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 
Abstract—This paper reports an experimental investigation of the 

energy spectrum of turbulent velocity fields at low Reynolds numbers 
(Rλ) in grid turbulence. Hot wire measurements are carried out in grid 
turbulence with subjected to a 1.36:1 contraction of the wind tunnel. 
Three different grids are used: (i) large square perforated grid (mesh 
size 43.75 mm), (ii) small square perforated grid (mesh size 14. and 
(iii) woven mesh grid (mesh size 5mm). The results indicate that the 
energy spectrum at small Rλ does not follow Kolmogorov’s universal 
scaling. It is further found that the critical Reynolds number, Rλ,c 
below which the scaling breaks down, is around 25. 
 

Keywords—Decay exponent, Energy spectrum, Taylor 
microscale Reynolds number, Taylor microscale, Turbulent kinetic 
energy. 

I. INTRODUCTION 

RID turbulence is an important fundamental turbulent 
flow because it represents a close approximation of 

homogeneous isotropic turbulence (hereafter, HIT). The 
turbulence is generated by inserting a grid (for example: a 
perforated plate or a woven mesh grid) in a uniform flow. The 
turbulence decays because there is no turbulent production.  

Kolmogorov’s first similarity hypothesis describes that the 
spectra of velocity fluctuations scale on the kinematic 
viscosity ( )  and the turbulent kinetic energy dissipation rate 

  at sufficiently large Reynolds numbers R based on the 

Taylor microscale [1]. Experimental and numerical evidence 
demonstrate that the scaling also holds moderately low R

(e.g. [2], [3]). This aspect was recently exploited by [4] to 

develop a spectral chart method for correct estimating 
various different turbulent flows. However, one can wonder if 
the Kolmogorov scaling still holds when R reaches relatively 

small values for the energy transfer to become small. The 
present work is aimed at investigating whether the 
Kolmogorov scaling holds or not at low Reynolds number, 
and if so to estimate the critical value of R below which the 

Kolmogorov scaling breaks down. 
The present work complements and extends that of 
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numerical studies of [5] and [6]. These authors found that the 
Kolmogorov scaling breaks down when R  falls down below 

about 20. 

II. EXPERIMENTAL APPARATUS 

Three grids are used: two perforated and a woven mesh. 
Fig. 1 shows two perforated plates. The first (Lsq43) plate 
consists of large square holes (mesh 43.75M mm ) and the 
second (Ssq43) of small square holes (mesh 14.15M  mm). 
The solidity (defined as / (2 / )d M d M   ) of the two grids 

is 43%  . The mesh ratio of Lsq43 to Ssq43 is 3:1 
approximately. The third grid consists of interwoven vertical 
and horizontal bard with solidity 36%.   

 
Grid: Lsq43                                               Grid: Ssq43 

 
 

 
 
 
 
 
 
 
 

  Grid: Wmg 36 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The geometry of two different perforated grids and one woven 
mesh grid; x coordinates axis lies on the centreline of the flow 

 
Fig. 2 shows a schematic diagram of the open circuit wind 

tunnel that [7] and [8] previously used. The air flow is driven 
by a centrifugal blower which is controlled by a variable-cycle 
(0-1,500 rpm) power supply. To minimize vibration, the 
blower is supported by dampers and is connected to the tunnel 
by a flexible joint. At the inlet to the platinum, an air filter 
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(594 mm 594 mm 96 mm long) captures particles from the 
flow and a honeycomb ( 3.4/ dl ) removes residual swirl. 

 

 

Fig. 2 (a) The wind tunnel (b) The test section with the 1.36:1 
secondary contraction downstream of the grid (scale: 0.1l m ) (Fig. 

2 taken from [9]) 
 

A wire screen (with an open area ratio of 63%) and a 
smooth 9:1 primary contraction in the plenum improve the 
uniformity of the flow. For the arrangement of the secondary 
(1.36:1) contraction shown in Fig. 2, the inlet plane of the 
contraction is at x/M=6.2, 19.2 and 54.2 in case of along the 
downstream of the three grids. The velocity along the working 
section to be convected from the grid at say‘s=0 to a 
downstream position‘s=x’ (e.g. [7]) is given by 
 


x

sU

ds
t

0
)(

                                  

(1) 

 
where the mean velocity <U(x)> is approximated by the 
centreline velocity )(xU cl  of the wind tunnel flow in the 

absence of the grid. The angular brackets denote the mean 
value. The centreline velocity is measured by using a Pitot-
static tube and a 100-pa micro-manometer. 

For this study, the grid-mesh Reynolds number are
 /oM MUR 1200, 1474, 4170, 5800, 12900 17950 and 

35750 respectively (see Table I). The Taylor microscale 
Reynolds number  /uR   varies within the range 

between 6 and 100. 

III. MEASUREMENTS TECHNIQUE 

The velocity fluctuation )(u  has been measured 

simultaneously using a single “hot-wire” probe. The hot wire 
(diameter md 2 and 5d m ; length dl 200 ) is etched 

from a coil of Wollaston (Platinum). The hot wire 
measurements are carried and is operated with an ambient 
constant temperature anemometer (hereafter, CTA) with an 
over-heat ratio of 1.5. The output signal from CTA circuits 
passed from the gain units, offset and low pass filtered at a cut 
–off frequency cf close to the Kolmogorov frequency 

4/14/3,2/(
 ok Uf  is the Kolmogorov length scale). 

Sampling frequency is at least twice or greater than two times 
of cut-off frequency, (see, Nyquist theory [10]). The hot-wire 
signals were digitized into a personal computer with a V10
and 16 bit analogue-digital converter. 

 

 

Fig. 3 Geometric configuration of single hot wire probes 

IV. BASIC MATHEMATICAL PRESENTATION OF ENERGY 

SPECTRUM 

The two –point velocity correlation for homogeneous flow 
can be defined as 

 

 , ( , ) ( , )i j i jR r t u x r t u x t 
                

(2) 

 
and is independent of x in homogeneous turbulence. 

At 0x   it is 
 

2(0, ) .i j i j ijR t u u u  
                       

(3) 

 
In grid turbulence where the turbulent production is zero 

once turbulence is established, the transport equation of the 

turbulent kinetic energy 2( ) (3 / 2) ( )q t u t simplifies to: 
 

dk

dt
 

                                  
(4) 
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where,  is the dissipation rate. ( )i jR r can be expressed in 

terms of longitudinal ( , )f r t  and transvers ),( trg   
autocorrelation function 
 

 2
2

( , ) ( , ) ( , ) ( , ) .i j
i j ij

r r
R r t u g r t f r t g r t

r


 
   
            

(5) 

 
The two point velocity correlation ( )i jR r  and the velocity 

spectrum tensor ( )i j k  are related through a Fourier- 

transform in homogeneous turbulence: 
 

.
3

2
( ) ( )

(2 )
ik r

i j i jR r e dr







    k
                   

(6) 

 

.( ) ( ) ik r
i j i jR r e dk





    k
                      

(7) 

 

here,  , 2 3,k k k 1k is the continuous wave number. 

The energy spectrum function is defined as 
 

1
( ) ( ) ( )

2 iiE k k d   k k k                     
(8) 

 

where, k is an independent variable. 
The one dimensional spectra 1( )i jE k are defined to be twice 

the one dimensional Fourier transform of 1 1( )i jR e r : 

 

1 1
1 1 1 1

1
( ) ( ) ik r

i j i jE k R e r e dr







 
                    

(9) 

 

now, assume that ji  , so that one dimensional energy 

spectrum along the longitudinal direction is 
 

2

1 1 1 1 1 1

0

2
( ) ( ) cos( )uE k u f r k r dr





 
            

(10) 

 
however, the Kolmogorov velocity spectrum as 
 

 2/3 5/3
1 1 1( )uE k k k  

                    
(11) 

 

where, 1( )k  is the compensated Kolmogorov spectrum 

function and it can be write as  
 

 
5/3

1 1 1( ) ( ) ( )k k k                        (12) 
 

here, 1( )k  is a universal non-dimensional energy spectrum 

function. 

V.  RESULTS AND DISCUSSION 

Fig. 4 shows that the velocity and the 5/3 compensated 
spectrum at 17R  . For comparison, the velocity spectrums 

of [11] 60.7R  is reported also on the Fig. 4 (a). It is clear 

that the 5/3 scaling does not appear in Fig. 4 (a) as illustrated 
by the lack of a plateau in Fig. 4 (b). This is in effect expected 
at this low Reynolds number where the existence of the 5/3 
region is knows not to exit, i.e. there is no inertial range at low 
Reynolds number, because the “length” scale separation 
between the large and small scales is too small. 
 

 

 

Fig. 4 (a) Kolmogorov non-dimensional 1D velocity spectrum (b) 5/3 
compensated spectrum at UotM=200, 4170MR  and 17R   
 
In order to assess the Kolmogorov scaling, a reference 

Kolmogorov normalized spectrum satisfying the Kolmogorov 
similarity is required. For example, one can use the spectrum 
obtained from the analytical expression such as [7] and [8]. 

In Fig. 5, we present the energy spectrum based on Pope’s 
model (2000) with our present measured spectra at / 50x M   
and for three velocities oU  12.75 m/s, 6.4 m/s and 4.6m/s 

corresponding to R  86, 58 and 46 ( the spatial resolution 

/ l  0.63,1.04 and 1.40 respectively). The measured 

spectrums are obtained in the Lsq43 perforated grid 
turbulence. 
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Fig. 5 Measured (Present) and calculated [12] one dimensional 
longitudinal velocity spectra at x/M=50 

 
The Pope’s model is 
 

2/3 5/3
1 1 1 1( ) ( )uE k c k f k                      (13) 

  1/44 4
1 2 1 3 3( ) exp ( )f k c k c c         

 

with constant 1c  7.2, 2c  0.5 and 3c  0.15 which provides a 

good matching between the calculated and measured spectra 
(e.g. [6]). Not though that the measured spectra do not show a 
5/3 region, or only over a very small portion. There is however 
a very good collapse in the dissipative range 1( 0.2)k  , 

confirming that the first similarity law holds. However, there 
is no collapse in the spectra which is shown in Fig. 6, where 
R  23, 17 and 10 (spatial resolution / l  0.56, 1.02 and 

0.63 respectively). 
The results are consistent with the results of [5] and [6] and 

confirm the Kolmogorov scaling is breaks down. 
In order to determine the critical value of R  which the 

scaling is no longer valid, several spectra are measured in grid 
turbulence at R  ranging from 6 to 65 and reported in Fig. 7. 

At 25R  , the spectra show a departure from the 

spectrums at relatively higher Reynolds number R , 

suggesting that the Kolmogorov universality breakdown has 
occurred. This points to a value of about ,30 20cR  , at 

which the Kolmogorov normalization is no longer valid. It is 
interesting to note that using a phenomenological analysis [6] 
showed that a possible critical value of ,cR is about 40. 

While one could have expected that the Kolmogorov 
scaling eventually breaks down when the Reynolds number 
reaches a critical value, it was not a trivial matter to determine 
the actual value. One may inquire if this breakdown is linked 
to the fact that the turbulence may have reached its final stage 
of decay, or at least approached it. To determine if the 
turbulence has reached or is close to the final stage of decay, 
we look at the decay exponent ( )n  (power law decay:

2 nq x  ). 

 

 

Fig. 6 Measured (solid line and das dotted) and calculated (dotted 
line) one dimensional longitudinal velocity spectra at different

23,17and10R   

 

 

Fig. 7 Deviation of velocity energy spectrum at low Reynolds 
number R  

 
Table I shows the different conditions for the three grids 

with the decay exponent rate ( )n . is the free stream 

velocity, virtual origin /o oU t M . 

 
TABLEI 

INITIAL CONDITIONS OF THREE DIFFERENT GRIDS AND DECAY EXPONENTS 

(N) 

Grids 
Initial 

Condition 
 

m/s 
/o oU t M  n    

Lsq43 
1.36:1 

Contraction 

12.75 6.1 1.13 100-82 35750 

6.4 6.6 1.14 65-58 17900 

4.6 5.6 1.15 50-45 12950 

Ssq43 
1.36:1 

Contraction 
6.4 -2.0 1.26 30-23 5800 

4.6 -2.0 1.36 23-17 4170 

Wmg36 
1.36:1 

Contraction 
4.6 -28.0 1.50 10-7 1474 

3.6 -28.0 1.52 9-6 1200 

 
Within the final period of decay i.e. 0R  , the value of n

is -3/2 according to [13] or -5/2 according to [14]. We 

oU

oU R MR
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reported in Fig. 8, the value of n as function of R . There is 

a clear trend of increasing n with decreasing R . It is 

however difficult at this stage to extrapolate the results to 
0R  as more data points need to be taken a lower value of 

the Reynolds number. 
 

 

Fig. 8 Decay exponent (n) decreasing function of Taylor microscale 

Reynolds number R  
 

Nevertheless, the values of R  at which n starts to deviate 

significantly correspond to those at which the Kolmogorov 
scaling breakdowns, suggesting that the breakdown may be 
interconnected to the approach towards the final period of 
decay. 

VI. CONCLUSION 

The present paper reports the measurements of velocity 
spectra at low Reynolds numbers in grid turbulence with the 
view to determine whether the Kolmogorov scaling is valid or 
not. The results clearly indicate that such scaling holds until 
the Reynolds number R  drops to a critical value of about 30-

25. Below this value the Kolmogorov normalized spectra 
deviate from the universal Kolmogorov spectrum. It is 
speculated that the Kolmogorov scaling breakdowns is related 
to the fact that turbulence approaches its final stage of decay. 
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