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Abstract—In this paper the core objective is to apply discrete 

wavelet transform and maximal overlap discrete wavelet transform 

functions namely Haar, Daubechies2, Symmlet4, Coiflet2 and 

discrete approximation of the Meyer wavelets in non stationary 

financial time series data from Dow Jones index (DJIA30) of US 

stock market. The data consists of 2048 daily data of closing index 

from December 17, 2004 to October 23, 2012. Unit root test affirms 

that the data is non stationary in the level. A comparison between the 

results to transform non stationary data to stationary data using 

aforesaid transforms is given which clearly shows that the 

decomposition stock market index by discrete wavelet transform is 

better than maximal overlap discrete wavelet transform for original 

data. 

 

Keywords—Discrete wavelet transform, maximal overlap 

discrete wavelet transform, stationarity, autocorrelation function. 

I. INTRODUCTION 

URING the last two decades, wavelet analysis to capture 

volatile behavior in time series data has become 

increasingly popular in many fields, such as medical and 

physical sciences. More recently, these methods are also being 

applied to financial datasets. However, the study of stability 

data using wavelet analysis is still poorly explored. It is widely 

known that the financial time series data is a combination of 

different components operating on different frequencies. 

Standard time series econometric tools such as Fourier 

transform usually consider only time or frequency component 

separately. Whereas, wavelets allow us to study the frequency 

components of time series with time information 

simultaneously. Therefore, we can uncover the interactions 

which are hardly visible using other econometric tools. 

Consequently, the wavelet transform is very useful in financial 

time series. 

In particular there are two types of wavelet transforms, 

orthogonal as discrete wavelet transform (DWT) and non 

orthogonal as maximal overlap discrete wavelet transform 

(MODWT). DWT is useful in decomposing time series data 

into an orthogonal set of components with different 

frequencies by checking the relationship between high 

frequency fluctuations in stock prices obtained from 

reconstruction of the series by wavelet crystals. Whereas 

MODWT is a variant of DWT that can handle any sample 

size. The smooth and detail coefficients of MODWT 
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multiresolution analysis are associated with zero phase filters 

and produces a more asymptotically efficient wavelet variance 

estimator than the DWT. However, the MODWT loses the 

orthogonality. Some of the studies that compare between the 

wavelet functions based on DWT or MODWT are given in 

[1]-[3]. The authors in [1] explored the performance of two 

wavelet functions namely Daubechies and Haar in extracting 

the coherent structures from solar wind velocity time series. It 

was found that both wavelet functions are able to extract 

coherent structures, however, the coherent time series showed 

that the Daubechies wavelet function was able to extract more 

coherent structures than the Haar wavelet. In [2] evaluated the 

WiMAX traffic prediction accuracy by using five different 

types of MODWT functions Daubechies, Coiflet, Symmlet, 

Biorthogonal and Reverse Biorthogonal. Based on 

Autoregressive Integrated Moving Average (ARIMA), 

Artificial Neural Network (ANN) and Random Walk (RW) 

methods, the results indicate that Daubechies and Reverse 

Biorthogonal produced smallest errors using some statistical 

measures of error. In [3] a comparison between DWT and 

MODWT by applying Haar, Daubechies, Symmlet and Coiflet 

functions using Malaysia stock price was discussed and it was 

shown that the MODWT performs better than DWT for these 

functions. 

However, in this work the key idea is to investigate the 

stationarity of time series data using both DWT and MODWT. 

Five functions namely Haar, Daubechies (db2), Symmlet 

(sym4), Coiflet (coif2) and Discrete approximation of the 

Meyer wavelets (dmey) are utilized for original data of US 

Dow Jones Index (DJIA30). The results reveal that the DWT 

is better than MODWT to produce more stationary data for 

original time series data. 

The remainder of this paper is organized as follows. Section 

II briefly discusses the methodology. Section III describes the 

data, the empirical results and discussion. Finally, Section IV 

concludes this paper. 

II.  METHODOLOGY 

A.  Wavelets 

The wavelets have two types, the father wavelets �
 
[4] and 

the mother wavelets �
 
where father wavelet � integrates to 

one and mother wavelet �
 
integrates to zero [5]. That is 

 

 ( )  1t dtϕ =∫  
and ( )  0.t dtψ =∫                        (1) 
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The mother wavelets are useful in describing the detail and 

high-frequency components while the father wavelets are good 

at representing the smooth and low-frequency parts of signal. 

Wavelets are derived using a special two-scale dilation 

equation. Father wavelet ���� and mother �(t) are defined as  

 

         ���� =√2 ∑ ℓ
 ��2� � ��                        (2) 
 

                ����  √2 ∑ �
 ��2� � ��                 (3)                                                                                                                                            

                                                                                

where ℓ
 and �
 defined in (4) and (5) respectively, are low-

pass and high-pass filter coefficients used to pass the original 

signal as specified in [12]. 

 

                            ℓ
  �√�  � ������2� � ����                  (4)    

                                                                             �
  �√�  � ��t���2t � k�dt                            (5)                                                   

                                                                                                                             

The wavelet series approximation to a signal ( )X t is defined 

by  

 ����  ∑ � ,�� ,����� � ∑ � ,� � � ,���� � ∑ � ��,� � � ��,����� . . � ∑ ��,� � ��,���� (6) 

                                                    

where k ranges from 1 to the number of coefficients in the 

specified components (or crystals) and J is the number of 

multiresolution levels (or scales). The coefficients  � ,�, � ,� ,…., ��,�  are wavelet transform coefficients given by 

the projections 

 

                      � ,�   � � ,���� ��������                               (7) 

 ��,�  � ��,���� �������� ,     j = 1, 2, .J             (8)  

                                                                                                                                                                                                   

The magnitude of these coefficients gives a measure of the 

contribution of the corresponding wavelet function to the total 

signal. The basic functions ��,� and ��,� 
, j = 1,2,.J are the 

approximating wavelet functions generated as scaled and 

translated versions of  � and �
 

with scale factor 2 j and 

translation parameter 2 j k respectively, defined as: 

 

��,�  2 !" ��2��  � � 
�  2 !" � #$��!��! %            (9) 

 

��,κ�t�  2 &" ��2�' t � 
�  2 &" � #(��&��& % , )  1 ,2, . . +   (10) 

                                                                                                                                   

Translation parameter 2'
 is matched to the scale parameter

2 j in a way that as the function  ��,� and  ��,κ�t� get wider, 

their translation steps are correspondingly larger. 

There are five types of orthogonal wavelet families that are 

used in practical analysis, Haar, Daubechies, Symmlet, 

Coiflet, and Discrete approximation of the Meyer wavelets 

holding the following prominent features: 

• The Haar wavelet is a square wave with compact support 

and is symmetric but it is not continuous unlike the other 

wavelets. 

• The Daubechies are continuous wavelets with compact 

support and are quite asymmetric. 

• The Symmlet have compact support and were built to be 

as nearly symmetric as possible. 

• The Coiflet are symmetric with additional properties that 

both ψ
 
and ϕ

 
have vanishing moments. 

• The discrete approximation of the Meyer wavelets is 

symmetric and continuous with compact support. 

The aim of discrete wavelet transform is to decompose the 

discrete time signal to basic functions called the wavelets, to 

give us a good analytic view of the analyzed signal. DWT is 

used to calculate the coefficients of approximation in (6) for a 

discrete signal of final extent f1,f2,…fn .. It maps the vector f = 

(f1,f2,…fn)' to a vector of n wavelet coefficients , �-� , -� , … , -/ �′  that contains both the smooth coefficient  � ,� and the detail coefficients ��,� , j=1,2,..,J.  � ,� representing 

the underlying smooth behavior of the signal at the coarse 

scale 2�. On the other hand  ��,�  describe the coarse scale 

deviations and  � ��,� ,…,��,�  provide progressively finer scale 

deviations. When the length of the signal n is divisible by 2�, 

there are n/2 coefficients ��,�  at the first scale 12 2= . At the 

next finest scale 22 4= , there are n/4 ��,�  coefficients. 

Similarly, at the coarsest scale, there are n/2���,� and n/20 � ,�and coefficients. Altogether there are total of n coefficients: 

N= n/2+n/4+…+n/20�� +n/20. 

Maximal overlap discrete wavelet transform (MODWT) [6] 

is similar to the discrete wavelet transform (DWT) in that low-

pass and high-pass filters are applied to the input signal at 

each level. However, the MODWT does not decimate the 

coefficients and the number of wavelet and scaling 

coefficients is same as the number of sample observation at 

every level of the transform. In other words, MODWT 

coefficients consider the result of a simple changing in the 

pyramid algorithm used in computing DWT coefficients 

through not down sampling the output at each scale and 

inserting zeros among coefficients in the scaling and wavelet 

filters. For this reason the MODWT is also called non-

decimated DWT, stationary DWT [7], translation invariant 

DWT [8] and time –invariant DWT [9]. The MODWT loses 

orthogonality and efficiency in computation. 

The MODWT has some advantages over the DWT: 

• The MODWT can handle any sample size n . 

• The smooth and detail coefficients of MODWT 

multiresolution analysis are associated with zero phase 

filters. 

• It is transform invariant, since a shift in the signal does 

not change the pattern of the wavelet transform 

coefficients. 

• Produces a more asymptotically efficient wavelet variance 

estimator than the DWT. 

B. Unit Root Test 

Usually financial data often displays non-stationary data or 

have time varying means, variances and covariance. Therefore 

in order to avoid the problem of spurious regression, unit root 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:12, 2013

1679

 

 

test is used to test for stationarity. Two types of unit root the 

Augmented Dickey Fuller (ADF) [11] and Phillips Perron 

(PP) tests [10] are used in this paper. These tests are defined 

by: 
 ∆2$  �34 � 1�2$�� � 5$                       (11) 

                                                                                                                                                                                         ∆2$  6 � 72$ � 8$                        (12)                                                                                                                                     

C.  Autocorrelation Function (ACF) 

ACF is a mathematical tool that is usually used for 

analyzing functions or series of values, for example time 

series signals and to measure the correlation between the 

signals. ACF is a correlation coefficient. Nevertheless, instead 

of correlation between two different variables, the correlation 

is between two values of the same variable at times
iy and

t ky +  

ACF is defined as: 

 9�  :;�<=�>��<=?@�>�A
B:C�<=�>� 2 :�<=?@�>� 2 D

 EFG�<= ,<=?@ �H4I�<=�  J@<K,  k=0,1,..  (13) 

  

Note that by definition 9L  1. 

Furthermore, the ACF is used to detect the stationary or 

non-stationary data, observing the behavior of the 

autocorrelation function. A strong and slowly dying ACF well 

suggests deviations from stationarity. Due to cutting off or 

tailing off near zero after a few lags  the ACF is very 

persistent , meaning that it decays very slowly and exhibits 

sample autocorrelations that are still rather large even at long 

lags. This behavior is characteristic of non-stationary time 

series. From a time series of finite length, the autocorrelation 

function is estimated as: 

 

M�  1

( )( )
T k

t t k

t

y y y y
=

+
=

− −∑

2

1

( )
T k

t

t

y y
=

=

−∑
 , �  0,1, . . , O                       (14) 

III.  EMPIRICAL RESULTS AND DISCUSSION 

In this section we first apply the unit root test to check if 

our data is stationary or not. After that, we choose five wavelet 

families to apply DWT and MODWT with original data. 

A. Unit Root Test 

Fig. 1 shows the stock market index behavior over the time 

and we can see the data are not stationary and it appear that 

(DJIA30) rise to the peak in the end of 2007 , but steep down 

to lowest point in the beginning of 2009 . 

 

 

Fig. 1 Time series plot of DJIA30 

 

The results two tests using unit root test are given in Table 

I. These results show that P-value > 0.05, indicating that the 

data has unit root and therefore is non stationary at level. 

 
TABLE I 

UNIT ROOT TESTS OF DAILY STOCK PRICE 

 ADF PP 

Level -1.608800 -1.525140 

P-value 0.7896 0.8210 

B.  DWT and MODWT 

In this section we apply DWT and MODWT using five 

functions, Daubcheis2 (db2), Haar (haar), Symmlets4 (sym4), 

Coifltes2 (coif2), and discrete approximation of the Meyer 

wavelets (dmey) for original series. It is to note that we are 

composing until level 7 to get the smooth data. 

C.  Autocorrelation 

With regard to comparison between DWT and MODWT for 

stability, the ACF is the best method to use to analyze the 

fluctuation in data. Consequently, if the autocorrelation is high 

(low) then the stationarity will be high (low). Table II gives 

the autocorrelation values for the original data after 

decomposition by DWT and MODWT using the said five 

functions until lag 20. 
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TABLE II 

 AUTOCORRELATION VALUES FOR APPROXIMATION 

lags 
ACF for DWT ACF for MODWT 

Haar db2 dmey sym4 coif2 Haar db2 dmey sym4 coif2 

0 1 1 1 1 1 1 1 1 1 1 

1 0.997 0.999 0.9995 0.999 0.9995 0.9991 0.9988 0.9982 0.9986 0.9986 

2 0.994 0.999 0.9989 0.999 0.9989 0.9973 0.9963 0.9944 0.9956 0.9955 

3 0.991 0.998 0.9982 0.998 0.9982 0.995 0.993 0.9904 0.9917 0.9917 

4 0.988 0.997 0.9975 0.997 0.9975 0.9922 0.9894 0.987 0.9879 0.9878 

5 0.985 0.996 0.9968 0.997 0.9968 0.9892 0.9859 0.984 0.9844 0.9844 

6 0.982 0.995 0.996 0.996 0.9959 0.9862 0.9826 0.981 0.9814 0.9814 

7 0.979 0.994 0.9951 0.995 0.9951 0.9832 0.9796 0.9779 0.9787 0.9786 

8 0.976 0.993 0.9942 0.994 0.9942 0.9802 0.9768 0.975 0.976 0.9759 

9 0.973 0.991 0.9932 0.993 0.9932 0.9772 0.974 0.9724 0.9732 0.9732 

10 0.971 0.99 0.9922 0.992 0.9922 0.9742 0.9711 0.9698 0.9704 0.9703 

11 0.968 0.989 0.9912 0.991 0.9911 0.9711 0.9681 0.9667 0.9673 0.9672 

12 0.965 0.987 0.99 0.99 0.9899 0.968 0.9649 0.9633 0.964 0.964 

13 0.962 0.986 0.9889 0.988 0.9888 0.9648 0.9616 0.9599 0.9607 0.9607 

14 0.959 0.984 0.9876 0.987 0.9875 0.9616 0.9583 0.9566 0.9574 0.9573 

15 0.956 0.982 0.9864 0.986 0.9862 0.9583 0.955 0.9534 0.9541 0.954 

16 0.953 0.981 0.985 0.984 0.9849 0.9551 0.9518 0.9502 0.9509 0.9508 

17 0.95 0.979 0.9837 0.983 0.9835 0.9519 0.9486 0.947 0.9477 0.9476 

18 0.947 0.977 0.9822 0.982 0.982 0.9487 0.9454 0.9438 0.9445 0.9445 

19 0.944 0.975 0.9807 0.98 0.9805 0.9455 0.9422 0.9406 0.9413 0.9413 

20 0.941 0.974 0.9792 0.978 0.979 0.9424 0.9391 0.9375 0.9382 0.9382 

 

From Table II it can be observed that after decomposition 

by families based on DWT and MODWT, the ACF of 

MODWT is less than ACF of DWT for different lags of the 

data. Since the difference between ACF is not significant, so 

we use t-test to ascertain that which of the two wavelet 

transforms is better to be used for decomposition time series 

data in order to get more stationary data.  We define 

 

H0: µ DWT = µ MODWT, H1: µ DWT > µ MODWT 

 

From t-test P value < 0.05 for all functions accept Haar, 

revealing that the difference is there between DWT and 

MODWT of time series data decomposition. From Table III 

we can see that the mean of DWT is bigger than the mean of 

MODWT except Haar, which is quite similar. Consequently, 

the DWT is better than MODWT to decompose time series 

data to get more stationary data. 

 
TABLE III 

 MEAN TABLE 

Wavelet functions Wavelet transforms N Mean 

Haar 
DWT 21 0.970457 

MODWT 21 0.973390 

db2 
DWT 21 0.988743 

MODWT 21 0.970595 

dmey 
DWT 21 0.991262 

MODWT 21 0.969005 

sym4 
DWT 21 0.990895 

MODWT 21 0.969714 

coif2 
DWT 21 0.991186 

MODWT 21 0.969667 

 

In addition, from Fig. 2 it can easily be seen that the mean 

ACF for functions by DWT is higher than the mean ACF for 

functions  by using MODWT accept Haar function which 

cross each other because the mean is quite similar . Therefore, 

the DWT is better than MODWT to decomposition time series 

data. 

 

 

Fig. 2 ACF of DWT and MODWT 

IV. CONCLUSION 

The DJIA30 data of closing index were decomposed using 

five families of discrete wavelet transform and maximal 

overlap discrete wavelet transform.  The results clearly show 

the decomposition stock market index by DWT is better than 

MODWT for original series to get more stationary data. 

Despite that the MODWT has some advantages over the 

DWT but it loses orthogonality. Therefore the information in 

the transform is not equivalent to the information in the 

original series. In addition, the problem lies while using the 
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MODWT because the crystals exist at roughly half the length 

of the wavelet basis into the series at any given scale and the 

crystal coefficients start more along the time axis as the scale 

level increases. 
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