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Abstract—We consider nonlinear uncertain systems such that a 

priori information of the uncertainties is not available. For such 
systems, we assume that the upper bound of the uncertainties is 
represented as a Fredholm integral equation of the first kind and we 
propose an adaptation law that is capable of estimating the upper 
bound and design a continuous robust control which renders nonlinear 
uncertain systems ultimately bounded. 
 

Keywords—Adaptive Control, Estimation, Fredholm Integral, 
Uncertain System.  

I. INTRODUCTION 
UCH attention has been paid to the problem of designing 
feedback controllers for uncertain dynamic systems 

containing uncertain elements due to model-parameter 
uncertainty, extraneous disturbance and measurement error. To 
design feedback controllers of such systems, if a priori 
probabilistic information of the uncertainties is unavailable but 
bounds on the uncertainties are known, then a deterministic 
approach is possible. 

Many researchers [1]-[4] within the deterministic framework 
have been designed feedback controls based on Lyapunov 
min-max approach. Roughly speaking, a Lyapunov function of 
a stable nominal system in the absence of the uncertainties is 
employed as the Lyapunov function candidate for the actual 
uncertain dynamic system, and a control law is determined such 
that the Lyapunov function decreases along every possible 
trajectory of the uncertain dynamic system at least outside a 
neighborhood of the zero state. Thus, uniform ultimate 
boundedness is obtained for all possible uncertainties. 

In the deterministic designs, the uncertainties are bounded 
and their upper bounds are available to the designer. And the 
upper bounds of the uncertainties are very important to 
guarantee the asymptotic stability or uniform ultimate 
boundedness of uncertain dynamic systems. However, 
sometimes they may not be easily obtained because of the 
complexity of the structure of uncertainties. A parameter 
adaptation method provides a good tool to solve this problem.  

Recently, several authors [5]-[8] have proposed new control 
laws with parameter adaptation for upper bounds of the 
uncertainties. For estimating upper bounds, Chen [5] and Yoo 
and Chung [6] assumed that the matched uncertainty is 
cone-bounded about the state vector norm. And Brogliato and 
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Trofino Neto [7] and Wu [8] assumed that upper bounds of the 
uncertainties linearly depend on some unknown constant 
parameters. In these studies, the structure of the uncertainties is 
at least partially known. However, since in many cases it may 
be difficult to get information of the structure of the 
uncertainties. Integral equations [9] provide attractive 
mathematical basis to describe upper bounds of the 
uncertainties without a priori information except that the 
uncertainties are bounded. In an interesting paper, assuming 
that a nonlinear disturbance function is represented as an 
integral equation, Messner et al. [10] proposed an adaptive 
learning rule for a class of nonlinear systems. 

In this paper, unlike in Brogliato and Trofino Neto [7] and 
Wu [8], we consider the problem of robust stabilization of 
uncertain dynamic systems such that any information of the 
uncertainties is not available except the fact that they are 
bounded. For such uncertain dynamic systems, we assume that 
upper bounds of the uncertainties are represented as a Fredholm 
integral equation of the first kind, i.e., an integral of the product 
of a predefine kernel with an unknown influence function, and 
we provide a sufficient condition for the existence of such a 
representation. Based on such an assumption, we introduce a 
class of continuous adaptive robust controllers which can 
guarantee the uniform boundedness of the resulting closed-loop 
dynamic systems in the presence of the uncertainties. 

II.  CONTINUOUS ADAPTIVE ROBUST CONTROL 
Consider a class of uncertain nonlinear systems, as used by 

Corless and Leitman [2] such that  
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where nRtx ∈)( is the state vector, mRtu ∈)( is the control input, 
and ),( txe represents the lumped uncertainty. The known 
functions nn RRRf →×⋅ :)( and mnn RRRB ×→×⋅ :)(  as well as 
the unknown function mn RRRe →×⋅ :)( are Caratheodory ones, 
and f (0, t) = 0 for all Rt ∈ . Also, the origin, x = 0, is uniformly 
asymptotically stable for the unforced nominal system 

),()( txftx = . That is, there is a continuous and positive definite 
Lyapunov function +→×⋅ RRRV n:)( such that for all 
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where the scalar functions )(1 ⋅γ  and )(2 ⋅γ  are of Class ∞K , and 
)(3 ⋅γ  of Class K. 

Based only on the knowledge of the upper bound of the 
uncertainty, the following assumption is presumed to be valid: 
Assumption 1: There exists a continuous function 

+→⋅ RR:)(ρ  such that )(),( txte ρ≤  for all RRtx n ×∈),( . 
In the design of a class of feedback controls, finding of the 

continuous function )(⋅ρ satisfying Assumption 1 is very 
important for the asymptotic stability or uniform ultimate 
boundedness for uncertain dynamic systems. To manipulate the 
upper bound of the uncertainties easily, Chen [5] and Yoo and 
Chung [6] assumed that )(⋅ρ  is cone-bounded. And Brogliato 
and Trofino Neto [7] and Wu [8] assumed that it linearly 
depends on some unknown constant parameters. 

Integral equations are equations in which an unknown 
function appears under an integral sign. As Arfken and Weber 
[9], a Fredholm integral equation of the first kind is defined as 
follows: 

 

∫=
b

a
dtttxxg )(),()( ϕψ  

 
where )(⋅ϕ is an unknown function, )(⋅g is a known function, 
and ),( ⋅⋅ψ is another known function of two variables, often 
called the kernel function. The limits of integration, that is, a 
and b are constant. 

In our problems, the upper bound )(⋅ρ  may have dynamic 
characteristic, and if )(⋅ρ is known, it may be helpful to 
formulate the uncertainties using integral equations. Thus, we 
will state the following assumption using a Fredholm integral 
equation of the first kind. 
Assumption 2: The function )(⋅ρ  can be represented as a 
Fredholm integral equation of the first kind, i.e., there exist a 
predefined kernel function lRRR →×⋅ :)(ψ and an unknown 
influence function lRRc →⋅ :)(  such that, for real constants 

21, ττ ∈R, 
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In general, the purpose of such an integral equation is to 

determine the unknown function )(⋅c  for known functions )(⋅ρ
and ),( ⋅⋅ψ . In reverse, given a predefined kernel function ),( ⋅⋅ψ , 
if we can estimate the unknown function )(⋅c  using an 
appropriate method, we can also estimate )(⋅ρ . Moreover, 
assumption 2 allows the designers to choose any arbitrary 
kernel function regardless of the structure of the uncertainties. 
That is, even though the designers do not have any information 
of the uncertainties except that the uncertainties are bounded 
(i.e. assumption 1), they can describe the upper bound of 
uncertainties using a designer-chosen kernel function and an 
unknown influence function. 

Based on the assumptions, we now propose the following 
adaptation law for estimating the upper bound of the 
uncertainties: 
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where ),(),(),( txVtxBtx x

T ∇=μ  and lRRRc →×⋅ :)(  is the 
estimate of the unknown influence function )(⋅c  in (3) and 

llR ×∈Φ and llR ×∈Γ  are positive definite diagonal matrices. 
Then )(tρ , the function estimate of )(tρ , is defined by 
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Defining the influence function error by )(),(),(~ τττ ctctc −=

and using (3), (4) and (5), we obtain 
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Now, consider the class of feedback controls described by 
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where ε  is a positive constant. 

Applying (8) to (1) yields a closed-loop dynamic system of 
the form 
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With regard to the uniform ultimate boundedness of uncertain 
dynamic systems, we may state the following theorem. 
Theorem 1: Given system (1), if Assumptions 1 and 2 are 
valid, and if in addition the following condition is satisfied: 
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where κ is a positive constant and τ1 and τ2 are real constants,

)(tx and )(~ tρ  are uniformly ultimately bounded by employing 
the continuous robust control (8) and the continuous adaptation 
law (4) and (5). 
Proof: First, we introduce an augmented Lyapunov function 
such that 
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where ),( txV  is the Lyapunov function for the unforced 
nominal system and Φ is defined in (4). Then, taking the 
derivative of )~,( cxVa  along the trajectories of the closed-loop 
system in (9), we obtain 
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If ερμ ≥)(),( ttx , (12) can be rewritten as 
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and if ερμ <)(),( ttx , (12) can be rewritten as 
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when 2/)(),( ερμ =ttx , the term  
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reaches the maximum value of 2ε . Thus we may write as 
follows: 
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On the other hand, by matrix manipulation we have 
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Consequently, from results of (15) and (16), we obtain 
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and  )(min ⋅λ is the smallest eigenvalue of a given matrix. Using 
the result and terminology in [2], )(tx  and ∫

2

1

),(~),(~τ

τ
τττ dtctc T  are 

uniformly ultimately bounded.  
We will now show that )(~ tρ  is uniformly ultimately 

bounded. Taking absolute value of (7) and using the Schwarz 
inequality, we obtain 

 

∞<⎥⎦
⎤

⎢⎣
⎡⋅≤

⎥⎦
⎤

⎢⎣
⎡⋅⎥⎦

⎤
⎢⎣
⎡≤

=

∫

∫∫

∫

2/1
2

2/1
2

2/1
2

2

1

2

1

2

1

2

1

),(~

),(~),(

),(~),()(~

τ

τ

τ

τ

τ

τ

τ

τ

ττκ

ττττψ

τττψρ

dtc

dtcdt

dtctt T

(18) 

 
From (18), since ∫

2

1
),(~),(~τ

τ
τττ dtctc T  is uniformly ultimately 

bounded, )(~ tρ  is also uniformly ultimately bounded. 
Remark 1: The constraint on the predefined kernel function 
given by (10) is the sufficient condition that guarantees that 

)(~ tρ  is bound. There exist many kernel functions that satisfy 
the constraint (10). An example of such a kernel function is the 
cosine function used in the illustrative example. 

III. AN ILLUSTRATIVE EXAMPLE 
In order to illustrate the effectiveness of the proposed 

method, we consider a pendulum with mass center G, mass m, 
moment of inertia I, and gravitational acceleration g as shown 
in Brogliato and Trofino Neto [7] and Wu [8]. 
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where )()(1 tqtx ≡  is the angular position. As in Brogliato and 
Trofino Neto [7], letting 
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where the subscript ‘d’ denotes the desired value, we can 
choose a control input of the form 
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where 00 , ba  are positive constants, k is strictly positive, u(t) is 
an auxiliary control input, and d(t) is an exogenous 
time-varying bounded input disturbance. Then, we obtain an 
error system of the form 
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where  
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Hence, the adaptive robust control and the adaptation law are 
described as follows: 
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We choose the same numerical values as those given by 

Brogliato and Trofino Neto [7] as in Table I. 
 

TABLE I 
PARAMETERS FOR SIMULATIONS 

Parameters Description Values[Unit] 
m mass 10[kg] 
l length 0.5[m] 
I moment of inertia 0.2[kgm2] 
g gravitational acceleration 9.81[m/s2] 

 
The disturbance )15sin(2)( ttd = , the desired angle trajectory

)2cos()()(1 ttqtx dd =≡ , and the control parameters ,5=λ
,10=k 5.00 =a and 500 =b are chosen.In addition, for the 

controller in (25) and the adaptation law in (26), we also choose  
 

]1.01.0[],10050[,2.0 diagdiag =Γ=Φ=ε  
Ttt )]cos(11[),( ττψ −+= , 1τ = 0, 2τ =0.5. 

 
The results of the simulation are shown in Figs. 1 and 2. As 

seen in figures, the system described in (22) is indeed uniformly 
ultimately bounded in the presence of the uncertainties. 

 

 
Fig. 1 Position tracking error  

 
Fig. 2 The progress of parameter adaptation 

IV. CONCLUSION 
In this paper, we have considered the problem of robust 

stabilization of uncertain dynamic systems such that any 
information of the uncertainties is not available except that they 
are bounded. For such uncertain dynamic systems, we have 
assumed that the upper bound of the uncertainties is represented 
as a Fredholm integral equation of the first kind and we have 
provided a sufficient condition for the existence of such a 
representation. Based on such an assumption, we have 
introduced the continuous robust controller with adaptation law 
for the upper bound of the uncertainties. We proved that the 
resulting closed-loop dynamic systems are uniformly 
ultimately bounded in the presence of the uncertainties. The 
simulation results have shown that the proposed adaptive 
robust control method controls effectively a class of uncertain 
dynamic systems. 
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