
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

853

On the Joint Optimization of Performance and
Power Consumption in Data Centers

Samee Ullah Khan and Cemal Ardil

Abstract—We model the process of a data center as a multi-
objective problem of mapping independent tasks onto a set of data
center machines that simultaneously minimizes the energy consump-
tion and response time (makespan) subject to the constraints of
deadlines and architectural requirements. A simple technique based
on multi-objective goal programming is proposed that guarantees
Pareto optimal solution with excellence in convergence process. The
proposed technique also is compared with other traditional approach.
The simulation results show that the proposed technique achieves
superior performance compared to the min-min heuristics, and com-
petitive performance relative to the optimal solution implemented in
LINDO for small-scale problems.

Keywords—Energy-efficient computing, distributed systems,
multi-objective optimization.

I. INTRODUCTION

Data Centers are huge structures that house services for
customers. Owing to their structural services they are con-
tinuously demanded for increase in throughput and reduced
energy consumption. Energy-efficient techniques for managing
a system at runtime can bring down the amount of energy it
consumes. These management techniques are mostly for

• reducing the energy wasted by transitioning a system to
its sleep mode when it is idle and

• reducing the energy consumed by slowing down the
system during lean (but not idle) periods.

The former technique is called Dynamic Power Management
(DPM) [9], while the latter is called Dynamic Voltage Scaling
(DVS) [12] (or Speed Scaling in the more theoretical litera-
ture [2]).

DPM considers a system (in the simplest case a processor)
that can be in one of the two states, which we call the active
state and the sleep state. The system can handle requests only
in its active state, but the active state consumes far more energy
per unit time compared to the sleep state. However, when a
request arrives while the system is in the sleep state, it must
“wake up” and assume the active state before the request can
be served. This transition from sleep to active state has a high
transition cost, and is not a favorable approach undertaken by
researches and vendors [4].

DVS on the other hand, seeks to exploit the convex rela-
tionship between the CPU supply voltage (that impacts the
speed of execution) and the power consumption. The power
consumption in CMOS circuits is given by P = V 2 ×
f × CEFF , where V , f , and CEFF are the supply voltage,

S. U. Khan is with Department of Electrical and Computer En-
gineering, North Dakota State University, Fargo, ND 58108, E-mail:
samee.khan@ndsu.edu.

C. Ardil is with the National Academy of Aviation, Baku, Azerbaijan, E-
mail: cemalardil@gmail.com

clock frequency, and effective switched capacitance of the
circuits, respectively. Moreover, we also know that the time to
finish an operation is inversely proportional to the frequency.
Furthermore, power is the rate at which energy is consumed.
Therefore, the energy per operation is proportional to V 2,
which implies that lowering the supply voltage quadratically
decreases the energy. However, lowering the supply voltage
reduces the maximum allowable clock speed (or frequency) in
an approximately linear manner. This leads us to the cube rule
in CMOS circuits which states that the instantaneous power
is roughly proportional to the clock speed cubed. The main
objective, therefore, is to keep the supply voltage (or clock
speed) as low as possible so that the power consumption
is minimal, but without compromising QoS measures [22].
In this paper, we will investigate the joint optimization of
energy consumption and response time. Because response
time improves whence the makespan improves, we must use
makespan as the primary criteria to determine improvement
in response time. Moreover, because power is simply the
rate at which energy is consumed, we must optimize the
instantaneous power.

The remainder of this paper is organized as following.
The system model and problem formulation are discussed
in Section 2. Section 3 provides some essential information
pertaining to goal programming and details our proposed
approach. Simulation results and related work are provided
in Sections 4 and 5, respectively. Finally, in Section 6, we
summarize our investigation.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. The System Model

Consider a data center comprising of a set of machines,
M = {m1, m2, · · · , mm}. Assume that each machine is
equipped with a DVS module and is characterized by:

1) The frequency of the CPU, fj , given in cycles per unit
time. With the help of a DVS, fj can vary from fmin

j

to fmax
j , where 0 < fmin

j < fmax
j . From frequency,

it is easy to obtain the speed of the CPU, Sj , which
is approximately proportional to the frequency of the
machine [14], [23].

2) The specific machine architecture, A(mj). The archi-
tecture would include the type of CPU, bus types, and
speeds in GHz, I/O, and memory in bytes.

Consider a metatask, T = {t1, t2, · · · , tn}. Each task is
characterized by:

1) The computational cycles, ci, that it needs to complete.
The assumption here is that the ci is known a priori.

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

854

2) The specific machine architecture, A(ti), that it needs
to complete its execution.

3) The deadline, di, before it has to complete its execution.
Moreover, we also assume that the metatask, T , also has
a deadline, D, which is met if and only if the deadlines
of all its tasks are met.

The number of computational cycles required by ti to
execute on mj is assumed to be a finite positive number,
denoted by cij . The execution time of ti under a constant
speed Sij , given in cycles per second is tij

cij
= Sij . For the

associated data and instructions of a task, we assume that the
processor always retrieves it from the level-1 (primary) data
cache. A task, ti, when executed on machine mj draws, pij

amount of instantaneous power. Lowering the instantaneous
power will lower the CPU frequency and consequently will
decrease the speed of the CPU and hence cause ti to possibly
miss its deadline.

The architectural requirements of each task are recorded as
a tuple with each element bearing a specific requirement. We
assume that the mapping of architectural requirements is a
Boolean operation. That is, the architectural mapping is only
fulfilled when all of the architectural constraints are satisfied,
otherwise not.

B. Problem Formulating

Find the task to machine mapping, where the cumulative
instantaneous power consumed by the data center, M and the
makespan of the metatask, T , is minimized.

Mathematically, we can say

minimize

⎛
⎝ n∑

i=1

m∑
j=1

pijxij and max
j

n∑
i=1

tijxij

⎞
⎠ (1)

subject to xij ∈ {0, 1}, (2)

ti → mj ; ifA(ti) = A(mj) then xij = 1, (3)

tijxij ≤ di|xij = 1, (4)

(tijxij ≤ di) ∈ {0, 1}, (5)
n∏

i=1

(tijxij ≤ di) = 1|xij = 1. (6)

Constraint (2) is the mapping constraint. When xij = 1, a
task, ti, is mapped to machine, mj , and xij = 0 otherwise.
Constraint (3) elaborates on this mapping in conjunction to
the architectural requirements, and it states that a mapping
can only exists if the architecture is mapped. Constraint
(4) relates to the fulfillment of the deadline of each task,
and constraint (5) tells us about the Boolean relationship
between the deadline and the actual time of execution of the
tasks. Constraint (6) relates to the deadline constraints of the
metatask that will hold if all of the deadlines of the tasks, di,
are satisfied.

The above problem formulation is in a form of multi-
objective optimization problem. In the literature, there are two
standard ways to tackle such multi-objective problems: (a)
optimize objectives concurrently or (b) optimize one objective

first, then make that as a constraint for the rest of the
objectives.

To optimize one objective first, then make that as a con-
straint for the other objectives, the only plausible framework
is when one can ensure that the objective functions have an
acceptable overlap [8]. Because, the multi-objective problem
(described in this paper) has the objectives of optimizing
instantaneous power and makespan that are are opposite to
each other, we must choose to optimize both the objectives
concurrently.

III. GOAL PROGRAMMING

A. A Generalized Goal Programming Procedure

Goal programming implicitly assumes that a desired goal
is obtainable that can be used during each of the iteration of
the solution convergence process through some high-level in-
tervention [24]. The information attainable during each of the
iteration is the current best compromise solution, referred to as
the Main Solution (MS), and a set of Possible Solutions (PS)
that are the compromise solutions obtainable if each of the
goals are satisfied serially [10]. Iteratively, goal programming,
identifies non-inferior solutions and refines them to achieve
the best possible compromise solution. An iteration can be
classified as a two-step calculation and evaluation process.
During the calculation step the MS and PS are obtained, which
are analyzed to proceed towards a compromise solution during
the evaluation process. During the iterative process, if the
evaluation procedure determines that either the MS or the one
of the PS is the best compromise solution, then the procedure
terminates [11]. Below we describe a generalized procedure
for goal programming.

Let the multi-objective problem to be solved be

min (f1(x), f2(x), · · · , f(k(x)) , (7)

such that gj(x) ≤ 0, i = 1, 2, · · · , m,

where x is an n dimensional decision variable vector. The
following steps must be present for a generalized goal pro-
gramming approach.
Step 0: Determine f∗

i and f∗i, as

1) min fi(x) such that g(x) ≤ 0.
The solution to the above, referred to as x∗i and f∗i is
known as the ideal solution [11]. Let fij = fi(x), then

2) f∗
i = maxj fji.

The functions f∗
i and f∗i provide the upper and lower

bounds on the objective function values, respectively. Such
values are important to guide the solution towards the desir-
able compromise solution. Moreover, they also determine the
feasibility of the solution space.
Step 1: Set initial goals, b = {b1, b2, · · · , k}. As mentioned
previously a high-level intervention must determine a desirable
goal for each and every objective function. However, one can
approximate these goals by determine the necessary and suffi-
cient conditions of optimality — the Kuhn-Tucker conditions.
It should be clear that f∗i < bi ≤ f∗

i .

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

855

Step 2: Solve for MS.

min a =

((∑
i

d−i

)
,

(∑
i

−d+
i

))
, (8)

such that g(x) ≤ 0,

fi(x) + wi × d−i − wi × d+
i = bi, (9)

d−
i × d+

i = 0,

d−i ≤ 1,

d−
i , d+

i ≥ 0,

where wi = bi − f∗i. The optimization of the MS would
result in x0 and f0, which is known in the literature as the
core solution [11]. The weight w has been derived from a
normalizing scheme that makes the variation between f∗i and
bi equal to one. That is,

fi(x)− f∗i

bi − f∗i
+ d−i − d∗i =

bi − f∗i

bi − f∗i
= 1, (10)

where f∗i < bi ≤ f∗
i ; hence, we obtain the following

fi(x) + (bi − f∗i) d−i − (bi − f∗i) d+
i = bi, (11)

which is the same as (9) after substituting wi = bi − f∗i.
Moreover, the constraint d−i ≤ 1 ensures that fi(x) does not
violate the lower bound, f∗i. Furthermore, the weights w have
the following two additional properties: (a) the value of the
weight is dynamically adjusted whence the value of a goal
alters in between an iteration, and (b) the weight increases
whence the value of goal decreases and vice versa.
Step 2: Solve for PS.

min ar =

⎛
⎝
⎛
⎝∑

i,r �=i

d−i

⎞
⎠ ,

(∑
i

−d+
i

)⎞⎠ , (12)

such that g(x) ≤ 0,

fi(x)− wi × d+
i = bi,

fi(x) + wi × d−i − wi × d+
i = bi,

d−
i × d+

i = 0,

d−
i ≤ 1,

d−
i , d+

i ≥ 0,

where wi = bi− f∗i. The optimization of the PS would result
in xr and fr, which is known in the literature as the achievable
solution [24].

The goal programming approach must iterate between steps
2 and 3 to arrive at a compromised solution. The question
that how does one obtain a proper weightage for an given
optimization problem is the topic of the subsequent section.
Moreover, by deriving the necessary and sufficient conditions
of optimality, one ensures that the optimization process is
convergent. Furthermore, the solution space is reduced only
to Pareto frontier [6].

Input: T and M .
Output: Task to machine mapping.
Initialize: ∀j,DVSj is set to the highest level.
while T �= ∅ do
I ← argmini(di) foreach mj ∈M do

if A(tI) = A(mj) then
M←M∪mj ;

end
if M = ∅ then

EXIT;
end

end
foreach mj ∈M do

ΔIj ← dI − tIj ;
if ΔIj > 0 then

Δ← Δ ∪ΔIj ;
end

end
if Δ = ∅ then

foreach mj ∈M do
Reset DVSj to the highest level;
ΔIj ← dI − tIj ;
if ΔIj > 0 then

Δ← Δ ∪ΔIj ;
end
if Δ = ∅ then

EXIT;
end

end
end
J ← argminj(Δ);
while {tIJ xIJ ≤ dI |xIJ = 1} do

Reduce DVSJ by one level;
end
i← I;
j ← J ;
xij ← 1;
T ← T − {ti};

end
Algorithm 1: The goal programming based task to machine
mapping technique (GP).

B. Conditions of Optimality

Because we must have an upper bound on the power
consumption, we introduce power conservation conditions to
the set of constraints (2), (3), (4), (5), and (6).

n∑
i=1

m∑
m=1

pij ≤ P, (13)

pij ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , m. (14)

The power conservation condition of (13) states that the
instantaneous power allocated is bounded. That is, at any given
instance, the total power consumption of all of the machines
must be less than when all of the machines are running at their
peak power consumption. Clearly, the instantaneous power
consumption must be a positive number, as in (14). These
constraints make the multi-objective problem convex that in

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

856

turn makes the optimization problem tractable [20]. Moreover,
because the instantaneous power regulates the time to complete
a task, it is sufficient to utilize power as the only tunable
variable to derive the conditions of optimality. Let α ≤ 0
and ηj ≤ 0 denote the Lagrange multipliers, and γj be the
gradient of the binding constraints [13]. Then, we can say
that the Lagrangian is

L(γj , α, ηj) =

n∑
i=1

m∑
j=1

ln

⎛
⎝γj(α)− pij +

n∑
i=1

m∑
j=1

(γj − P )

⎞
⎠

+
n∑

i=1

m∑
j=1

ηj (γj − pij) .

The first-order Kuhn-Tucker conditions are given in (15) and
(16), with a constraint given in (17):

δL

δγj
=

−1
γj − pij

+ αηj = 0, (15)

δL

δα
=

m∑
j=1

γj − P = 0, (16)

γj − pij ≥ 0, ηj (γj − pij) = 0, ηj ≤ 0. (17)

If γj − pij = 0, then the current instantaneous power con-
sumption is the best instantaneous power. If γj − pij > 0,
then ηj = 0. The solution (or the derivative) of (15) and (16)
is given in (18) and (19), respectively.

1
γj − pij

− α = 0, (18)

m∑
j=1

γj = P. (19)

It then follows that

γj =
P −∑n

i=1

∑m
j=1 pij

m
. (20)

Because γj by definition is the gradient of the binding con-
straints, we can replace γj with pij . That gives us

pij =
P −∑n

i=1

∑m
j=1 pij

m
. (21)

Now, for a specific machine j, the optimality must oscillate
between the instantaneous power consumed by machine j and
the rest of m−1 machines. Therefore, the following must hold

pij =
P −∑n

i=1

∑
∀ k∈M,k �=j pik

m
. (22)

The Kuhn-Tucker conditions verify the following: (a) The
non-inferior solutions form the Pareto frontier when the instan-
taneous power consumption of a machine j (that has mapped
a task) is below the peak power consumption of machine j.
(b) The goal is achieved whence machine j is operating on an
instantaneous power that is scaled as the m-th lowest power
consumption of machine j. It also is worth reporting that
due to the linearity relationship between power consumption
and the associated task completion time, the conditions of

optimality are sufficient to consider only one single constraint
— instantaneous power. Utilizing both of the constraints would
have resulted in a similar conditions of optimality; however,
the derivation would have been complicated. In the next
section, we will outline our goal programming based task to
machine mapping technique.

C. Goal Programming Based Technique (GP)

We have all the necessary components to propose a goal pro-
gramming based task to machine mapping technique, acronym
GP. The GP technique must take in as an input the sets M and
T with all machines initialized to their corresponding highest
level of DVS, and produce a task to machine mapping.

To derive an upper and lower bound on the desired goal
(corresponding to Step 0 of Section III-A), we must utilize
the earliest deadline first approach. This will ensure that
the classical claim by the earliest deadline first approach
is satisfied. That is, if T can be scheduled (by an optimal
algorithm) such that constraint (4) is satisfied, then the earliest
deadline first approach will schedule T such that constraint (6)
is satisfied. The earliest deadline first approach also will ensure
that the GP technique has a corresponding upper and lower
bound on instantaneous power consumption and makespan
given deadlines of the metatask. The corresponding bounds
will be dictated by the tightness of the associated deadlines.
That is, the tighter the deadline for a given task, the more
instantaneous power a mapped machine would consume, and
vice versa.

The Kuhn-Tucker conditions derived in Section III-B set the
initial goals corresponding to Step 1 of Section III-A. They are
not depicted in Algorithm 1 that describes the GP technique.
Instead, implicitly, Steps 2 and 3 guide the solution towards a
best possible compromise [21].

To develop a MS (corresponding to Step 2 of Section
III-A.), we must satisfy constraint (3). First, we limit our
solution space to only those machines, M, that can satisfy
the architectural constraint. To ensure a feasible MS, we must
identify machines that without altering their current DVS level
can finish the task within the specified deadline. Such an
assurance is also known as laxity [16]. A laxity set, Δ , is
constructed. Using Δ, we determine the best possible task to
machine mapping without any alteration to the DVS levels.
This is accomplished by picking the machine that exhibits the
minimum laxity. The MS is not complete until an optimum
level of DVS is determined. The DVS level of the chosen
machine j is lowered until constraint (4) is violated. This
ensures that the mapped task is running on a machine that can
fulfill all of the constraints and consuming an instantaneous
power that results in a compromised solution.

The MS will be stable as long as Δ can be constructed.
However, mapped tasks stack-up on machines, thereby reduc-
ing the laxity, and possibly to a level that Δ is empty. Once
that happens PS must be constructed corresponding to Step 3
of Section III-A. Because only set M can potentially satisfy
constraint (4), the PS must be from withinM. To increase lax-
ity, the machines must operate on their corresponding highest
speed levels (or highest DVS levels), respectively. These new

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

857

DVS levels will pad (down) the stacked tasks on machines
to levels that can ensure that we have one feasible (positive)
laxity. (The pad down is achieved by running all the maped
tasks on the highest speed. This will lower the makespan;
hence ensuring a feasible laxity.) Set Δ is reconstructed and
the machine that ensures the minimum laxity is chosen as the
PS.

The GP heuristic as mandated in Section III-A oscillates
between MS and PS. A number of important conclusions also
can be deduced from the GP technique. Namely,

1) A feasible solution if it exists is always identified; other-
wise the EXIT statements identify unfeasible solutions
based on constraint (3) or the laxity criterion.

2) If the algorithm maps all of the tasks on machines within
the MS construction, then the solution is the optimal.
Moreover, deadlines must be very loose. Furthermore,
the laxity must be very high.

3) If the algorithm constructs PS, then the solution is on
the Pareto frontier (definition of Kuhn-Tucker conditions
of Section III-B). Moreover, PS ensure that optimum
solution is identified (definition of PS, Section III-A).
Furthermore, PS revisits MS to rectify anomalies by
altering the corresponding DVS levels such that the
resultant is a feasible optimal compromise.

Finally, to ensure that the GP technique is tractable, we
analyze the termination time. It is easy to congregate that the
exact worst-case bound is O (n2 log n + 3mn + mn log m

)
.

Because it is assumed that m � n, the worst-case bound
reduces to O (n2 log n

)
.

IV. SIMULATIONS, RESULTS, AND DISCUSSION

We set forth two major goals for our simulation study:
(a) To measure and compare the performance of the pro-
posed technique against the optimal solution and the min-min
heuristic [23]. (b) To measure the impact of system parameter
variations. Based on the size of the problems, the experiments
were divided in two parts.

For small size problems, we used an Integer Linear Pro-
gramming tool called LINDO [19]. LINDO is useful to obtain
optimal solutions, provided the problem size is relatively
small. Hence for small problem sizes, the performance of the
proposed is compared against 1) the optimal solution using
LINDO and 2) the min-min heuristic. The LINDO implemen-
tation and the min-min heuristic do not consider power as
an optimization constraint; however, they are very effective
for the optimization of the makespan. Thus, the comparison
provides us with a wide range of results. On one extreme
we have the optimal algorithm, on the other a technique
which scales well with the corresponding increase in the
problem size. For large size problems, it becomes impractical
to compute the optimal solution by LINDO. Hence, we only
consider comparisons against the min-min heuristic.

The system heterogeneity is captured by the distribution of
the number of CPU cycles, cij , on different mjs. Let C denote
the matrix composed by cij . The C matrix was generated
using the coefficient of variation method described in [23].
The deadline, di, of task ti was generated using the method

(a) Makespan ratio over the optimal.

(b) Makespan ratio over the optimal.

(c) Makespan.

(d) Makespan.

Fig. 1. Simulation results.

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

858

described in [23]. For this study, we keep the architectural
affinity requirements confined to memory. (Adding other re-
quirements such as, I/O, processor type, etc. will bear no affect
on our experimental setup or theoretical results.) Each machine
is assigned a memory on random from within the range [500-
5000] GB, while each task is associated a corresponding
memory requirement on random from within the range [20-50]
MB.

For small size problems, the number of machines was
fixed at 5, while the number of tasks varied from 20 to 40.
The number of DVS levels per machine was set to 4. The
frequencies of the machines were randomly mapped from
within the range [200MHz-2000MHz]. We assumed that the
potential difference of 1mV across a CMOS circuit generates
a frequency of 1MHz. For large size problems, the number of
machines was fixed at 16, while the number of tasks varied
from 1000 to 5000. The number of DVS levels per mj was
set to 8. Other parameters were the same as those for small
size problems.

The experimental results for small size problems with K
equal to 1.5 and 1.0 are reported in Figs. 1(a) and 1(b). These
figures show the ratio of the makespan obtained from the two
techniques and the optimal. The plots clearly show that the GP
(proposed) technique performs extremely well and achieves a
performance level of 10%–15% of the optimal when K was
set at a very tight bound 1.0.

For large problem instances, first, we compare the makespan
identified by the min-min and the GP technique. Since the
min-min heuristic does not optimize power consumption, we
compared the min-min with a version of GP that ran on
full power and also compared it with the (original) version
that optimized power. Figs. 1(c) and 3(d) show the relative
performance of the techniques with various values of K, Vtask,
and Vmach. The results indicate that GP outperforms the min-
min technique in identifying a smaller makespan when power
is not considered as an optimization criteria. The performance
of GP is notably superior to the min-min technique when
the deadline constraints are relatively loose. It can also be
observed that GP, when considering power as an optimization
resource, identifies a task to machine mapping that produces
a makespan that is within 5%-10% of the min-min technique.
It was noticed that the relative performance of the min-min
technique was much better for large size problems, compared
with small size problems, because with the increase in the
size of the C matrix, the probability of obtaining larger values
of wis also increases. Moreover, the relative performance of
GP was also much better for large size problems, compared
with small size problems, because the DVS levels for the large
problem size are twice more than the DVS levels for the small
problem size.

Next, we compare the power consumption of both the
techniques. Figs. 2(a) and 2(b) reveal that on average the GP
technique utilizes 60%–65% less power as compared to the
min-min technique. That is a significant amount of savings
considering that the makespan identified by GP is within 5%–
10% of the makespan identified by the min-min technique.

(a) Power comsumption.

(b) Power consumption.

Fig. 2. Power consumption simulation results.

V. RELATED WORK

Most DPM techniques utilize instantaneous power manage-
ment features supported by hardware. For example, Ref. [1]
extends the operating system’s power manager by an adap-
tive power manager (APM) that uses the processor’s DVS
capabilities to reduce or increase the CPU frequency, thereby
minimizing the overall energy consumption [3]. The DVS
technique at the processor-level together with a turn on/off
technique at the cluster-level to achieve high-power savings
while maintaining the response time is proposed in [18].
In [17], the authors introduce a scheme to concentrate the
workload on a limited number of servers in a cluster such that
the rest of the servers can remain switched-off for a longer
period of time.

While the closest techniques to combining device power
models to build a whole system has been presented in [5], our
approach aims at building a general framework for autonomic
power and performance management. Furthermore, while most
power management techniques are either heuristic-based ap-
proaches [7], [15] or stochastic optimization techniques [22],
we use goal programming to seek radically fast and efficient
solutions compared to the traditional approaches.

VI. CONCLUSIONS

This paper presented an energy optimizing power-aware re-
source allocation strategy in data centers. A solution from goal
programming was proposed for this multi-objective problem.

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:6, 2012

859

The solution quality of the proposed technique was compared
against the optimal for small-scale problems, and greedy and
linear relaxation heuristics for large-scale problems. The sim-
ulation results confirm superior performance of the proposed
scheme in terms of reduction in energy consumption and
makespan compared to the heuristics and the optimal solution
obtained using LINDO.

REFERENCES

[1] T. F. Abdelzaher and C. Lu. Schedulability analysis and utilization bounds
for highly scalable real-time services. In 7th Real-Time Technology and
Applications Symposium, p. 15, 2001.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage
energy and temperature. In 45th Annual IEEE Symposium on Foundations
of Computer Science, pp. 520–529, 2004.

[3] R. Bianchini and R. Rajamony. Power and energy management for server
systems. IEEE Computer, 37(11):68–74, 2004.

[4] D. P. Bunde. Power-aware scheduling for makespan and flow. In 8th ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 190–196,
2006.

[5] J. Chen, M. Dubois, and P. Stenström. Simwattch: Integrating complete-
system and user-level performance and power simulators. IEEE Micro,
27(4):34–48, 2007.

[6] J. S. Dyer. Interactive goal programming. Operations Research, 19:62–
70, 1972.

[7] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini. Energy
conservation in heterogeneous server clusters. In 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pp. 186–
195, 2005.

[8] C. L. Hwang and A. S. M. Masud. Multiple Objective Decision Making—
Methods and Applications: A State-pf-the-Art Survey. Springer Verlag,
berlin, 1979.

[9] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power
management strategies for systems with multiple power savings states. In
Conference on Design, Automation and test in Europe, p. 117, 2002.

[10] L. Li and K. K. Lai. A fuzzy approach to the multiobjective trans-
portation problem. Computers and Operations Research, 27(1):43–57,
2000.

[11] T.-F. Liang. Fuzzy multi-objective production/distribution planning
decisions with multi-product and multi-time period in a supply chain.
Computers in Industrial Engineering, 55(3):676–694, 2008.

[12] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algo-
rithms with pace. In 2001 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pp. 50–61, 2001.

[13] D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley,
1984.

[14] P. Mejia-Alvarez, E. Levner, and D. Mossé. Adaptive scheduling
server for power-aware real-time tasks. IEEE Transactions on Embedded
Computing Systems, 3(2):284–306, 2004.

[15] R. Nathuji, C. Isci, and E. Gorbatov. Exploiting platform heterogeneity
for power efficient data centers. In 4th International Conference on
Autonomic Computing, p. 5, 2007.

[16] P. A. Laplante. Real-Time System Design and Analysis. John Wiley &
Sons, 2004.

[17] E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath. Load balancing
and unbalancing for power and performance in cluster-based systems. In
Workshop on Compilers and Operating Systems for Low Power, 2001.

[18] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-efficient
real-time heterogeneous server clusters. In 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, pp. 418–428, 2006.

[19] L. Schrage. Linear, Integer, and Quadratic Programming with LINDO.
Scientific Press, 1986.

[20] A. Stefanescu and M. Stefanescu. The arbitrated solution for multi-
objective convex programming. Revue Roumaine de Mathematical Pures
et Appliquees, 29:593–598, 1984.

[21] J. Wallenius. Comparative evaluation of some interactive approaches to
multicriterion optimization. Management Sciences, 21:1387–1396, 1975.

[22] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for
reduced cpu energy. In 1st USENIX conference on Operating Systems
Design and Implementation, p. 2, 1994.

[23] Y. Yu and V. K. Prasanna. Power-aware resource allocation for inde-
pendent tasks in heterogeneous real-time systems. In 9th International
Conference on Parallel and Distributed Systems, p. 341, 2002.

[24] M. Zangiabadi and H. R. Maleki. Fuzzy goal programming for
multiobjective transportation problems. Journal of Applied Mathematical
Computing, 24(1):449–460, 2007.

 

 


