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Abstract—This paper describes an underactuated robot hand 

operated by low-power actuators. It can grasp objects of various 
shapes using easy operations. This hand is suitable for use as a 
lightweight prosthetic hand that can grasp various objects using few 
input channels. To realize operations using a low-power actuator, a 
cross section deformation spring is proposed. The design procedure of 
the underactuated robot finger is proposed to realize an adaptive 
grasping movement. The validity of this mechanism and design 
procedure are confirmed through an object grasping experiment. 
Results demonstrate the effectiveness of across section deformation 
spring in reducing the actuator power. Moreover, adaptive grasping 
movement is realized by an easy operation. 
 

Keywords—Robot hand, Underactuated mechanism, Cross 
section deformation spring, Prosthetic hand. 

I. INTRODUCTION 
UR study goal is the development of a lightweight, 
dexterous prosthetic hand that can perform various tasks 

similarly to a human hand. The prosthetic hand must operate 
with few input signals because of its myoelectric interface. It 
must also be lightweight because it is installed at the tip of an 
arm [1]. Many prosthetic hands have been developed in 
previous studies [2], [3]. 

A robot hand with an underactuated mechanism for a robot 
finger has been proposed [4], [5] considering prosthetic hand 
specifications. The underactuated mechanism has more degrees 
of freedom than the number of input channels. Therefore, the 
underactuated mechanism satisfies the requested prosthetic 
hand specifications. The underactuated robot finger can 
determine an object grasping posture automatically according 
to a contact object using appropriate force balancing [6]. 

These underactuated robot fingers using a spring for 
expansion operations are divided roughly into a 
link-transmission type and a tendon-driven type. These differ in 
their resultant grasping force. The tendon-driven type is 
suitable for providing precise and sensitive movements such as 
a pinching operation [7]. 

For these, the underactuated robot hand is proposed, with an 
antagonistic mechanism consisting of a tendon and spring. 
Reportedly, such a robot hand can realize six fundamental 
grasping operations of a human hand [8]. 

However, grasping posture and grasping force are important 
to conduct an object grasping task. Especially, an appropriately 
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determined grasping force is an important factor to maintain a 
grasping posture. A conventional antagonistic driven 
mechanism consists of a tendon and a spring [9]. Its joint 
extension torque increases concomitantly with increasing 
flexion angle. For that reason, strong tension is necessary to 
maintain a grasping posture. It is difficult to produce a strong 
grasping force using this joint mechanism. Extension torque of 
the joint of this finger is necessary to extend the robot finger 
against gravity, and to be balanced with tension of the tendon. 

However, in dynamics, it is not necessary to make the 
extension torque increase concomitantly with the increase of 
the joint angle. Therefore, it is possible to improve the relation 
of the extension torque and the joint angle. A robot hand that 
can readily produce a strong grasping force while maintaining a 
grasping posture can be developed from generation of an 
extension torque that is as small as possible. 

For this reason, in this study, we propose a spring element of 
a new type, a cross section deformation spring (CSDS), from 
which extension torque is generated without being dependent 
on a joint angle. The CSDS effectiveness at decreasing tension 
of a flexional tendon was confirmed through evaluation of the 
prototype underactuated robot finger. Furthermore, we suggest 
the possibility of realizing a robot hand of reduced weight, like 
a prosthetic hand, through an object grasping experiment. 

II. CROSS SECTION DEFORMATION SPRING 
The CSDS proposed in this study, as presented in Fig. 1, is 

made of an elastic tube, a part of which is cut off to a triangle. 
This CSDS bends the cutoff part as a flexural center. Here, as 
presented in Fig. 2, the cross-section surface shape at the part of 
bending deformation changes from an arc shape to a flat shape. 
For this deformation, the moment of inertia of the area changes 
depending on the bending angle. Therefore, the CSDS has 
nonlinearity characteristic to a bending angle. 

 

 
Fig. 1 Cross section deformation spring (CSDS) 

 
In this study, the nonlinear characteristic is confirmed 

experimentally. Here, the elastic tube material, the cut off part 
size, outer diameter, and the elastic tube thickness are regarded 
as design parameters. We discuss CSDS spring characteristics 
when the parameters are changed. As depicted in Fig. 3, the 
cutoff part size is defined as the percentage of the cutoff depth: 
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Next, we assessed the grasping pressure distribution. For this 
experiment, we used a sheet sensor: a pressure-sensitive 
conductive coating material applied to the PET film (I-SCAN; 
Nitta Corp.) for measurement of grasping pressure distribution. 
This sheet sensor was fixed on the grasping object surface 
because of the influence on the robot hand joint torque by fixing 
the sheet sensor on the robot hand surface. In this experiment, 
the robot hand grasped a 93-mm-diameter cylinder. Flexion 
tendon tension of 18N was applied simultaneously to all fingers. 
Next, we discuss the pressure distribution results. 

Object grasping and the pressure distribution results of this 
experiment are presented respectively in Figs. 18 and 19. 

 

 
Fig. 18 Appearance of object grasping 

 

 
Fig. 19 Distribution of tactile pressure 

 
Contact occurred in all parts of almost all fingers. Each 

finger link has even contact with the cylindrical object. A 
tendency was visible by which the contact pressure at the palm 
and proximal phalanx of the thumb and distal phalanx of all 
fingers are increasing. The contact pressure at distal phalanx of 
all fingers increases because the underactuated mechanism of 
this robot finger generates grasping force by restraining a distal 
phalanx. Therefore, in a grasping movement, the posture of the 
middle phalanx and proximal phalanx of the robot finger are 
decided mostly without generating force. 

The contact pressure at the palm and the distal phalanx of 
index finger and thumb are increased remarkably because the 
grasping force is generated at the distal phalanx of all fingers. 
These are balanced by receiving the force at the palm. 

Moreover, contact pressure on the proximal phalanx of the 
thumb increased because this part received contact pressure of 
the distal phalanx, middle phalanx, and proximal phalanx of the 
index finger. Originally, the proximal phalanx of the thumb 
does not generate contact force in adaptive grasping movement. 
However, contact pressure becomes high. Results suggest that 
the finger maintains its own posture against the force from the 
outside. 

Contact pressure is acting on the cylindrical object from 
many directions. These are mutually balanced. This result 
demonstrates that stable grasping was realized. 

These results showed that this robot hand can grasp objects 
of various shapes stably by easy operation such as application 
of equal tension to all fingers simultaneously. 

VI. CONCLUSION 
As described in this paper, we proposed the underactuated 

robot hand using a cross section deformation spring for 
purposes of using the force of an actuator efficiently and 
grasping various objects through easy operation. The salient 
results obtained in this study are described below. 
1. A cross section deformation spring (CSDS) is proposed as 

a new spring mechanism. The CSDS has a constant torque 
characteristic and a torque reduction characteristic. These 
characteristics depend on the shape of the CSDS cutoff 
part. 

2. Design procedures of the underactuated robot finger using 
the CSDS were presented. The validity of this design 
procedure was confirmed experimentally. 

3. The CSDS effects were confirmed in simulations. Results 
show that the tension applied to a flexion tendon of the 
robot finger using cross section deformation spring is only 
18% of the robot finger tension using the torsion spring. 

4. The robot hand grasping movement was confirmed 
experimentally. 

The experimentally obtained results and related discussion 
clarified that this robot hand can grasp objects of various shapes 
stably through easy operation, giving slight tension to all the 
robot fingers. 
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