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Fig. 3 Detection schemes based on: (a) Park transformation, (b) Fast Fourier Transformation, (c) Minimum rms voltage 
 
The detection time in each case is calculated by repetitive 

simulations in PSCAD software using the multirun module 
[6]. The sag type influences the detection time, that is, 3ph 
sags are expected to be detected faster than 1ph sags for the 
same sag magnitude and point-on-wave. Furthermore, a high 
sag magnitude (shallow voltage sag) is expected to give a 
longer detection time. However, the effect of the point-on-
wave on the detection time cannot be safely predicted from the 
beginning, therefore simulations are required. 

Fig. 4 (a) presents the results for the detection time versus 
the point-on-wave for three sag magnitudes when the 1st 
technique is used. A second order filter is used for the 100 Hz 
frequency with a damping ratio of 0.1 and a time delay td = 2 
ms. It can be seen in Fig. 4 (a) that for 1ph and 2ph sags, the 
detection time is not constant and takes minimum or 
maximum values in specific ranges of the point-on-wave 
values. On the other hand, 3ph sags result in a fast and 
constant detection of 2 ms, which is also the time delay used. 
Moreover, the detection time becomes considerably longer for 
higher sag magnitudes only in cases of 1ph sags. 

In Fig. 4 (b), the simulation results for the 2nd technique are 
presented. A time delay of 5 ms is used to avoid false signals 
due to phase-angle jump and significant waveform distortion. 

It can be seen that this technique gives similar characteristics 
as regard the effects of sag type and magnitude on the 
detection time. Again, 1ph and 2ph sags give variable 
detection times and 3ph sags give a constant value equal to the 
time delay used.  

 In Fig. 5, the simulation results are presented for the 3rd 
detection technique. Specifically, the first and the third 
column of graphs present the detection time and the other 
columns the transfer time, which will be discussed in the next 
Section. It can be seen that there are similar characteristics 
with the other detection techniques as 1ph and 2ph sags give 
variable detection times, and 3ph sags almost constant values. 
The only difference from the other techniques is that the 
detection is clearly and considerably increased as the sag 
magnitude increases.  

IV. TRANSFER PROCEDURE 
Apart from the detection system, the control system of a 

Static Transfer Switch contains a system that controls the 
transfer procedure from the one source to the other. This 
system takes as inputs the three phase voltages and currents of 
both the preferred and alternate power sources and generates 
the appropriate sequence of gating pulses for the thyristors.  
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(a) 
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(c) 

Fig. 4 Detection time under different sag magnitudes for the 1st and the 2nd Detection Technique: (a) 1ph sags, (b) 2ph sags, (c) 3ph sags  
 
The control logic of the transfer procedure for an STS 

model is analytically described in [8], [9]. Full details are 
given for the developed STS model and the conditions for a 
fast and safe transfer to the alternate source. This model is 
designed to operate for all sag types and point-on-wave, for a 
load power factor in the range 0.85-1 and phase displacement 
between the two power sources of ±400.  

A. Transfer versus Detection Time 
Transfer time is the time from the detection of voltage sag 

(or other disturbances) to the completion of transfer for all 
three phases of the preferred source. It becomes obvious by 
the previous analysis that fast sag detection will probably lead 
to a fast completion of the transfer procedure. This is mainly 
due to the fact that if the detection time is short, the remaining 
phase voltages of the preferred source will be smaller than the 
corresponding phase voltages of the alternate source. Thus, the 
thyristors can be turned off faster applying a reverse biased 
strategy instead of a zero-crossing detection [7]-[9]. 

In general, transfer time is not constant and depends on 
several factors. Some of them include the detection and 
transfer strategy, the sag type, magnitude, rate-of-change and 
point-on-wave, the phase-angle jump for fault-induced sags, 
the instant voltage magnitude of the alternate source at the 
transfer initiation, and the load’s power factor.  

In Fig. 5, the transfer time is compared with the detection 
time received with the 3rd technique, that is, the minimum rms 
phase voltage calculation. Similarly with the previous 
comparisons presented in Fig. 4, transfer and detection time is 
calculated through simulations in PSCAD with relation to the 
sag’s point-on-wave for 1ph, 2ph and 3ph fault-induced sags. 
Again, three sag magnitudes and two tolerance limits are 
considered. Load power factor is assumed to be 0.9, and 
alternate source’s rms voltage equals to 1 pu. Moreover, each 
transfer time shown in Fig. 5 is the maximum among the 
values taken for all the phase displacements between the two 
power sources in the range of ±400 with 100 steps.  
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(b) 

 

 
(c) 

Fig. 5 Detection and Transfer time for the 3rd Detection Technique: (a) 1ph sags, (b) 2ph sags, (c) 3ph sags 
 
Transfer time shown in Fig. 5 is the time after the sag 

detection. It can be observed in Fig. 5 that transfer time does 
not follow a similar pattern as the detection time. Specifically, 
higher values can be taken for sags with lower magnitude 
(larger depth) in some cases.  

However, the performance of STS models is normally 
characterized by the total transfer time for the transfer 
completion, that is, the summation of the detection and the 
transfer time. In Table I, the minimum, maximum and average 
values of the total transfer time is presented for each tolerance 
limit (0.1 and 0.15 pu) and sag magnitude (0.5, 0.6 and 0.7 pu) 
as calculated by simulations. It can be seen that the total 
transfer time is less than 20 ms even for a 0.15 pu tolerance 
limit, that is, the transfer procedure is completed within a 
cycle at 50 Hz power systems.  

 
TABLE I 

TOTAL TRANSFER TIME STATISTICAL VALUES  
 Tolerance 0.1 pu (ms) Tolerance 0.15 pu (ms) 
Minimum 3.43 5.5 
Average 8.84 11.49 
Maximum 16.77 18.86 

B. STS Performance 
In Fig. 6, the STS performance is presented in case of a 1ph 

sag on phase A. Fig. 6 (a) depicts the sag experienced by the 
load with and without STS for the most sagged phase. It can 
be observed that the voltage drops to the same value 
regardless of STS presence but it lasts much shorter with the 
presence of STS. In case of R-L load, the sag duration is also 
the time until the transfer initiation to the alternate source, 
which is activated by the triggering of the alternate source’s 
thyristors. Moreover, the transfer procedure for each phase is 
shown in Fig. 6 (b). The transfer procedure for phases B and C 
starts later than phase A and at the moment that current 
flowing through them becomes zero for the first time after the 
sag is detected.  

Furthermore, the STS performance in case of a 3ph sag is 
shown in Fig. 7. Fig. 7 (a) shows the sag experienced by the 
load with and without STS. Similarly with the previous case, 
the voltage drops at the same value regardless of the STS 
presence but lasts much less when STS is present. In Fig. 7 
(b), the transfer procedure is depicted for each phase. It should 
be noted that sag detection does not always coincides with 
transfer initiation because some conditions should be fulfilled 
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before transfer initiation is activated, as shown in Figs. 6 and 
7.  

V. CONCLUSION 
In this paper, three detection techniques are developed and 

compared using simulations. The detection time is proved to 
be affected by the sag characteristics such as the type, the 
magnitude and the point-on-wave that sag initiates. The effect 
of fast sag detection on the transfer time is validated for a 
proposed STS model. The transfer procedure for two sag types 
and the reduced sag magnitude experienced by the load due to 
STS operation is presented and analyzed.  

 

 
 (a)  

 

 
(b) 

Fig. 6 STS performance for a 1ph sag (a) Sag experienced by the load 
with and without STS (b) Transfer procedure per phase 

× Fault occurrence ► Sag detection 
○ Transfer initiation ● Transfer completion 

 

 
(a) 

 
(b) 

Fig. 7 STS performance for a 3ph sag (a) Sag experienced by the load 
with and without STS (b) Transfer procedure per phase 

× Fault occurrence ► Sag detection 
○ Transfer initiation ● Transfer completion 
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