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Abstract—In this paper, we consider the nonlinear pulse 

propagation through a nonuniform birefringent fiber Bragg grating 
(FBG) whose index modulation depth varies along the propagation 
direction. Here, the pulse propagation is governed by the nonlinear 
birefringent coupled mode (NLBCM) equations. To form the Bragg 
soliton outside the photonic bandgap (PBG), the NLBCM equations 
are reduced to the well known NLS type equation by multiple scale 
analysis. As we consider the pulse propagation in a nonuniform FBG, 
the pulse propagation outside the PBG is governed by 
inhomogeneous NLS (INLS) rather than NLS. We then discuss the 
formation of soliton in the FBG known as Bragg soliton whose 
central frequency lies outside but close to the PBG of the grating 
structure. Further, we discuss Bragg soliton compression due to a 
delicate balance between the SPM and the varying grating induced 
dispersion. In addition, Bragg soliton collision, Bragg soliton 
switching and possible logic gates have also been discussed.  

 
Keywords—Bragg grating, Nonuniform fiber, Nonlinear pulse.  

I. INTRODUCTION 

S in conventional optical fibers, the fiber birefringence 
plays an indispensable role and affects the nonlinear 

phenomena considerably in FBG also. In FBG, birefringence 
induces bifurcation or a split of the peak at the Bragg 
reflection wavelength [1]. Therefore, in general, the 
birefringence effect requires additional investigations. The 
birefringence effect should be included if Bragg gratings are 
made inside the core of polarization-maintaining fibers. From 
a physical standpoint, the two orthogonally polarized 
components have slightly different mode indices. Since the 
Bragg wavelength depends on the mode index, the stop bands 
of the two modes have the same widths but are shifted by a 
small amount with respect to each other. As a result, despite 
both the polarization components having the same wavelength 
(frequency), one of them may fall within the stop band while 
the other remains outside the PBG. Further, as the two stop 
bands shift due to nonlinear index changes, the shift can be 
different for the two orthogonally polarized components 
because of the combination of the XPM and birefringence 
effects. More recently [2]-[4] have extensively investigated 
the birefringence effect in Bragg grating structure. 

Recently, with the help of perturbation theory, [5] 
investigated the role of inhomogeneity in the chirped Bragg 
gratings. That is, they demonstrated that the inhomogeneity 
affects the amplitude and the width, as well as phase and the 
velocity of the soliton. Further, by using the Inverse Scattering 
transform (IST) they analyzed the dynamics of a two soliton 
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pulse of the perturbed NLS equation which governs pulse 
propagation outside but close to PBG. Finally, they also 
discussed the dynamics of a multisoliton pulse in the chirped 
grating. However, in this sub-section, by considering the effect 
of birefringence, we analytically show that the inhomogeneity 
present in the chirped grating affects the amplitude as well as 
width of the pulse. Hence, this process leads to the 
compression of Bragg (two) soliton pulse outside the PBG 
structure. Under the elastic collision condition, we discuss the 
scenario of these Bragg solitons’ interaction with and without 
(inhomogeneity) compression. On the other hand, under the 
inelastic collision condition, we analyze the occurrence of 
Bragg soliton switching in the chirped Bragg grating. 

II. THEORETICAL MODEL 
Note that the coupled mode theory can easily be extended to 

account for fiber birefringence in FBG. Therefore, the 
nonlinear pulse propagation in FBG in the presence of 
birefringence is described by the nonlinear birefringent 
coupled mode (NLBCM) equations [6].  
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Here the field envelopes fbf EEE 211 ,,  and bE2

represent the forward and backward propagating fields in FBG 
in the presence of birefringence. The physical parameter 
namely nonlinear coefficient αi is defined as

 

 
 

i0

0

eff

2
j n

k
A
n

=α                       (2) 

Optical Switching Based On Bragg Solitons in 
A Nonuniform Fiber Bragg Grating 

Abdulatif Abdusalam, Mohamed Shaban 

A



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:12, 2013

1746

where (j = 1, 2); n2 is the nonlinear index of refraction; ‘k0’ is 
the Bragg wavevector; Aeff is the effective cross-sectional area. 
The other two coefficients can be determined from αI since for 
a weakly birefringent optical fiber, they are in the ratio 
 

 { } { }1:2:3:: jjj =γβα                      (3) 
 

The birefringence coefficient is given by, 
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The grating coefficient is defined as 
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It should be noted that the inclusion of birefringence in (1) 

results in a dispersion relation that is different for the 1 and 2 
polarization components. The corresponding dispersion curves 

are shown in Fig. 1 where the stop bands 1 and 2 are centered 
about their respective Bragg frequencies as, 
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c
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which cause them to be separated. This separation is important 
for the dynamics of the optical AND gate to be discussed in 
the following section. 

As we consider the pulse propagation outside PBG, we now 
turn our attention to the nonlinear Schrödinger equations for a 
birefringent medium. In the absence of birefringence, it has 
already been shown that, for pulse widths not too narrow and 
center frequencies not too deep in the gap, the NLCM 
equations scale into a NLS type equation [7], [8], [10]. The 
resulting NLS equation is known to describe the dynamics of 
fields at carrier frequencies far from the band gap [7]. The 
same arguments hold in the presence of birefringence except 
that the resulting nonlinear birefringent Schrödinger (NLBS) 
equation involves two coupled equations   
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Fig. 1 Dispersion relation for a birefringent medium with ny < nx. The 
Y band is shifted up relative to the X band so that an input frequency 

as shown will be more deeply in the Y gap than in the X gap 
 
The field variables ‘E1’ and ‘E2’ describe the amplitudes of 

envelope functions that modulate carrier Bloch functions at a 
specified ‘k’, belonging to either the upper or lower branch. 
The birefringence parameter is defined as, 0201 βββΔ −=  

which is related to the beat length LB as BL/2πβΔ =  The 
nonlinear coefficients close to the bandgap, in the presence of 
a weak birefringence are given by 
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where the velocity coefficients ωj
′ = dωj / dk; the velocity 

fraction ρj = ωj
′/vj; and the other quantities are defined as in 

(2). It is worthy to note that (6) is valid only when the grating 
induced dispersion is significantly larger than the underlying 
neglected material dispersion.  

The nonlinear effects in a set of (6) can be classified into 
phase modulation terms and phase conjugation or energy 
exchange terms. Phase modulation terms involve one 
component of the electric field seeing an enhanced index of 
refraction due to the intensity of the other components of the 
field. The α1

spm term in the NBSE describes an enhanced index 
for the field ‘1’ due to its own intensity (SPM). The α1

cpm term 
enhances the index for the field ‘1’ due to the intensity of the 
field ‘2’ (XPM). However, there are two types of XPM in the 
NLBCM Equation (1). The first is cross phase modulation 
between different directions of the same polarization (i.e. fE1  

being affected by the intensity of f2E ). The second is cross 

phase modulation between different polarizations (i.e. f1E  

being affected by the intensity of b,f2E ). The energy 

exchange terms are those that couple into the field conjugates, 
including the αpc terms in the NBS equation and the 
corresponding terms in the NLBCM equation. If the 
birefringence is high, then the quickly varying exp(± i δ t) 
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term will cause the effect of these energy exchange terms to 
vanish.  

For the sake of convenience, we now rewrite (6) in terms of 
a circular basis by letting Q1 = (E1 + iE2)/√2 and Q2 = (E1 - 
iE2)/√2. The resulting transformed equations are 
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where the physical parameters Q1 and Q2 refer to right and left 
circularly polarized fields respectively and 3/αΓ = . The 
nonlinear coefficient α is related to αspm in (7) via α = αspm/ω′. 
Now the energy exchange terms have disappeared, and hence 
the only nonlinear effects are self and cross phase 
modulations. These terms can be considered an induced 
birefringence because, if | Q1 | ≠ | Q2 |, then the nonlinear terms 
in the two equations are unequal. Therefore one of the 
polarizations will experience a different nonlinear refractive 
index. In the case of linearly polarized light this induced 
birefringence is trivial because one can always rotate to an 
appropriate basis where the two equations (8) reduce to a 
single NLS equation. However, for general elliptical 
polarization, the situation is more complicated.  

It is well known fact that each point in the pulse has its own 
polarization state which can be specified either by using the 
Stokes polarization parameters or Jones calculus. As the field 
components Q1 and Q2 have different intensity profiles, the 
polarization state varies across the pulse. Recently, with the 
help of Stokes polarization parameters, we have analyzed [9] 
the polarization evolution of a soliton pulse in a birefringent 
fiber under the influence of quintic self and cross phase 
modulation effects. Therefore, it is also possible to study the 
polarization dynamics of Bragg grating solitons in the 
transmission regime of FBG in the presence of birefringence 
effect. Recently, [11], [12] analyzed the polarization dynamics 
of Bragg grating solitons by NLS type equation in birefringent 
Bragg grating structure.   

Note that (6) has been extensively investigated by [13] and 
proposed an all-optical switching and an AND gate operation 
scheme based on the transmission of coupled gap solitons, 
with the help of NLBS equation, for a birefringent nonlinear 
Bragg grating structure. Recently, [6] have investigated 
switching behavior in terms of gap solitons in nonlinear Bragg 
grating structure in the presence of birefringence effect.  

At this juncture, it is worth to note that the physical 
parameters, in (8), such as quadratic dispersion, ‘ 2β ’ and 
nonlinear coefficient, ‘ Γ ’, are no longer constants but 
depend upon the propagation direction as we consider the 
soliton pulse propagation through a nonuniform Bragg grating 
structure. Therefore, we reduce the NLBS Equation (8) with 
‘z’ dependent parameters of ‘ 2β ’ and Γ using the following 
transformation 
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After the transformation, NLBS equation becomes 
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dispersion alone varies along the propagation direction of the 
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The resulting (9) describes the nonlinear pulse propagation 

outside the PBG in nonuniform birefringent FBG.  

III. PULSE COMPRESSION BY BRAGG TWO SOLITON 
In this sub-section, by employing the birefringence effects, 

we discuss the Bragg two soliton pulse compression and all 
optical switching (outside the PBG) in the nonunifrom FBG. 
The two soliton solution of (9) cannot be derived directly. 
Therefore, by introducing the following variable 
transformation 
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the inhomogeneous NLBS Equation (9) can be transformed 
into the well known NLBS Equation (8). The bright two-
soliton solutions of the above Manakov system (8) are well 
known [14].  
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(a) 

 

 
(b) 

Fig. 3 Contour plots without (a) and with pulse compression (b) 
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(b) 

Fig. 4 Comparison of two soliton interaction 2D plots for different ξ 
values without (a) and with compression (b) 

 
It is well known that the most fascinating feature of solitons 

is their particle like behavior. It is well known that the solitons 
tend to survive not only with perturbations but also collisions 
with other solitons. Survival of two such colliding solitons is 
even more remarkable if one notes that solitons interact 
strongly with each other during the collision. It has been well 
established that for copropagating NLS solitons, the 
interaction is either attractive or repulsive, depending on the 
relative phase between two solitons [15]-[18]. Here, we 
continue to discuss the interaction between two copropagating 
Bragg solitons in a nonuniform Bragg grating structure. In a 
uniform FBG, it has already been shown that collision 
between two counterpropagating Bragg solitons having their 
central frequencies in the middle of the PBG has been 
numerically studied by [19]. Recently, [20] have also been 
shown that the interaction between two copropagating Bragg 
solitons in a FBG is reminiscent of the NLS solitons except for 
the new feature that the relative phase of two Bragg solitons 
depends on their initial separation. Thus, the interaction 
studies of these Bragg grating solitons have been carried out 
only in the uniform Bragg grating structure. Therefore, it is of 
great interest to study such kind of collisions among the Bragg 

solitons in the real world system i.e., nonuniform FBG. Now, 
we proceed to discuss the interaction of these solitons in both 
uniform and nonuniform Bragg grating structure. The Bragg 
soliton interaction plots, for both uniform and nonuniform 
FBG, are depicted in Figs. 4 (a) and (b). Fig. 4 (a) shows the 
interaction of Bragg grating solitons in the uniform grating. 
From the figure, it is clear that after the interaction, the soliton 
emerges with no change in its physical parameters except with 
its phase. On the other hand, Fig. 4 (b) depicts the interaction 
of Bragg solitons in the nonuniform grating wherein the pulse 
compression takes place during collision process and hence 
pulse width gets reduced. This is mainly because of the 
presence of the inhomogeneity present in the Bragg grating 
structure. Here also, after the collision process, the soliton 
emerges as in the case of uniform grating. Further, we note 
that in the elastic-uniform FBG case, the velocities of the 
incoming and outgoing pulses are identical and the same is 
clearly depicted in 2D plots of Fig. 4 (a). However, in the 
elastic-nonuniform FBG case, the exiting pulse envelopes are 
closer than the incoming pulse envelopes at the same value of 
z . The separation of the centre frequencies of the emerging 

Bragg solitons is observed which is mainly due to the reduced 
differential group velocity after the collision process. 

V. OPTICAL SWITCHING BASED ON BRAGG TWO- SOLITON 
UNDER INELASTIC COLLISION 

To achieve the two-soliton inelastic collision
2
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condition can change the relative phases of the two optical 
modes. Initially amplitudes of the two optical modes do not 
change, but a change in the relative phase changes the 
amplitude distribution after interaction for the set of values 
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2
1,64.102.0

1
2 ==+= ααα  and 

ikandik −=+= 21 21 . For the uniform FBG case, 
after the soliton-soliton interaction, the two soliton is switched 
into a one soliton and consequently the energy is completely 
transferred from one mode to the other. This phenomenon is 
clearly seen with the surface plot of Fig. 5 (a) and the 
corresponding the contour plot is provided in Fig. 6 (a). Now 
by introducing the inhomogeneity parameter, such that 0ξ = -
3.4, after the interaction, two-soliton switches into a single 
soliton with pulse compression and, as a result, an increase in 
amplitude of the pulse takes place due to the influence of SPM 
as in Fig. 5 (b). The corresponding contour plot is shown in 
Fig. 6 (b). 

In what follows, we discuss the physical mechanism of the 
Bragg soliton switching in both uniform and nonuniform 
Bragg grating structure. Before entering into the discussion, 
we just review earlier investigations that have been done in 
this field. Indeed, there are two ways of performing switching 
in a FBG. The first one is to use an optical pulse, which is 
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tuned to lie within the PBG. Here the intensity of the pulse is 
sufficient to detune itself from the Bragg resonance and thus 
allowing the propagation through the periodic structure. The 
second way is to use a high intensity pump beam, tuned far 
from the Bragg resonance, to alter the propagation constant of 
a weak signal beam whose wavelength is near or within the 
grating bandgap. Such a kind of XPM effects were first 
observed by [21] and [22]. 

The concept behind AND gate, which is shown in Figs. 5 
and 7, can easily be explained as follows. The two 
orthogonally polarized components 1Q  and 2Q  (along X and 
Y direction) of the input light pulse represent bits for the gate. 
Note that each bit can have a value either 1 or 0 depending on 
whether the corresponding light pulse is present or absent. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
(a)                                                                                      (b) 

Fig. 5 Comparison of Bragg soliton switching 3D plots without (a) and with pulse compression (b) 
 

 
(a)                                                                                      (b) 

Fig. 6 Contour plots for Bragg soliton switching without (a) and with pulse compression (b) 
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(a)                                                                                                                   (b)

Fig. 7 Comparison of soliton switching 2D plots for different ξ values without (a) and with compression (b) 
 

As well known, output in the AND gate is obtained only 
when both components are present simultaneously in the 
input.  

We note that the average refractive index of the two 
components is defined as 21 QnQn < . Hence, the 2Q  Bragg 

frequency is slightly higher than the 1Q  Bragg frequency. To 
achieve AND gate operation, we just tune two input pulses 
inside the PBG but close to the upper branch of the dispersion 
curve. The combined intensity of these two fields 1Q  and 2Q  
can increase the refractive index through the XPM 
phenomenon. As a result, detuning takes place and hence both 
the components are transmitted. However, if one of the 
components is absent at the input, instead of transmission, 
both the components are reflected as the XPM contribution 
vanishes in the PBG. This kind of inelastic interaction 
scenario and Bragg soliton switching are clearly shown in 
Figs. 7 (a) and (b), respectively. Fig. 7 (a) depicts the 
operation principle of the Bragg soliton switching at the 
different stages in the uniform FBG. On the other hand, 2D 

plots of Fig. 7 (b) explain the different scenario of Bragg 
soliton switching in the nonuniform FBG wherein the pulse 
compression takes place during the switching process and 
hence an increase in amplitude is seen. This is mainly owing 
to the presence of in homogeneity in the nonuniform FBG.  

VI. CONCLUSION 
To investigate the optical switching based on Bragg soliton, 

we have considered the nonlinear pulse propagation through 
the nonuniform birefringent fiber Bragg grating. We have 
analyzed the high degree of pulse compression based on Bragg 
two soliton under the elastic collision condition. The 
occurrence of Bragg soliton switching has also been discussed 
in both uniform and nonuniform fiber Bragg gratings under 
the inelastic collision condition. In order to have good 
understanding about this switching process, 2D plots of the 
soliton-soliton interactions and 3D surface plots have been 
clearly depicted. We do envisage that the results presented in 
this paper would definitely attract the experimentalists who 
could realize this experimentally. 
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