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Abstract—In this paper, the smallest such integer k is called by
the index (of nilpotence) of B such that Bk = 0. In this paper, we
study sign patterns allowing nilpotence of index k and obtain four
methods to construct sign patterns allowing nilpotence of index at
most k, which generalizes some recent results.

I. INTRODUCTION

THE sign of a real number a, denoted by sgn(a), is defined
to be 1,−1 or 0, according to a > 0, a < 0, a = 0,

respectively. A sign pattern matrix (or a sign pattern, for short)
is a matrix whose entries are from the set {1,−1, 0}. The sign
pattern of a real matrix B, denoted by sgn(B), is the sign
pattern matrix obtained from B by replacing each entry by its
sign.

Let m be a positive integer. The integers a and b are
congruent modulo m if and only if there is an integer t such
that a = b + tm (for short, written as a ≡ b(modm)).

Let Qn be the set of all sign patterns of order n. For A ∈
Qn, the set of all real matrices with the same sign pattern as
A is called the qualitative class of A, and is denoted by Q(A)
([2]).

Suppose that a real matrix has the property p. Then a sign
pattern A is said to require p if every real matrix in Q(A)
has property p, or to allow p if some real matrix in Q(A) has
property p ([1]).

In this paper, we investigate the property N of being
nilpotent. Recall that a real matrix B is said to be nilpotent if
Bk = 0 for some positive integer k. The smallest such integer
k is called the index (of nilpotence) of B.

Let k be a positive integer. We now consider sign patterns
that allow nilpotence of index at most k. These sign patterns
that allow nilpotence, are also referred to as the potentially
nilpotent sign patterns (see [1], [4], [5], [6]). For convenience,
we denote the class of all sign patterns that allow nilpotence of
index at most k by Nk. In [7], it is reported that it is an open
problem to determine necessary and/or sufficient conditions for
a sign pattern to allow nilpotence of index k ≥ 4. Eschenbach
and Li [4] studied N2 and Gao, Li and Shao [1] studied N3.
In this paper, we mainly extend these results to any Nk.

II. PRELIMINARY

Lemma 1([4]). The set Nk is closed under the following
operations:

1) negation;
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2) transposition;
3) permutational similarity, and
4) signature similarity.

As defined in [1], two sign patterns are equivalent if one
can be obtained from the other by performing a sequence of
operations listed in Lemma 1. This is indeed an equivalence
relation.

Lemma 2 ([1]). A real matrix B is nilpotent if and only if
its eigenvalues are equal to zero.

Recall that a reducible (real or sign pattern) matrix is
permutationally similar to a matrix in Frobenius normal form
(see page 57 in [8]). Consequently, a reducible sign pattern A
allows nilpotence if and only if each irreducible component
(see [8]) of A allows nilpotence.

Lemma 3. Let B be a nilpotent real matrix of index at most
k, and J the Jordan form of B. Then each Jordan block in J
is one of the following:

J1 = [0] , Ji =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ for i = 2, 3, · · · , k.

Let A be a sign pattern matrix. The minimal rank of A,
denoted by mr(A), is defined as mr(A) = min{rankB : B ∈
Q(A)} ([3]).

Theorem 1. Let A ∈ Qn. If A ∈ Nk, then

mr(A) ≤ k − 1
k

n.

Proof. Let A ∈ Qn and A ∈ Nk. Then there exists a real
matrix B ∈ Q(A) such that Bk = 0. By Lemma 3 we can
assume that the Jordan form J of B is a direct sum of ki

copies of Ji (i = 1, 2, · · · , k), where
k∑

i=1

iki = n. Then

rank(B) = rank(J) =
k∑

i=1

(i − 1)ki

≤ k−1
k k1 + k−1

k 2k2 + · · · + k−1
k kkk = k−1

k n.

Hence mr(A) ≤ rank(B) ≤ k−1
k n. �

Construction Methods for Sign Patterns Allowing
Nilpotence of Index

(e-mail: ruojune@sina.com).

Keywords—Sign pattern, Nilpotence, Jordan block.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:4, 2013

763

Remark 1. Note that the sign pattern

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
−1 −1 −1 −1 −1

1 1 1 0 0
1 1 0 0 0
1 1 0 0 0

⎤
⎥⎥⎥⎥⎦

satisfies mr(A) = 3 ≤ 3
4 × 5. However, A4 �= 0, A /∈ N4. So

the condition in Theorem 1 is not a sufficient one.

Theorem 2. Let B be a real matrix of order n with
rank(B) = r. Then B4 = 0 if and only if there exist
nonnegative integers l, m and nonzero real column vectors
α1, α2, · · · , αr and β1, β2, · · · , βr of order n with l ≤ r

3 ,
m ≤ r

2 , 2r − 2l − m ≤ n and

βT
j αi =

⎧⎨
⎩

1 j ≡ 1(mod3), 1 ≤ j ≤ 3l − 1, and i = j + 1,
1 j ≡ 2(mod3), 1 ≤ j ≤ 3l − 1, and i = j + 1,
0 otherwise,

(1)
such that

B =
∑

1≤i≤r

αiβ
T
i . (2)

Proof. Sufficiency. Let B = α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r .

By (1), we have

B2 = (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

(α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

= α1β
T
2 + α2β

T
3 + α4β

T
5 · · · + α3l−1β

T
3l,

B3 = (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

(α1β
T
2 + α2β

T
3 + α4β

T
5 + · · · + α3l−1β

T
3l)

= α1β
T
3 + α4β

T
6 + · · · + α3l−2β

T
3l

and

B4 = (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

(α1β
T
3 + α4β

T
6 + · · · + α3l−2β

T
3l)

= 0.

Necessity. Let B4 = 0 with rank(B) = r. By Lemma 3,
the Jordan form J of B is a direct sum of l copies of J4, m
copies of J3, r−3l−2m copies of J2 and n−4l−3m−2(r−
3l − 2m) = n − 2r + 2l + m copies of J1, where 0 ≤ l ≤ r

3 ,
0 ≤ m ≤ r

2 and 2r − 2l − m ≤ n. It implies that there exists
a nonsingular real matrix D of order n such that

D−1BD = J

=

⎡
⎢⎢⎢⎣

J11

J22

. . .
Jn−r+2m+4l,n−r+2m+4l

⎤
⎥⎥⎥⎦ .

(3)

where

J11 = · · · = Jll = J4, Jl+1,l+1 = · · · = Jl+m,l+m = J3,

Jl+m+1,l+m+1 = · · · = Jr−m−2l,r−m−2l = J2,

and

Jr−m−2l+1,r−m−2l+1 = Jr−m−2l+2,r−m−2l+2

= · · · = Jn−r+2m+4l,n−r+2m+4l = J1.

Write

D = (u1, u2, · · · , un) and D−1 = (v1, v2, . · · · , vn)T ,

where u1, u2, · · · , un are column vectors of D and
v1, v2, · · · , vn are column vectors of D−1. Clearly, vT

i ui =
1, for i = 1, 2, · · · , n, and vT

j ui = 0, for i �= j. Let

α3i−2 = u4i−3, α3i−1 = u4i−2, α3i = u4i−1 for i = 1, 2, · · · , l,

α3l+2j−1 = u4l+3j−2, α3l+2j = u4l+3j−1, for j = 1, 2, · · · , m,

α3l+2m+s = u4l+3m+2s−1, for s = 1, 2, · · · , r − 3l − 2m,

β3i−2 = v4i−3, β3i−1 = v4i−2, β3i = v4i−1 for i = 1, 2, · · · , l,

β3l+2j−1 = v4l+3j−2, β3l+2j = v4l+3j−1, for j = 1, 2, · · · , m,

β3l+2m+s = v4l+3m+2s−1, for s = 1, 2, · · · , r − 3l − 2m.

It is easy to see that αi and βi satisfy the condition (1). By
(3), we have

B = DJD−1 = α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r .

The conclusion follows. �
Next, we generalize the above result to any Bk = 0, that

is, Nk.
Theorem 3. Let B be a real matrix of order n with

rank(B) = r. Then Bk

1, l2, · · · , lk and nonzero real column vectors

α1, α2, · · ·αr and β1, β2, · · ·βr of order n with
k∑

i=1

ili = n,

k∑
i=1

(i − 1)li = r, and

βT
j αi =

⎧⎨
⎩

1, j ≡ s(modk − 1), s = 1, 2, · · · , k − 2,
1 ≤ j ≤ (k − 1)lk − 1, i = j + 1,

0, otherwise
(4)

such that
B =

∑
1≤i≤r

αiβ
T
i . (5)

Proof. Sufficiency. Let B = α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r .

By (4), we have

B2 = (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

(α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )

= (α1β
T
2 + α2β

T
3 + · · · + αk−2β

T
k−1)

+(αkβT
k+1 + · · · + α2k−3β

T
2k−2) + · · · +

(α(k−1)(lk−1)+1β
T
(k−1)(lk−1)+2 + · · · +

α(k−1)lk−1β
T
(k−1)lk

),

Bk−1 = (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )[(α1β

T
k−2

+α2β
T
k−1) + (αkβT

2k−3 + αk+1β
T
2k−2) + · · · +

(α(k−2)lk+1β
T
(k−1)lk−1 + α(k−2)lk+2β

T
(k−1)lk

)]

= α1β
T
k−1 + αkβT

k+1 + · · · + α(k−2)lk+1β
T
(k−1)lk

= 0 if and only if there exist nonnegative
integers l
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and

Bk = BBk−1

= (α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r )(α1β

T
k−1

+αkβT
k+1 + · · · + α(k−2)lk+1β

T
(k−1)lk

)
= 0.

Necessity. Let Bk = 0 with rank(B) = r. By Lemma 3, the
Jordan form J of B is a direct sum of li copies of Ji, where
k∑

i=1

ili = n,
k∑

i=1

(i − 1)li = r and it implies that there exists a

nonsingular real matrix D of order n such that

D−1BD = J =⎡
⎢⎢⎢⎢⎢⎣

J11

J22

. . .
Jn−r−1,n−r−1

Jn−r,n−r

⎤
⎥⎥⎥⎥⎥⎦ ,

(6)

where

J11 = · · · = Jlklk = Jk,

Jlk+1,lk+1 = · · · = Jlk+lk−1,lk+lk−1 = Jk−1,

· · · ,

J
1+

k∑
i=2

li,1+
k∑

i=2
li

= · · · = Jn−r,n−r = J1.

Write

D = (u1, u2, · · · , un) and D−1 = (v1, v2, . · · · , vn)T ,

where u1, u2, · · · , un are column vectors of D and
v1, v2, · · · vn are column vectors of D−1, vT

i ui = 1, for i =
1, 2, · · · , n, and vT

j ui = 0, for i �= j. Let

α
(s−1)i+m+

k∑
j=s+1

jlj
= u

si+m+
k∑

j=s+1
jlj

,

α
(s−1)i+m+

k∑
j=s+1

jlj
= u

si+m+
k∑

j=s+1
jlj

for s = 1, 2, · · · , k, i = 1, 2, · · · , ls − 1, and m =
1, 2, · · · , s − 1. It is easy to see that αi and βi satisfy the
condition (4). By (6), we have that

B = DJD−1 = α1β
T
1 + α2β

T
2 + · · · + αrβ

T
r .

The proof is completed. �

III. MAIN RESULTS

Based on the above analysis, one can obtain the following
construction methods to find a sign pattern in Nk.

By Lemma 3, we may obtain the Jordan form method to
construct a sign patterns in Nk. For example, let

J =
[

J4

J2

]
, D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 2 0 1 3
0 1 0 0 1 0
0 1 1 1 0 2
1 0 2 1 0 1
0 1 0 0 1 1
0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 −1 −2 2 2 3
0 1 0 0 −1 1
1 1 1 −1 −2 −2

−1 0 0 1 1 1
0 0 0 0 1 −1
0 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Note that

B = DJD−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 2 0 −2 −1
1 0 1 −1 −1 −2
0 1 1 0 −1 −1

−2 1 0 2 1 3
1 0 1 −1 −1 −2
1 1 1 −1 −1 −2

⎤
⎥⎥⎥⎥⎥⎥⎦

, B4 = 0,

Then

A = sgn (B) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 −1 −1
1 0 1 −1 −1 −1
0 1 1 0 −1 −1

−1 1 0 1 1 1
1 0 1 −1 −1 −1
1 1 1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let l1, l2, · · · , lk be nonnegative integers with
k∑

i=1

ili =

n,
k∑

i=1

(i − 1)li = r. Let real column vectors α1, α2, · · ·αr

and β1, β2, · · ·βr of order n satisfy the condition

βT
j αi =

⎧⎨
⎩

1 j ≡ s(modk − 1), s = 1, 2, · · · , k − 2,
1 ≤ j ≤ (k − 1)lk − 1, i = j + 1,

0 otherwise.
(7)

By Theorem 3, the real matrix

B =
∑

1≤i≤r

αiβ
T
i (8)

is nilpotent of index at most k, and its sign pattern is in Nk.
For example, let n = 8, r = 6, l = m = 1,

α1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
3
0
1
1
1
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
0
1
1
2
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A. Construction Method 1—Jordan Method

B. Construction Method 2—vectors spanning method
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α4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
0
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, α6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2
2
1
0
0
2
2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

β1 = (1, 1, 0,−1, 0, 0,−1,−1), β2 = (−1, 1, 2,−1, 1,−1,−1, 1),

β3 = (−1, 0, 0, 0, 0, 0, 1, 0), β4 = (2, 0, 0,−1, 1, 0,−1,−1),

β5 = (1,−1,−1, 1,−1, 1,−1, 1), β6 = (−1, 0, 0, 0, 0, 0, 0, 1),

B =
∑

1≤i≤6

αiβi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 −3 1 0 −4 1
2 5 5 −7 4 −2 −8 1

−2 0 0 0 0 0 1 1
2 2 2 −3 2 −1 −3 −1
3 1 1 −3 1 0 −4 0

−1 2 3 −3 2 −1 −4 3
1 2 1 −3 1 0 −4 1
1 2 1 −3 1 0 −4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D4 = 0.

Then
A = sgn (B) ∈ N4.

Theorem 4. Suppose A =
[

A1 A2

A3 A4

]
∈ Nk, where A1

and A4 are square, then for any positive integer m, we have

Ã =

⎡
⎢⎢⎢⎣

A1 A2 · · · A2

A3 A4 · · · A4

...
...

. . .
...

A3 A4 · · · A4

⎤
⎥⎥⎥⎦ ∈ Nk,

where
∼
A has (m + 1)2 blocks.

Proof. Note that, if A ∈ Nk, then there is a real matrix

B =
[

B1 B2

B3 B4

]
∈ Q(A),

where Bi ∈ Q(Ai)(i = 1, 2, 3, 4), such that Bk = 0.
Let

Bj =
[

f1j(B1, B2, B3, B4) f2j(B1, B2, B3, B4)
f3j(B1, B2, B3, B4) f4j(B1, B2, B3, B4)

]
for j = 1, 2, · · · , k − 1.

For short, we denote

Bj =
[

f1j f2j

f3j f4j

]
for j = 1, 2, · · · , k − 1. And

B̃ =

⎡
⎢⎢⎢⎣

B1
1
mB2 · · · 1

mB2

B3
1
mB4 · · · 1

mB4

...
...

. . .
...

B3
1
mB4 · · · 1

mB4

⎤
⎥⎥⎥⎦ .

When k = 2, it follows that

B2 =
[

B2
1 + B2B3 B1B2 + B2B4

B3B1 + B4B3 B3B2 + B2
4

]
,

B̃2 =

⎡
⎢⎣

B2
1+B2B3

1
m (B1B2+B2B4) ··· 1

m (B1B2+B2B4)

B3B1+B4B3
1
m (B1B2+B2B4) ··· 1

m (B1B2+B2B4)

...
...

. . .
...

B3B1+B4B3
1
m (B1B2+B2B4) ··· 1

m (B1B2+B2B4)

⎤
⎥⎦

=

⎡
⎢⎢⎢⎣

f12
1
mf22 · · · 1

mf22

f32
1
mf42 · · · 1

mf42

...
...

. . .
...

f32
1
mf42 · · · 1

mf42

⎤
⎥⎥⎥⎦ .

So B̃2 = 0. Thus Ã ∈ Nk.
Suppose that we have

B̃s =

⎡
⎢⎢⎢⎣

f1s
1
mf2s · · · 1

mf2s

f3s
1
mf4s · · · 1

mf4s

...
...

. . .
...

f3s
1
mf4s · · · 1

mf4s

⎤
⎥⎥⎥⎦ for 2 ≤ s < k,

then

Bs+1 = BsB =
[

f1s f2s

f3s f4s

] [
B1 B2

B3 B4

]
=

[
f1sB1 + f2sB3 f1sB2 + f2sB4

f3sB1 + f4sB3 f3sB2 + f4sB4

]
and

B̃s+1 =

⎡
⎢⎢⎢⎣

f1s
1
mf2s · · · 1

mf2s

f3s
1
mf4s · · · 1

mf4s

...
...

. . .
...

f3s
1
mf4s · · · 1

mf4s

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

B1
1
mB2 · · · 1

mB2

B3
1
mB4 · · · 1

mB4

...
...

. . .
...

B3
1
mB4 · · · 1

mB4

⎤
⎥⎥⎥⎦

=

⎡
⎢⎣

f1sB1+f2sB3
1
m (f1sB2+f2sB4) ··· 1

m (f1sB2+f2sB4)

f3sB1+f4sB3
1
m (f3sB2+f4sB4) ··· 1

m (f3sB2+f4sB4)

...
...

. . .
...

f3sB1+f4sB3
1
m (f3sB2+f4sB4) ··· 1

m (f3sB2+f4sB4)

⎤
⎥⎦ .

So

Bk =
[

f1(k−1)B1 + f2(k−1)B3 f1(k−1)B2 + f2(k−1)B4

f3(k−1)B1 + f4(k−1)B3 f3(k−1)B2 + f4(k−1)B4

]
∈ Nk,

B̃k = 0.

By the principle of mathematical induction, we have Ã ∈
Nk.�

Theorem 5. Let B and C be nilpotent real matrices of
indices of k with order n1 and n2, respectively. Let p be a
positive integer. The kernel of a matrix B, denoted by Ker(B),
also called the null space, is the kernel of the linear map
defined by the matrix B. Suppose that the following conditions
hold:

u1, u2, · · ·up ∈ Ker(Bi), v1, v2, · · · , vp ∈ Ker((Cj)T ),
(9)

C. Construction Method 3—block method

D. Construction Method 4—null space method
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where 1 ≤ i < k, 1 ≤ j < k, and i + j ≤ k. Then the
following partitioned block real matrix of order n1 + n2

D =
[

B X
0 C

]
is nilpotent of index at most k and A = sgn(D) ∈ Nk, where
X = u1v

T
1 + u2v

T
2 + · · · + upv

T
p .

Proof. In fact, let D =
[

B X
0 C

]
, where B and C are

square. Then

Dk =
[

Bk Bk−1X + Bk−2XC + · · · + XCk−1

0 Ck

]
.

Thus Dk = 0 if and only if Bk = 0, Ck = 0 and

Bk−1X + Bk−2XC + · · · + XCk−1 = 0.

It is obvious that Bk = 0 and Ck = 0. In addition, we observe
that

Bk−1X + Bk−2XC + · · · + XCk−1

= Bk−2(Bu1v
T
1 + Bu2v

T
2 + · · · + Bupv

T
p )

+Bk−3(u1, · · · , up)

⎛
⎜⎝

vT
1

...
vT

p

⎞
⎟⎠ C

+ · · · + (u1, · · · , up)

⎛
⎜⎝

vT
1

...
vT

p

⎞
⎟⎠ Ck−1.

Therefore, we get the desired result with the above condition
(9). �

IV. CONCLUSION

In this paper, sign patterns allowing nilpotence of index
at most k are researched and four methods to construct sign
patterns under the condition that allows nilpotence of index at
most k are obtained, which generalizes some recent results in
[1], [4] and has a certain theoretical and practical value.
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