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Abstract—Due to uncertainty of wind velocity, wind power 

generators don’t have deterministic output power. Utilizing wind 
power generation and thermal power plants together create new 
concerns for operation engineers of power systems. In this paper, a 
model is presented to implement the uncertainty of load and 
generated wind power which can be utilized in power system 
operation planning. Stochastic behavior of parameters is simulated by 
generating scenarios that can be solved by deterministic method. A 
mixed-integer linear programming method is used for solving 
deterministic generation scheduling problem. The proposed approach 
is applied to a 12-unit test system including 10 thermal units and 2 
wind farms. The results show affectivity of piecewise linear model in 
unit commitment problems. Also using linear programming causes a 
considerable reduction in calculation times and guarantees 
convergence to the global optimum. Neglecting the uncertainty of 
wind velocity causes higher cost assessment of generation 
scheduling. 

 

Keywords—Load uncertainty, linear programming, scenario 

generation, unit commitment, wind farm.  

I. INTRODUCTION 

UE to increasing cost of fuels, there is a profound trend 

in using wind power. As the amount of wind power 

generation increases, concerns due to its effects on power 

system operation and expenses increases. As the wind is an 

intermittent power supply, developing forecasting tools is so 

useful. Though the forecasting tools become more accurate 

day by day, in the absence of a perfect estimation, decision 

about unit commitment should be done with uncertainties. 

Researchers have considered uncertainty of imprecise 

parameters using one of these two methods: fuzzy systems 

approach and probabilistic (stochastic) approach. Stochastic 

programming considers stochastic variables and uncertainty in 

conventional linear and nonlinear programming. Discussed 

randomness and uncertainty are generally represented using a 

probability density function (PDF). 

Unit commitment problem is an important optimization 

process to determine on/off scheduling of units in power 

system operation. The purpose is to minimize the total cost of 

system operation in order to satisfy system load demand and 

other constraints. Unit commitment problem is generally a 

nonlinear, large scale, and mixed integer combinatorial 

problem. This problem has been a dynamic research topic in 

the recent decades because of potential savings in operation 
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costs. As a result numerous methods including heuristics 

methods [1], [2], dynamic programming [3], genetic algorithm 

[4], Neural Networks, Fuzzy Systems [5], mixed integer linear 

programming [6], and Lagrangian relaxation [7]-[10] have 

been suggested. Among these methods Lagrangian relaxation 

is the most widely used approach because of its capability in 

solving large scaled problems. The most important defect of 

this approach is that it is required heuristics methods to 

achieve feasible solutions which might be suboptimal, due to 

nonconvexities of unit commitment problem. In contrast, 

mixed integer linear programming guarantees convergence to 

an optimal solution in a few steps. Moreover, it provides 

precise and flexible modeling framework [11]. One of the first 

efforts for solving unit commitment problem using stochastic 

optimization approach is presented in [12]. In this work the 

possible future result for the demand are shown with a 

scenario tree. In this method, it is assumed that only a limited 

number of scenarios are possible because using all the possible 

scenarios is computationally impossible. Authors have tested 

their method using 100 scenarios and a 48-hour time horizon. 

A stochastic model for long-term security constrained unit 

commitment is used in [13], which outage of generating units, 

transmission lines and load prediction errors are considered. 

In this paper, stochastic unit commitment of thermal power 

plants and wind farms is implemented with constraints for 

wind power generation. Wind speed uncertainties during each 

period of operation time is implemented through several 

scenario based on the wind speed PDF. To employ the mixed 

integer linear programming method and achieving global 

optimum, fuel cost function of thermal units is approximated 

by a set of piecewise block such that it is not distinguishable 

from the nonlinear model. 

The main contributions of this work are as follows: 

1. Presenting a stochastic scheduling method for solving 

stochastic wind-thermal unit commitment problem. 

2. Presenting a linear model of unit commitment problem to 

solve the problem using linear programming tools. 

3. Appropriate envelopment of forecasting error using 

application of Monte Carlo simulation for scenario 

generation. 

The rest of this paper is organized as follows. In Section II, 

the proposed approach to model stochastic unit commitment is 

introduced. In Section III, problem formulation and problem 

constrained are discussed. As a sample problem, 12-unit test 

system (including 10 thermal generating units and 2 wind 

farms) is employed to be solved using optimization method in 

Section IV. Conclusions are given in Section V. 

M. Esmaeeli Shahrakht, A. Kazemi 

Linear Programming Application in Unit Commitment 
of Wind Farms with Considering Uncertainties 

D



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:2, 2013

243

 

 

II. IMPLEMENTATION OF THE PROPOSED MODEL 

Load uncertainty and inaccuracy of forecasting for wind 

speed at all time intervals, faces wind-thermal unit 

commitment problem to the uncertainty. To model this 

uncertainty a set of scenarios are generated using Monte Carlo 

simulation method based on load and wind speed probability 

density functions. Then cost of operation for these scenarios is 

evaluated using linear model of mid-term unit commitment. 

Expected values of parameters are determined according to 

their values in each scenario and probability of the scenario. 

A. Load Uncertainty Modeling 

Due to imprecise load forecasting, there is an uncertainty in 

expected future load. Typically in literature normal 

distribution is used for modeling load forecasting error. In this 

paper, Pd(t) is the forecasted weekly peak load in time interval 

t and its error assumes that it has a normal distribution of 

( , )N µ σ
 
where ( )tµ  and ( )tσ  are its mean and standard 

deviation respectively. These quantities in each time interval 

of t can be determined according to statistic studies. 

B.  Wind Power Uncertainty Modeling 

Wind speed error can be represented by a suitable PDF. The 

PDF related to the difference between predicted and measured 

wind velocity, can be detected with a Gaussian distribution. In 

[14] the authors show that PDF of wind speed prediction error, 

in the speeds range suitable for wind energy applications, is a 

Gaussian distribution. 

We assume that the uncertainty of wind speed forecasting in 

all wind farms is a normal distribution with two known 

parameters, 
iw (t)µ

 
and 

iw (t)σ , respectively for mean and 

standard deviation of ith wind farm. The generated wind 

power varies with wind speed at the site of wind farms. The 

output power of wind turbine could be determined from its 

power curve which is a plot of output power against wind 

speed [15]. Fig. 1 shows conventional curve of wind turbine. 

It is designed to start power generation at cut-in wind speed 

( ciV ) and be shut down at the cut-out wind speed ( coV ) for 

safety. When the wind speed is higher than rated wind speed (

rV ) and lower than cut-out wind speed ( coV ), the rated power 

is generated. As shown in Fig. 1 there is a nonlinear 

relationship between generated output power and wind speed 

when wind speed is located between ciV  and rV . Therefore 

the generated wind power by such turbine will be found by: 
 

2

0 0

( * * )

0

i ci

i r i i ci i r

r i cor

i co

SW V

P P A B SW C SW V SW V

V SW VP

SW V


 ≤ ≤


= × + + ≤ ≤
 ≤ ≤


≥

 (1) 

 

The calculation of constants A, B and C is discussed in 

[16]. In this paper typical model of wind turbine with cut-in, 

rated and cut-out wind speed respectively equal to 3, 11.5 and 

25 m/s and rated output power equal to 2 MW is used. It is 

assumed that there are 40 turbines in each wind farm. 
 

 

Fig. 1 Typical power curve of a wind turbine 

C. Scenario Generation 

Inverse transform method is used for scenario generation. It 

is assumed that PDFs of loads and wind speeds in each time 

interval is available. To determine a random value for these 

parameters, cumulative distribution functions (CDFs) is 

plotted based on their PDFs. Then, a random decimal number 

between zero and one is selected and corresponding value of 

the parameter is determined from the cumulative curve. 

There are 3 stochastic parameter (load and wind speed of 2 

wind farms) and 12 time intervals. So each scenario has 36 

components (3*12). Each component is a random variable 

generated based on above approach. 

III. UNCERTAINTY MODELING IN UNIT COMMITMENT PROBLEM 

FORMULATION 

In this section a model for mid-term unit commitment 

scheduling is presented in which the uncertainty for main 

elements is modeled. The time horizon of scheduling for this 

problem is one season with a weekly interval. Due to time 

scheduling of this problem in its formulation, ramping and 

minimum up/down constraints are neglected. 

A. Problem Formulation 

The objective function of mid-term unit commitment 

problem is minimizing the cost of demand supply, while the 

constraints of required reserve, wind power generation and 

units capacity are satisfied. The objective function of scenario 

s is defined as total cost including production cost of thermal 

units and the operation and maintenance cost of thermal units 

and wind farms. It can be formulated as: 
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(2) 
 

System constraints include supplying the system demand, 

required reserve and generating constraints of thermal units. 

These constraints can be formulated as: 
 

( ) ( ) ( )
G WN N

1 1

   =1,2,..,TS S s
GD W d

g w

P g,t P w,t P t t
= =

+ =∑ ∑  (3)  α  + β  = χ. (1) (1) 

( ) ( ) ( )
G WN N

1 1

RESWS S S
GR W R

g w

P g,t P w,t P t
= =

≥ × +∑ ∑  (4)  α  + β  = χ. (1) (1) 

( ) ( ) ( )maxP .S S s
GD GR GP g,t P g,t U g,t+ ≤  (5)  α  + β  = χ. (1) (1) 

( ) ( )min
GP s S

GDU g,t P t. g,≤   (6)  α  + β  = χ. (1) (1) 

 

For compensating possible fluctuations of generated wind 

power, in (4) a fixed percentage of the total wind power 

generation (e.g. 10%) in requirement of system reserve is 

considered. The second term of system reserve is a percentage 

of total system loads (e.g. 5%) which is applied for forecasting 

error compensating. 

B. Piecewise Linear Fuel Cost Function 

In unit commitment problems often quadratic function are 

used as fuel cost function of thermal units. It is represented by 

the following equation: 

 

( )( ) ( ) ( ) 2
G g g G g GFC P g, t a b .P g, t c .(P g, t )= + +  (7) 

 

As shown in Fig. 2, cost function represented in (7) can be 

approximated accurately by a set of piecewise blocks. For 

practical applications, piecewise linear function is not 

distinguishable from nonlinear model if enough pieces are 

used [11]. 
 

 

 

Fig. 2 Piecewise linear fuel cost function 

 
Analytical representation of this approximation is as fallow: 
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C. Determining of Output Variables 

Stochastic scheduling idea of unit commitment is based on 

developing or simulating possible choices in stochastic 

conditions to solve unit commitment problem for those 

choices. Then a combination of the results is selected to 

represent the stochastic solution. Mathematical formulas of the 

problem, under a set of scenarios, require solving 

deterministic unit commitment problem with the following 

objective function subjected to system constraints and 

limitations of thermal units and wind farms. 
 

s s s s
i,t i,t tMin Pr J( ,u , ξ )x×   (15) 

 

Thus with respect to the number of scenarios, there are 

several optimal solution such as s s s s
i,t i,1 i,2 i,Tu u ,u , ,u= …  and 

expected output for each variable will be weighted average of 

those solutions in each time interval. 

Simulation process of the proposed approach consists of the 

following steps: 

1. Generating scenarios which include two parts: system 

demands and wind speed of the wind farms in different 

time periods. 

2. Using the proposed approach to solve deterministic unit 

commitment problem for each of above mentioned 
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scenarios. 

3. Determining desired values of output variables based on 

their values in different scenarios and the occurrence 

probability of each scenario. 

IV. SIMULATIONS AND NUMERICAL 

The Proposed optimization algorithm is applied to a 12

test system including 10 thermal units and 2 wind farms. The 

fuel cost function of thermal units is fitted using a piecewise 

linear function with four segments. The time horizon of 

scheduling for this problem is one season with a weekly 

interval. The input data for thermal units are given in [17] and 

information of two wind farms are added to them.

maximum output power of each wind farm is 

mean values and standard deviations of weekly peak load and 

estimated wind speed for each farm in a

given in [15]. 

In this paper, first we compare the results of piecewise 

linear and nonlinear models in a deterministic unit 

commitment problem. It will also be shown the effectiveness 

of the proposed piecewise linear model for unit co

problem which considerably reduces the calculation time and 

guarantees the problem convergence. Then the linear model of 

stochastic unit commitment will be solved and the results will 

be compared with the results of problem deterministic 

solution. The effect of installed wind power is another subject 

that is analyzed in this paper. 

A. Deterministic Solution of Unit Commitment

In this section a deterministic unit commitment will be 

considered based on mean values of parameters in each period 

neglecting their uncertainties. The deterministic mid

commitment problem for the test system based on nonlinear 

model is solved. The results of committing states of units are 

shown in Table I. Then the problem will be solved based on 

piecewise linear model and the results of committing states of 

units are shown in Table II. As seen in these tables, the results 

of linear programming obtained using piecewise linear 

approximation of fuel cost function are pretty close to those of 

nonlinear programming obtained using quadratic fuel cost 

function. Because suitable precision is considered in the linear 

approximation and the number of pieces are selected 

accurately. 

The cost of operation and calculation time for solving the 

problem in both cases is presented in Table

confirm the effectiveness and usefulness of piecewise linear 

model. The noticeable reduction of calculation time in linear 

model is the very important advantage of this model while the 

results are similar in both models. 

Also, the effect of the amount of installed wind power on 

the scheduling cost of UC is studied. For this purpose, once 

installed wind power is increased to 50% (i.e. installed wind 

power is 2*120 MW) and once it is decreased to 50% (i.e. 

installed wind power is 2*40 MW). The cost of UC in the 

absence of wind farms is also calculated. The results of these 

studies are given Fig. 3. Although increasing in installed wind 

power causes reduction in cost of UC, but it does not reduce 

 

Determining desired values of output variables based on 

their values in different scenarios and the occurrence 

UMERICAL RESULTS 

The Proposed optimization algorithm is applied to a 12-unit 

test system including 10 thermal units and 2 wind farms. The 

fuel cost function of thermal units is fitted using a piecewise 

linear function with four segments. The time horizon of 

scheduling for this problem is one season with a weekly 

input data for thermal units are given in [17] and 

information of two wind farms are added to them. The 

power of each wind farm is 80MW. The 

mean values and standard deviations of weekly peak load and 

estimated wind speed for each farm in all time intervals are 

In this paper, first we compare the results of piecewise 

linear and nonlinear models in a deterministic unit 

commitment problem. It will also be shown the effectiveness 

of the proposed piecewise linear model for unit commitment 

problem which considerably reduces the calculation time and 

guarantees the problem convergence. Then the linear model of 

stochastic unit commitment will be solved and the results will 

be compared with the results of problem deterministic 

The effect of installed wind power is another subject 

Deterministic Solution of Unit Commitment 

In this section a deterministic unit commitment will be 

considered based on mean values of parameters in each period 

their uncertainties. The deterministic mid-term unit 

commitment problem for the test system based on nonlinear 

model is solved. The results of committing states of units are 

I. Then the problem will be solved based on 

and the results of committing states of 

these tables, the results 

of linear programming obtained using piecewise linear 

approximation of fuel cost function are pretty close to those of 

using quadratic fuel cost 

function. Because suitable precision is considered in the linear 

approximation and the number of pieces are selected 

cost of operation and calculation time for solving the 

Table III. The results 

confirm the effectiveness and usefulness of piecewise linear 

model. The noticeable reduction of calculation time in linear 

model is the very important advantage of this model while the 

ect of the amount of installed wind power on 

the scheduling cost of UC is studied. For this purpose, once 

installed wind power is increased to 50% (i.e. installed wind 

power is 2*120 MW) and once it is decreased to 50% (i.e. 

). The cost of UC in the 

absence of wind farms is also calculated. The results of these 

3. Although increasing in installed wind 

power causes reduction in cost of UC, but it does not reduce 

according to the constant rate.

 
TABLE

COMMITTING STATES OF UNITS IN NONLINEAR 

(1=ON 

Units 

1 2 3 4 5 

Th1 1 1 1 1 1 

Th2 1 1 1 1 1 

Th3 1 1 0 1 1 

Th4 1 1 1 1 1 

Th5 1 1 1 1 1 

Th6 1 1 0 0 1 

Th7 0 0 0 0 0 

Th8 0 0 0 0 0 

Th9 0 0 0 0 0 

Th10 0 0 0 0 0 

TABLE
COMMITTING STATES OF UNITS IN 

DETERMINISTIC 

Units 

1 2 3 4 5 

Th1 1 1 1 1 1 

Th2 1 1 1 1 1 

Th3 1 1 0 1 1 

Th4 1 1 1 1 1 

Th5 1 1 1 1 1 

Th6 1 1 0 0 1 

Th7 0 0 0 0 0 

Th8 0 0 0 0 0 

Th9 0 0 0 0 0 

Th10 0 0 0 0 0 

TABLE
DETERMINISTIC 

Modeling method 

Nonlinear model 

Piecewise linear model 

Fig. 3 The effect of installe

B. Stochastic Solution of Unit Commitment

The main idea of stochastic optimization is extension and 

simulation of possible choices. Scenario generation is a 

conventional way to model these probable conditions. Load 

and wind speed are two stochastic parameters in unit 

commitment problem. To simulate these uncertainties scenario 

generation based on inverse transform is used. Then 
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according to the constant rate. 

TABLE I 
ONLINEAR MODEL OF DETERMINISTIC UC 

ON , 0=OFF) 

Periods 

6 7 8 9 10 11 12 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 0 0 1 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

 
TABLE II 
NITS IN PIECEWISE LINEAR MODEL OF 

ETERMINISTIC UC (1=ON , 0=OFF) 

Periods 

6 7 8 9 10 11 12 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 0 1 1 1 

1 1 1 1 1 1 1 

1 1 0 0 1 1 1 

1 1 1 1 1 1 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

 
TABLE III 

ETERMINISTIC UC RESULTS 

Cost Calculation time 

M$ 56.67 6.5 s 

M$ 56.66 0.5 s 

 

 

Fig. 3 The effect of installed wind power on operation cost 

Stochastic Solution of Unit Commitment 

The main idea of stochastic optimization is extension and 

simulation of possible choices. Scenario generation is a 

conventional way to model these probable conditions. Load 

d are two stochastic parameters in unit 

commitment problem. To simulate these uncertainties scenario 

generation based on inverse transform is used. Then 

120 160 200 240 280

Installed Wind Power (MW)
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deterministic UC problem is solved for each scenario. 

A combination of results, usually the weighted average of 

results, is selected to present stochastic solution. In this study, 

180 scenarios are generated to simulate the uncertainty of the 

problem. All scenarios have the same probabilities. 

The piecewise linear model of fuel cost function is used in 

this work and linear programming is applied to solve UC 

problem. For precise analysis of stochastic unit commitment 

problem, 6 scenario groups each containing 30 scenarios have 

been considered. The indexes related to total cost of stochastic 

unit commitment are presented in Table IV. These indexes are 

including mean value, standard deviation and variation 

coefficient of total cost. 

 
 TABLE IV 

STOCHASTIC UC RESULTS WITH DIFFERENT SCENARIOS IN LINEAR MODEL 

Variation 

coefficient (%) 

Total cost (M$) Number of 

scenarios Standard 
Deviation 

Mean 

0.560 1.762 57.414 1*30 

0.385 1.699 56.962 2*30 

0.289 1.562 56.952 3*30  

0.259 1.612 56.827 4*30 

0.233 1.619 56.731 5*30  

0.215 1.638 56.688 6*30  

 

As seen, the total cost by increasing the number of 

scenarios has been decreased because the model has became 

more precise and it more appropriately covers the 

uncertainties of the problem. In each stage by increasing the 

number of scenarios, the mean of total operation cost and 

variation coefficient are decreased. 

The load supplying contribution of units in stochastic UC is 

shown in Fig. 4. As seen, the most of units are committed at 

last week when the system demand is at the highest level. 

Also, all of generated wind powers have been used in each 

period. 

To compare stochastic and deterministic approaches the 

load supplying contribution of units in deterministic UC is 

presented in Fig. 5. 
 

 

Fig. 4 Mid-term stochastic UC results for load contribution 

 

 

Fig. 5 Mid-term deterministic UC results for load contribution 

 

The calculation time for solving linear model of stochastic 

unit commitment is 19 minutes. In order to scenarios reduction 

and hence calculation time reduction, a composed algorithm 

called backward reduction and forward selection has been 

used. Three different cases for scenarios reduction have been 

investigated by this method. The results of these cases are 

presented in Table V. As seen in Table V, more reduction in 

the number of scenarios leads to more inaccuracy. But the 

calculation time is decreased in accordance with percentage of 

reduction. Therefore, a trade-off between the accuracy and the 

computation time must be considered. 
 

TABLE V 
RESULTS OF STOCHASTIC UC IN DIFFERENT PERCENTAGE OF REDUCTION 

Inaccuracy 

(%) 

Operation 

Cost 

Number of 

Scenarios 

Cases 

- 56.688 180 Base Case 

0.02 56.676 27 85% reduction in base case 

0.04 56.663 18 90% reduction in base case 

0.06 56.653 9 95% reduction in base case 

V. CONCLUSION 

In this paper a linear optimization method considering 

uncertainty in power systems was proposed to solve stochastic 

UC problem. Utilizing linear optimization method leads to 

achieving a global optimum without divergence problems seen 

in nonlinear problems. UC uncertainty is caused by load 

prediction error and stochastic nature of wind speed in wind 

farms. 

In this paper first, mid-term stochastic UC problem as a 

deterministic optimization problem is solved using linear and 

nonlinear programming. The results show affectivity of 

piecewise linear model in unit commitment problems. Also 

using linear programming causes a considerable reduction in 

calculation times. Then the uncertainties are simulated by 

utilizing a set of scenarios. Results show reduction in the 

number of scenarios leads to inaccuracy. But the calculation 

time is decreased in accordance with percentage of scenario 

reduction. In addition, using linear methods causes the average 

of the scenarios solution, unlike nonlinear methods, does not 

lead to unfeasible or suboptimal solutions and the global 

optimum could be accessed. 
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NOMENCLATURE 

Constants 

A(g)
  

Coefficient of the piecewise linear production 

cost function of unit g. 

g g ga ,b ,c    Coefficients of the quadratic production cost. 

function of unit g. 

f(l,g)
  

Slope of block l of the piecewise linear 

production cost function of unit g. 

NL  Number of segments of the piecewise linear. 

production cost function. 

( )OMFCT g
 

Operation and maintenance fixed cost of thermal 

unit g. 

( )OMFCW w
 

Operation and maintenance fixed cost of wind 

farm w. 

( )OMVCT g
 

Operation and maintenance variable cost of 

thermal unit g. 

( )OMVCW w
 

Operation and maintenance variable cost of wind 

farm w. 
maxPG        Capacity of unit g. 

min
GP      Minimum power output of unit g. 

sPr     Probability of scenario s. 

RESW   A fraction of total wind power employed to 

compensate wind power prediction errors. 

gT ( )l   Upper limit of block of the piecewise linear 

production cost function of unit g. 

( )n t  Number of hours at time t (e.g. 168 h). 

Variables 

( )S
GDP g, t   Load contribution of thermal unit g at time t in 

scenario s. 

( )S
RP t  A fraction of total system load for system reserve 

requirement at time t in scenario s. 

( )S
GRP g,t  Reserve contribution of thermal unit g at time t in 

scenario s. 

( )S
WP w,t  Generation of wind farm w at time in scenario s. 

( )sU g,t  Commitment state of unit g at time t in scenario s 

(on=1,off = 0). 
sξ  Vector of scenario s.  

Sets 

g  Set of indexes of the generating units. 

t  Set of indexes of the time periods. 

s  Set of indexes for scenarios. 

w  Set of indexes of wind farms. 
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