gradient at the boundary and 
considering insulated and infinite boundary at ݔଷ ൌ 0. 
Mathematically this can be written as: 

 
33ݐ ൌ െߜ1ܨሺݔሻߜሺݐሻ 

31ݐ ൌ െߜ2ܨሺݔሻߜሺݐሻ, ݉32 ൌ 0, 3ߣ ൌ 0,
߲ܶ
3ݔ߲

ൌ  ,ሻݐሺߜሻݔሺߜ3ܨ

ܥ߲
3ݔ߲

ൌ  ሻݐሺߜሻݔሺߜ4ܨ

 
Here ܨଵ and ܨଶ are the magnitude of the applied force.On 
applying the Laplace transform and then Fourier transform the 
above conditions reduces to: 
 

33ෞݐ ൌ െ31ݐෞ ൌ െ2݉32ܨෞ ൌ 0, 3෡ߣ ൌ 0,
߲ ෠ܶ
3ݔ߲

ൌ  ,3ܨ

డ஼መ
డ௫3

ൌ  (37)         4ܨ
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Using these boundary conditions and solving the linear 
equations formed, we obtain: 

 
33ෞݐ ൌ ∑ 1௜݁ି௠೔௫36ܩ

௜ୀ1 , ݅ ൌ 1,2, … ,6       (38) 
 

31ෞݐ ൌ ∑ 2௜݁ି௠೔௫36ܩ
௜ୀ1 , ݅ ൌ 1,2, … ,6                (39) 

 
݉32ෞ ൌ ∑ 3௜݁ି௠೔௫36ܩ

௜ୀ1 , ݅ ൌ 1,2, … ,6              (40) 
 

3෡ߣ ൌ ∑ 4௜݁ି௠೔௫36ܩ
௜ୀ1 , ݅ ൌ 1,2, … ,6         (41) 

 
1ෞݑ ൌ ∑ 5௜݁ି௠೔௫36ܩ

௜ୀ1 , ݅ ൌ 1,2, … ,6         (42) 
 

3ෞݑ ൌ ∑ 6௜݁ି௠೔௫36ܩ
௜ୀ1 , ݅ ൌ 1,2, … ,6          (43) 

 
෠ܶ ൌ ∑ 7௜݁ି௠೔௫36ܩ

௜ୀ1 ݁ିሺ௞௫1ିఠ௧ሻ ݅ ൌ 1,2, … ,6        (44) 
 

መܥ ൌ ∑ 8௜݁ି௠೔௫36ܩ
௜ୀ1 , ݅ ൌ 1,2, … ,6         (45) 

 
Here ܩ௜௝ , ݅ ൌ 1,2, … ,6, ݆ ൌ 1,2, … ,8 are the constants. 
Case I- Normal Stress 

To obtain the expressions due to normal stress we must set 
ଶܨ ൌ 0 in the boundary conditions (37). 
Case II- Tangential Stress 

To obtain the expressions due to tangential stress we must 
set ܨଵ ൌ 0 in the boundary conditions (37). 

Particular cases: 
(i) If we take ߬1 ൌ ߬1 ൌ ൌ ߝ   ,0  1 , 1ߛ ൌ ߬0, in (38)-(45), we 

obtain the corresponding expressions of stresses, 
displacements and temperature distribution for L-S 
theory. 

(ii) If we take ߝ ൌ 0, 1ߛ ൌ  ߬0 in (38)-(45), the corresponding 
expressions of stresses, displacements and temperature 
distribution are obtained for G-L theory. 

(iii) Taking  ߬0 ൌ ߬1 ൌ ߬0 ൌ  ߬1 ൌ 1ߛ ൌ 0 in (38)-(45), yield 
the corresponding expressions of stresses, displacements 
and temperature distribution for Coupled theory of 
thermoelasticity. 

Special cases: 
(a) Microstretch Thermoelastic Solid: 

If we neglect the diffusion effect in (38)-(45), we obtain 
the corresponding expressions of stresses, displacements 
and temperature for microstretch thermoelastic solid. 

(b) Micropolar Thermoelastic Diffusive Solid: 
If we neglect the microstretch effect in (38)-(45), we 
obtain the corresponding expressions of stresses, 
displacements and temperature for micropolar 
thermoelastic diffusive solid. 

V. INVERSION OF TRANSFORM 
The transformed displacements, stresses and pore pressures 

are functions of the parameters of Laplace and Fourier 
transforms ݏ and ߦ respectively and hence are of the 
form ݂ሺݏ, ,ߦ  ሻ. To obtain the solution of the problem in theݖ
physicaldomain, we must invert the Laplace and Fourier 
transform by using the method applied by Kumar [16]. 
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