
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:7, No:12, 2013

888

 

 

  
Abstract—Nitrogen saturation has become one of the serious 

issues in the field of forest environment. The watershed protection 
forests located in the downwind hinterland of Tokyo Metropolitan 
Area are believed to be facing nitrogen saturation. In this study, we 
carefully focus on the balance of nitrogen between load and runoff. 
Annual nitrogen load via atmospheric deposition was estimated to 
461.1 t-N/year in the upper reaches of the Kanna River. Annual 
nitrogen runoff to the forested headwater stream of the Kanna River 
was determined to 184.9 t-N/year, corresponding to 40.1% of the total 
nitrogen load. Clear seasonal change in NO3-N concentration was still 
observed. Therefore, watershed protection forest of the Kanna River is 
most likely to be in Stage-1 on the status of nitrogen saturation. 
 

Keywords—Atmospheric deposition, Nitrogen accumulation, 
Denitrification, Forest ecosystems. 

I. INTRODUCTION 
EWAGE effluent and/or drainage from agricultural fields 
is/are generally believed to be possible sources of the 

nitrogen contamination of stream water. In the last decade, 
however, much literature has pointed out remarkable nitrogen 
contamination in forested headwater streams surrounded by 
nature [1]-[3]. Despite the absence of anthropogenic sources, 
high concentrations of nitrogen in excess of the national 
average of 0.4 mg-N have been observed [4]. In our previous 
study, we demonstrated that the upper reaches of the Kanna 
River, which is one of the headwater streams flowing into the 
Tone River, is also contaminated with high concentration of 
NO3-N [5]. We mainly discussed the possibility of nitrogen 
saturation due to the decline of forestry in the watershed 
protection forests of the Kanna River. Briefly, nitrogen 
saturation means the situation in which the nitrogen load 
exceeds the capacity of nitrogen uptake and denitrification in 
the forest ecosystems. As a result, non-negligible amounts of 
nitrogen runoff may be observed. As we discussed in the 
previous study, several policies such as carbon credit and 
carbon offset platforms may trigger the revitalization of 
forestry in Japan. However, for a better understanding of the 
current status of nitrogen saturation, we need to pay more 
attention to not only the integrity of forest ecosystems, but also 
the nitrogen deposition via air pollution, because the hinterland 
of megacities is generally affected by polluted air. The upper 
reaches of the Kanna River are located in the hinterland situated 
in the northwest mountainous areas approximately 100 km 
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from the center of Tokyo. Therefore, the atmospheric 
deposition is likely to be one of the significant causes of 
nitrogen saturation. The current study carefully focuses on 
atmospheric nitrogen deposition including dry and wet 
depositional processes. 

In Japan, the Air Pollution Control Act was established in 
1968 by Ministry of the Environment, and the emissions from 
stationary and mobile sources have been controlled. Although 
the current NO2 concentration has met its environmental 
standards to date, depositional fluxes of nitrogen compounds 
tend to be increasing in the downwind hinterland areas of 
Metropolitan Tokyo [6]. Many articles have been concerned 
with the relationship between the nitrogen saturation of forest 
ecosystems and the overload of nitrogen compounds by an 
atmospheric deposition [7]-[9]. On a global scale, the 
atmospheric emissions of nitrogen pollutants tend to increase 
continuously [10], [11]. Hence, the nitrogen balance in the 
ecosystem probably changes incrementally [12]. 

This study is intended to estimate the balance between the 
nitrogen load and its runoff to the headwater stream of the 
Kanna River. First, we roughly estimated dry and wet 
depositional fluxes of nitrogen compounds by using the 
database from Acid Deposition Survey in Japan [13], [14]. Next, 
we determined the amount of nitrogen runoff to the Kanna 
River based on the field monitoring data. Finally, by focusing 
on the balance between nitrogen load and runoff, we discuss the 
current status of nitrogen saturation from the viewpoint of 
functions such as nitrogen uptake and denitrification in forest 
ecosystems. 

II. EXPERIMENTAL 

A. Observation Sites 
The observation sites in the current study are the same as in 

our previous work [5]. Briefly, the Kanna River is one of the 
headstreams of the Tone River (gross length: 322km; gross 
basin area: 16,840km2, the largest river in Japan). The upper 
reaches of the Kanna River are located in the northwest 
mountainous areas situated in the downwind hinterland of 
Tokyo Metropolitan Area during the warm season. In this 
study, three monitoring stations (St.1, St.2, and St.3 in Fig. 1) 
were placed in the upper reaches of the Kanna River (gross 
length: 87.4km; gross basin area: 407km2). Most of the water 
catchment area (approx. 94%) is covered with forest. Forestry 
was once active but now it is facing serious decline due to the 
falling price of ligneous sources and a staff shortage. 
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found in fine particulate matter [28]. Moreover, acid fog with 
pH less than 3.5 has been occasionally observed in 
mountainous areas [29]. Furthermore, very high concentration 
(more than 120 ppm) of photochemical oxidant is frequently 
observed in the warm season [27]. Overload of nitrogen via 
atmospheric deposition will not be unrelated to these 
phenomena. No wonder many researchers point out the effect 
of air pollution as a dominant contributor of nitrogen 
contamination in stream water. Consequently, further reduction 
of air pollutants is required for improving the nitrogen balance 
in the forest ecosystems. 

IV. CONCLUSION 
Our findings reveal that 40.1% of total nitrogen load has 

been leached to the headwater stream, suggesting that the 
watershed protection forest of the Kanna River has been facing 
nitrogen saturation. In addition to the overload of nitrogen via 
atmospheric deposition, the increase of abandoned artificial 
forest due to the decline of forestry may also have caused the 
disruption of biogeochemical cycling of nitrogen in forest 
ecosystems. A multidirectional approach based on both the 
conservation of the atmospheric environment and the 
revitalization of forestry is required to regain the functions of 
forest ecosystems. 
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