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Abstract—Sea level rise threatens to increase the impact of future 

storms and hurricanes on coastal communities. Accurate sea level 

change prediction and supplement is an important task in determining 

constructions and human activities in coastal and oceanic areas. In 

this study, support vector machines (SVM) is proposed to predict 

daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal 

parameter values of kernel function are determined using a genetic 

algorithm. The SVM results are compared with the field data and 

with back propagation (BP). Among the models, the SVM is superior 

to BPNN and has better generalization performance. 

 

Keywords—Tides, Prediction, Support Vector Machines, Genetic 

Algorithm, Back-Propagation Neural Network, Risk, Hazards. 

I. INTRODUCTION 

UE to the dynamic interaction of biophysical factors from 

both the Earth’s land surface and ocean, and the high 

human population present, coastal areas are often at risk to 

natural and human-induced hazards. One such hazard, which 

is focused on in this study, is sea level rise. Sea level rise will 

affect and threaten coastal communities and infrastructure 

through more frequent flooding and gradual inundation, as 

well as increased cliff, bluff, dune and shoreline erosion. This 

will affect transportation facilities; electric utility systems and 

power plants; wastewater treatment plants, outfalls and storm 

water systems; ports and harbors; and large wetland areas and 

coastal development, including homes and businesses. 

Numerous models for sea level change forecasting have 

been carried out in the past. To describe the characteristics of 

the tide-level variations in an open sea, Darwin [1] proposed a 

classic equilibrium tidal theory. However, Darwin’s model 

was incapable of accurately estimating the tidal level for the 

complicated bottom topography, especially in near shore 

areas. Doodson [2] employed the least-squares method to 

determine harmonic constants. This harmonic analysis has 

been used widely for tidal forecasting in the past. The 

accuracy of harmonic models depends entirely on accurately 

observed data over a long-term tidal record, which is used to 

determine the parameters of the tidal constituents. This is the 
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major shortcoming of the harmonic models. Kalman [3] 

applied the Kalman filtering method to calculate the harmonic 

parameters instead of the least squares method, which did not 

require so much tidal data. Mizumura [4] also proposed that 

the harmonic parameters using the Kalman filtering method 

could be easily determined from only a small number of 

historical tidal records. Yen et al. [5] applied the Kalman 

filtering method to determine harmonic parameters with a 

limited amount of tidal measured data. However, the model is 

only applicable for short-term prediction, rather than long-

term predication. 

Based on limited field data, the neural network method can 

predict hourly, daily, weekly or monthly tidal levels more 

accurately than the harmonic analysis method. Vaziri [6] 

compared the ability of an artificial neural network (ANN) 

with multiplicative autoregressive integrated moving average 

modeling. Deo and Chaudhari [7] used ANN which was 

trained using three algorithms, namely error back-propagation, 

cascade correlation and conjugate gradient for predicting tides. 

Tsai and Lee [8] applied the back-propagation neural network 

for the real-time prediction of a tidal level using the field data 

of diurnal and semi-diurnal tides.  

Lee and Jeng [9] extended the diurnal and semi-diurnal 

tides to mixed tides, which are more likely to occur in the 

field. However, their model is only applicable for instant 

prediction, and not for long-term prediction. Lee et al. [10] 

and Lee [11] applied a neural network to predict different 

types of tides and found that the technique can be effective. 

However, their methods depend on harmonic parameters and 

cannot predict non-astronomical tidal levels.  

Steidley et al. [12] used an ANN to improve predictions of 

water levels where the performance of the tide charts is 

particularly poor. Rajasekaran et al. [13] developed functional 

and sequential learning neural networks to predict tidal levels 

with a typhoon surge effect. Rajasekaran et al. [13] used a 

promising support vector regression (SVR) technique for 

storm surge predictions. 

This investigation aims to measure the accuracy of a SVM 

approach and uses different kernel functions to predict daily 

tidal levels. To this end, a GA is used to determine the optimal 

values of the parameters for the different kernel functions of 

the SVMs. The results are compared with those obtained from 

the BPNN model. 
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II. TIDAL LEVELS PREDICTION METHODS 

A. Support Vector Machine 

In regressive SVM, the basic idea is to map a low-

dimensional input space x onto a higher dimensional feature 

space F via a nonlinear mapping ϕ . Then, the following 
estimation function is used to make linear regressions in that 

feature space: 

 

bxwxf += )(.)( ϕ                                   (1) 

 

where )(xϕ represents the high-dimensional feature space that 

has been nonlinearly mapped from the input space, w is the 

weight vector, and b is the bias term. The coefficients w and b 

are estimated by minimizing the following regularized risk 

function: 
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whereε is a precision parameter representing the radius of the 
tube located around the regression function, ( )( )ii xfyL ,ε is 

the ε -insensitive loss function, and C is a regularization 

constant that determines the trade-off between the training 

error and the generalization performance. The term 
2

2

1
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measures the flatness of the function ( )( )ii xfyL ,ε . 

Introducing the slack variables ξ and *ξ into (2), the 

overall optimization is formulated as follows: 
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This constrained optimization problem is solved using the 

following Lagrangian form: 

Maximize 

( )( ) ( )

( ) ( )

* * *

1 1

* *

1
( , ) ,

2

                   

l l

i i j j i j

i j

l l

i i i i i

i i

H K x x

y

α α α α α α

α α ε α α

= =

= − − −

+ − − +

∑∑

∑ ∑   (5)                                                                                                   

 

 

subject to 

( ) Cii

l

i

ii ≤≤=−∑ ** ,0         0 αααα  

 

where iα and *

iα  are Lagrangian multipliers. 

Finally, the support vector machine regression function can 

be written as follows: 
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where ( ) ( )xxxxK ii ϕϕ=),( is called the kernel function. Using 

the kernels, all necessary computation can be undertaken 

directly in the input space without calculating the explicit map

)(xϕ . In this paper, three SVM kernel functions are employed 

and are defined as follows: 

- the radial basis function (RBF)
)2( 22
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- the sigmoid function ))(tanh(),( ν+= xxkxxK ii , and 

- the linear function
xxxxK ii =),(
 

where 
2δ  is the kernel parameter of the radial basis function 

kernel, k is the scaling parameter of the input data, and ν is a 
shifting parameter that controls the mapping threshold. 

B. Determination of SVM Model Parameters 

The selection of the SVM model parameters (cost constant 

C, and the radius of the insensitive tubeε ) and the kernel 
function parameters ( 2δ , k, and ν ) is important to the 

accuracy of the forecasting. However, structural methods for 

efficiently confirming the selection of parameters are lacking. 

Therefore, a GA is used in the proposed SVM model to 

optimize parameter selection. GAs are based on the principle 

of survival of the fittest member in a population, which retains 

genetic information by passing it from generation to 

generation. The execution of a GA is described in the 

following. Fig. 1 represents the framework of the proposed 

SVM model. Fig. 2 represents the process of optimizing the 

SVM parameters with a genetic algorithm. 

1. Initial Population 

The free parameters are encoded in binary format and 

represented by a chromosome. Each bit of the chromosome 

represents whether the corresponding feature is selected or 

not. An initial population of chromosomes is randomly 

generated. 

 

 

Fig. 1 Framework of proposed SVM model 
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2. Fitness Function  

A training subset is used to calculate the fitness of each 

chromosome. In this study, a negative mean absolute 

percentage error (-MAPE) is used as the fitness function. 

3. Genetic Operators 

Selection, crossover, and mutation are the operators used to 

ensure reproduction in GAs. The purpose of selection is to 

emphasize the fittest individuals in the population in the hope 

that their offspring will in turn be even more fit. In this study, 

the fitness proportionate (i.e. a roulette wheel) selection 

method is used to select chromosomes for reproduction. The 

single-point crossover technique is used to randomly exchange 

genes between two chromosomes. Mutation is a mechanism 

that ensures the algorithm does not become stuck in local 

minima. It switches the binary code from 0 to 1 or vice versa. 

The rate of mutation is set to 0.01. The offspring replace the 

old population and form a new population in the next 

generation. The evolutionary process continues until stop 

conditions are satisfied. 

 

 

Fig. 2 Framework of genetic algorithms 

C. Determination of SVM Model Parameters 

A NN is a novel non-algorithmic approach that models the 

brain as a continuous-time nonlinear dynamic system in 

connectionist architectures and uses a mathematical model or 

computational model for information processing. The back-

propagation neural network (BPNN) developed by Rumelhart 

et al. [14] is the most representative learning model for the 

NN. It is widely applied in a variety of scientific areas, 

especially in applications of forecasting. 

As a feed forward architecture, BPNN models contain an 

input layer, an output layer and at least one hidden layer, 

which are all fully interconnected. Although BPNN models 

embody feed forward architectures, where information is 

passed in one direction, the models actually implement multi-

directional operations. 

Back propagation utilizes supervised learning, which 

requires a desired output to be declared during the training 

phase. During the training phase, root mean square error 

(RMSE) is calculated between the desired output and the 

actual output. The RMSE is then propagated backwards to the 

input layer and the connection weights between the layers are 

readjusted (Fig. 1). After the weights have been adjusted and 

the hidden layer neurons have generated an output result, the 

error value is re-determined.  

Before the training phase begins the total number of input 

neurons, the number of hidden layer neurons and the total 

number of iteration (propagations) must be declared. When the 

training phase initializes, the connection weights between the 

input and hidden layers are assigned random values by means 

of an activation function. The goal of any training algorithm is 

to minimize the global (mean sum squared) error E, defined 

below:   
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where On is the observations, and Pn is the predictions for any 

n output node. The summation has to be carried out over all 

output nodes for every training pattern. A pair of input and 

output values constitutes a training pattern. 

D. Model Assessment  

The performance of all SVM and NN models was assessed 

based on calculating mean error ME, mean absolute 

percentage error MAPE, and root mean square error RMSE. 

The correlation coefficient R, of linear regression line between 

the predicted values of either the SVM or the NN model and 

the desired output was also used as a measure of performance. 

The four statistical parameters used to compare the 

performance of various SVM and NN configurations are: 
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where Oi is the observed value, Pi is the predicted value, N is 

the total number of data points in validation, 
−

O  is the mean 

value of observations, and 
−

P  is the mean value of predictions. 

III. STUDY AREA AND DATA  

The sea level change data refer to hourly observed sea level 

changes during the years 2003 and 2004. The data were 

obtained from the Saudi Aramco Company (Hydrographic 

Unit, Surveying Services Div., Protect Support and 

Controls Department) by a pressure type recorder (OSK LP2) 

during the year 2003 and 2004 at a depth of 3m at Jeddah 

(see Fig. 3). The data return was greater than 95% with gaps 

filled by linear interpolation. The sea level station (Jeddah 

station (21
o
 25' 52" N and 39

o
 09' 17" E) is situated at the 

entrance of the Obhur creek, a finger of the Red Sea 

extending inland. The creek serves as an ideal location for 

sea level gauge instillation as it is protected from direct 

effects of wind and waves. The accuracy of the device is ± 

0.5cm. Timing error on the records was minimal (of the 

order of a few minutes per 45 days chart length). 

 

 

Fig. 3 Location of study area 

IV. RESULTS AND DISCUSSION 

A.  Back-Propagation Neural Network  

In this study, standard three-layer BPNN is used as a 

benchmark. The inputs to be used in constructing the model 

are the previous daily tidal level observations. Evaluating the 

model with a different number of previous daily sea level 

change values led to a conclusion that the best result could be 

achieved when using only three previous tidal level values. 

Adding more of the previous data to the inputs did not change 

the result.To determine the optimum sizes of BPNN based on 

the determined input numbers, the networks with one hidden 

layer were used for training and testing by changing neuron 

sizes in a hidden layer in order to test the stability of the 

network. Deo et al. [7] and El-Bisy [15] implied that any 

nonlinear mathematical dependency structure can be 

approximated using one hidden layer. Model results for 

different BPNN architectures are presented in Fig. 4 which 

shows the performance of the BPNN with various numbers of 

neurons in one hidden layer. Overall, it could easily be 

observed from that BPNN that having architecture 3-5-1 (three 

neurons in input and five neurons in first hidden layers, and 

one neuron in output layer) produced the best result in this 

study.  

 

 

Fig. 4 Performance of the BPNN with various numbers of neurons in 

one hidden layer 
 

The applied network parameters for the learning rate, the 

momentum and the input noise were found as 0.70, 0.86 and 

0.01, respectively. For trained data, it was observed that a 

maximum error of 15.11%, a minimum error of -15.2% and 

the mean absolute percentage error of 9.47% were obtained. 

Also for tested data, a maximum error of 15.4%, a minimum 

error of -16.1% and the mean absolute percentage error of 

9.63% were obtained. The correlation coefficients of 0.93 and 

0.91 were obtained for the training and testing data. The 

prediction errors of the BPNN model are shown in Fig. 5. 

 

 

Fig. 5 Prediction error of tidal level by BPNN model 
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B. Support Vector Machine 

When applying SVM, the first thing that needs to be 

considered is what kernel function is to be used. As the 

dynamics of tide time series are strongly nonlinear, it is 

intuitively believed that using nonlinear kernel functions could 

achieve better performance than the linear kernel. In this work, 

the RBF is used as a kernel function of the SVM, because it 

tends to give good performance under general smoothness 

assumptions. Consequently, they are especially useful if 

additional knowledge of the data is available [16]. This is also 

demonstrated in the experiment by comparing the results 

obtained using the RBF with the results obtained using 

polynomial kernel and sigmoid kernel. The performance of 

SVM constructed by polynomial basis function or sigmoid 

function is not more efficient than that by radial basis 

function. The polynomial kernel gives inferior results and 

takes longer in the training of SVM. The second thing that 

needs to be considered is what values of the three free 

parameters of radial basis kernel function (��, C and�) are to 

be used. It is necessary to investigate impacts of selecting 

these parameters on the resultant generalization errors. Here, 

the three free parameters of radial basis kernel function (��, C 

and�) are user-determined parameters; the election of the 

parameters plays an important role in the performance of 

SVM.  The genetic algorithm employed in this study to search 

for the optimal values of the SVM parameters (C,ε  and 2δ ).  

The adjusted parameters with minimum validation error are 

selected as the most appropriate parameters. Then, the optimal 

parameters are utilized to train the SVM model. The optimal 

parameters for different SVM models are shown in Table I. 
 

TABLE I 
THE OPTIMAL PARAMETERS FOR SVM MODEL 

Kernel function 
Kernel parameters 

C ε  2δ  

Radial basis 67.831 0.0014 43.321 

 

The water level changes forecasting as above based on 

BPNN was repeated by using the SVM. The free parameters 

of radial basis kernel function used in the SVM model are C = 

67.831, δ
2
 = 43.321 and ε = 0.0014.These values produced the 

best possible results according to the testing set. For trained 

data, a maximum error of 10.5%, a minimum error of -11.03% 

and the mean absolute error of 6.37% were obtained. Also for 

tested data, a maximum error of 10.2%, a minimum error of -

12.2% and the mean absolute percentage error of 6.53% were 

obtained. The correlation coefficients of 0.969 and 0.966 were 

obtained for the training and testing data. From the 

experimental results, the predictions values were fairly close 

to the corresponding actual measurements values. All ups and 

downs in the observed time series were modeled well in the 

predicated series. The prediction errors of SVM model are 

shown in Fig. 6. 

 

 

Fig. 6 Prediction error of tidal level by SVM model 

 

The results comparing SVM and BPNN are given in Table 

II. The SVM model, however, can significantly reduce the 

overall forecasting errors. In terms of RMSE, the percentage 

improvements of the SVM model over the BPNN model for 

daily forecasting were 24.51%. The results showed that SVM 

performance is superior to BPNN in forecasting daily tidal 

levels. The statistical results showed that SVM models 

performed well and were able to accurately estimate the sea 

level changes (see Fig. 7). According to the indices (RMSE, 

ME, MAPE and R), the SVM model with RBF produced the 

best performance and was able to accurately estimate the sea 

level changes. 
 

TABLE II 

EVALUATING PERFORMANCE OF MODELS 

Method BPNN (3-5-1) model SVM model 

Training 
set 

Test 
set 

Whole 
set 

Training 
set 

Test 
set 

Whole 
set 

MAPE (%) 9.47 9.63 9.51 6.37 6.53 6.43 

RMSE (cm) 2.41 2.60 2.53 1.79 1.97 1.91 

R 0.93 0.91 0.92 0.969 0.966 0.97 

 

In general, the SVM with RBF forecasting results have 

better accuracy than that of the BPNN model. This is because 

its structure risk minimization (SRM) principle is 

implemented to minimize the upper bound of the 

generalization error rather than the training error, which is 

applied in NN [13]. SVM has fewer free parameters to 

optimize and can be determined easily [17], [18]. Moreover, 

the SVM model can eliminate over-fitting training and local 

minima [19]. Finally, SVMs are trained much more rapidly 

[13]. 
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Fig. 7 Comparison of RMSE, MAPE, and correlation coefficient (R) 

for the SVM and BPNN models 

V. CONCLUSIONS 

Sea level rise is a risk with impact to cause shoreline retreat 

through coastal erosion and dune migration, coastal inundation 

and flooding through enhanced tidal reaches and an increase in 

the frequency of storm surges. Rising sea levels can also cause 

groundwater and fresh coastal surface water contamination 

(with associated impacts on agriculture and aquaculture due to 

the decrease in soil and water quality), the loss of cultural and 

archaeological resources, and the possible destruction of 

important coastal habitats such as wetlands, mangroves, 

estuaries etc. 

The support vector machine approach was implemented in 

this study to predict sea level changes. The best accuracy for 

predicting tidal levels was achieved by using only three 

previous sea level change values. Genetic algorithm is used in 

the proposed SVM model to optimize SVM parameter 

selection.  Results of SVM are also compared with those of 

back propagation neural networks. In conclusion, the SVM 

model with RBF kernel has the highest level of accuracy and 

better generalization performance than BPNN. The SVM with 

RBF provides a promising alternative tool to the neural 

network for tidal level forecasting. 

REFERENCES 

[1] G. H. Darwin, “On an apparatus for facilitating the reduction of tidal 

observations,” Proc. R. Soc. (London) Ser. A 52, 1892, pp. 345–376. 

[2] A. T. Doodson, 1958 “The analysis and predictions of tides in shallow 
water,” Int. Hydrogr. Rev., Monaco, vol. 33, pp. 85–126, 1958. 

[3] R. E. Kalman, 1960 “A new approach to linear filtering and prediction 
problems” Trans. ASME, J. Basic Eng., vol. 82, no. 2, pp. 35–45, 1960. 

[4] K. Mizumura, “Application of Kalman filtering to ocean data,” J 

Waterway, Port, Coastal Ocean Eng., ASCE, vol. l10, no. 3, pp. 334–43, 
1984. 

[5] P. H.Yen, C. D.Jan, Y. P.  Lee, and H. F. Lee,  “Application of Kalman 

filter to short-term tide level prediction,” Journal of Waterway; Port; 
Coastal and Ocean Engineering; ASCE, vol. 122 no. 5, pp. 226–231, 

1996. 

[6] M. Vaziri, “Predicting Caspian Sea surface water level by ANN and 
ARIMA models. Journal of Waterway, Port, Coastal and Ocean 

Engineering, vol. 123, pp. 158–162, 1997. 

[7] M. C. Deo, A.  Jha, A. S. Chaphekar, and K. Ravicant “Neural networks 
for wave forecasting,” Ocean Engineering, vol. 26, pp. 191–303, 2001. 

[8] Tsai, C.P., and Lee, T.L., “Back-propagation neural network in tidal 

level forecasting,” Journal of Waterway, Port, Coastal and Ocean 
Engineering, ASCE, vol. 12, no.4, pp. 195–202, 1999. 

[9] T. L. Lee, and D. S. Jeng, “Application of artificial neural networks in 

tide forecasting,” Ocean Eng., vol. 29, no. 9, pp. 1003–1022, 2002. 

[10] T. L. Lee, C. P. Tsai, D. S.  Jeng, and R. J. Shieh, “Neural network for 
prediction and supplement of tidal record in Taichung harbor,” Taiwan. 

Adv. Eng. Softw. vol. 33, pp. 329–338, 2002. 

[11] T. L. Lee, “Back-propagation neural network for long-term tidal 
predictions,” Ocean Eng., vol.  31, pp. 225–238, 2004. 

[12] C. Steidley, A. Sadovski, P. Tissot, R.  Bachnak, and Z. Bowles, “Using 

an artificial neural network to improve predictions of water levels where 
tide charts fail,” Innovations in Applied Artificial Intelligence, vol. 35, 

pp. 599–608, 2005. 

[13] S. Rajasekaran, K. Thiruvenkatasamy and T. L. Lee, “Tidal level 
forecasting using functional and sequential learning neural networks,” 

Applied Mathematical Modelling, vol. 30, no. 1, pp. 85–103, 2005. 

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning 
representations by back-propagation errors,” Nature, vol. 323, pp. 533-

536, 1986. 

[15] M. S. El-Bisy, “Longshore current prediction with neural networks,” Ain 
Shams Univ, Eng. Bulletin, vol.  40, no. 4, pp. 489-503, 2005. 

[16] A. J. Smola, Learning with kernels. Ph.D. dissertation, GMD, 

Birlinghoven, Germany, 1998. 
[17] V. Cherkassky, and Y. Ma “Practical selection of SVM parameters and 

noise estimation for SVM regression,” Neural Network, vol. 17, pp.113-

126, 2004. 
[18] P. S. Yu, S. T. Chen, and I. F. Chang, “Support vector regression for 

real-time flood stage forecasting,” J. Hydrology, vol. 328, pp. 704–716, 

2006. 
[19] U. Thissen, , R. Van Brakel, , A. P. De Weijer, , W. J. Melssen, and L 

.M. C. Buydens, “ Using support vector machines for time series 

prediction,” Chemom. Intell. Lab. Syst., vol. 69, pp. 35–49, 2003. 

 

 

 
Ehab A. Mlybari received his MSc and Ph.D. degrees in Civil Engineering, 

University of Leeds, UK. He is an Assistant Professor in College of 

Engineering and Islamic Architecture, Umm Al Qura University, KSA. His 
research centers on construction, management, value and risk analysis. He is 

an active member in several professional societies and institutes. He can use 

analytical, diagnostic, computational and management skills to solve 
challenging problems, develop innovative designs, and improve performance 

of existing ones. 
 

M. S. Elbisy received his MSc and Ph.D. degrees in coastal and harbor 
engineering from the faculty of engineering, Ain Shams University, Egypt. He 
is currently working as an Associate Professor in College of Engineering and 

Islamic Architecture, Umm AlQura University, KSA. His research interests 

include Coastal and harbor engineering and artificial intelligence applications. 
He can use analytical, diagnostic, computational and management skills to 

solve challenging problems, develop innovative designs, and improve 

performance of existing ones.  
 

Abdullah H.Alshahri is a graduate assistant, Civil Engineering Dept., 

Faculty of Engineering, Taif University, Taif, KSA. He received his B.Sc.   in 
Civil Engineering, College of Engineering and   Islamic Architecture, Umm 

AlQura University. 

 
Obaid M. Albarakati, is a graduate assistant, Civil Engineering Dept., 

College of Engineering and Islamic Architecture, Umm AlQura University, 

KSA. He received his B.Sc.  in Civil Engineering, College of Engineering and   
Islamic Architecture, Umm AlQura University. 


