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Abstract—Nowadays, the mathematical/statistical applications
are developed with more complexity and accuracy. However, these
precisions and complexities have brought as result that applications
need more computational power in order to be executed faster. In this
sense, the multicore environments are playing an important role to
improve and to optimize the execution time of these applications.
These environments allow us the inclusion of more parallelism inside
the node. However, to take advantage of this parallelism is not an
easy task, because we have to deal with some problems such as: cores
communications, data locality, memory sizes (cache and RAM),
synchronizations, data dependencies on the model, etc. These issues
are becoming more important when we wish to improve the
application’s performance and scalability. Hence, this paper describes
an optimization method developed for Systemic Model of Banking
Originated Losses (SYMBOL) tool developed by the European
Commission, which is based on analyzing the application's weakness
in order to exploit the advantages of the multicore. All these
improvements are done in an automatic and transparent manner with
the aim of improving the performance metrics of our tool. Finally,
experimental evaluations show the effectiveness of our new
optimized version, in which we have achieved a considerable
improvement on the execution time. The time has been reduced
around 96% for the best case tested, between the original serial
version and the automatic parallel version.

Keywords—Algorithm optimization, Bank Failures, OpenMP,
Parallel Techniques, Statistical tool.

[. INTRODUCTION

OWADAYS economy analyses play a key role policy

decisions. For this reason, the number of
mathematical/statistical models used by academia and by
practitioners is rapidly increasing. Most of them have been
then translated into tools or software with the aim of
simulating the behavior of the economy, the financial markets
behaviour etc. However, these tools rely on models, which are
more and more complex to obtain more and more accurate
results. This of course requires high computational power to
be executed in a reasonable amount of time.

Also, there are models that have been developed in serial
and then they have been translated to parallel. However to
perform this upgrade to the parallel architectures, we have to
consider diverse key points such as: core communications,
data localities, dependencies, process communications,
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memory size, network exchanges etc., in order to improve the
performance metrics. For this reason, it is important to
develop suitable strategies in order to manage the
inefficiencies generated by the overhead added by the parallel
library [1], in order to obtain benefits from such computational
multi-core or parallel capacities and to improve the
performance application metrics.

In this sense, this paper describes the adaptation techniques
and the optimization process done on the SYMBOL model to
improve its performance in two directions: execution time and
scalability. SYMBOL is a statistical tool, which estimates the
losses deriving from bank defaults, explicitly linking Basel
capital requirements to the other key tools of the banking
safety net, i.e. Deposit Guarantee Schemes, and bank
Resolution Funds [2]. This tool has been used by Commission
Services to prepare various Impact Assessments of European
Commission (EC) regulatory proposals to enhance financial
stability and prevent future crises (Capital Requirement
Directive Proposal, Bank and Financial Institutions resolution
Framework and Financial Transactions Tax). Moreover,
SYMBOL is used to analyze the contributions of individual
banks to total losses originated in the banking sector. This is
an area of particular interest to policy-makers, as information
on the factors determining risk contributions could be used in
areas such as taxation of financial institutions (i.e. risk levies)
and structural reform (e.g. analysis of too big to fail issues).

To improve SYMBOL, we have developed an optimization
method that includes five steps. These steps allow us not only
to optimize the tool; they also permit us to execute it in an
automatic and transparent manner in order to exploit in the
best manner the multicore architecture. Results obtained show
an improvement of more than 90% comparing the original
serial version with the new optimized parallel version.

Moreover based on the input data, the model select the best
configuration (number of parallel thread) to minimize the
execution time taking into account different aspects as: cores
communications, data locality, memory sizes (cache and
RAM), synchronizations, data dependencies on the model.
Hence, this new approach takes advantage of the benefits of
the computational power of multi-core architecture in order to
improve the execution time with two goals: executing with
large data sets and scaling the number or default scenarios.
However, these goals have to consider obtaining shorter
response time (drooping the execution time), and also using in
an efficient manner the computational resources.

The paper is structured as follows: a brief description of the
SYMBOL model in Section II. Section III describes a model
and its step in order to make an automatic tuning of SYMBOL
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on multicore environments. Section IV presents the
optimization results for the SYMBOL model. Conclusions are
discussed in Section V.

II. SYSTEMIC MODEL OF BANKING ORIGINATED LOSSES
(SYMBOL) MoODEL

The SYMBOL model simulates the distribution of losses in
excess of banks' capital within a banking system (usually a
country) using micro-data from banks' balance sheets. This
distribution is derived aggregating at system level losses in
excess of banks' capital of individual institutions in the
system.

Individual banks losses are generated via Monte Carlo
simulation using the Basel Foundation Internal Ratings Based
(FIRB) loss distribution function. This function is based on the
Vasicek model [3], which in broad terms extends the Merton
model [4] to a portfolio of borrowers',based on an estimate of
the average default probability of the portfolio of assets of
individual bank. Usually, each SYMBOL simulation ends
when 100,000 runs with at least one default are obtained®. The
model can also be run under the hypothesis that contagion can
start among banks, via the interbank lending market. In this
case, additional losses due to a contagion mechanism are
added on top of the losses generated via Monte Carlo
simulations, hence additional banks may default (see also Step
4 below). The model can take into account the existence of a
safety-net for bank recovery and resolution, where Bail-in
(BiB), Deposit Guarantee Schemes (DGS) and Resolution
Funds (RF) intervene to cover losses exceeding bank capital
before they can hit PF.

Before entering into the technical details of the model, we
briefly state its underlying assumptions:

1. SYMBOL approximates all risks as if they were credit
risk;

2. SYMBOL assumes that the FIRB formula applies for all
banks and adequately represents risks banks are exposed
to;

3. Banks in the system are correlated with a given factor (see
Step 2 below)

4. The only contagion channel is the interbank lending
market (see Step 4 below)

5. SYMBOL assumes that all events happen at the same

' The Basel Committee permits banks a choice between two broad
methodologies for calculating their capital requirements for credit risk. One
alternative, the Standardized Approach, measures credit risk in a standardized
manner, supported by external credit assessments. The other alternative is the
Internal Rating-Based (IRB) approach which allows institutions to use their
own internal rating-based measures for key drivers of credit risk as primary
inputs to the capital calculation. Institutions using the Foundation IRB (FIRB)
approach are allowed to determine the borrowers' probabilities of default
while those using the Advanced IRB (AIRB) approach are permitted to rely
on own estimates of loss given default and exposure at default. These risk
measures are converted into risk weights and regulator estimates of loss given
default and exposure at default. These risk measures are converted into risk
weights and regulatory capital requirements by means of risk weight formulas
specified by the Basel Committee. The Basel risk weight formula for market
risk is specifically calibrated version of the Vasicek model for credit portfolio
losses. On the Basel FIRB approach see [5]-[7].

? This is needed to guarantee stability of the tail of the distribution
simulated.

time (i.e. there is no sequencing in the simulated events,
except when contagion between banks is considered).
We continue this section detailing steps/assumptions of
SYMBOL.

A. Steps of SYMBOL Model

1.Estimation of the Implied Obligors Probability of Default
(IOPD) of the Portfolio of Each Individual Bank

SYMBOL approximates all risks as if they were credit risk
and assumes that the Basel FIRB approach appropriately
describes credit risk banks are exposed to. The model
estimates the average IOPD of the portfolio of each individual
bank using its total MCR’declared in the balance sheet by
numerical inversion of the Basel FIRB formula for credit risk.
Individual bank data needed to estimate the IOPD are banks
MCR and total assets, which can be derived from the balance
sheet. All other parameters are set to their regulatory default
values.

2.Simulation of Correlated Losses for the Banks in the
System

Given the estimated average IOPD, SYMBOL assumes that
correlated losses hitting banks can be simulated via Monte
Carlo using the same FIRB formula and imposing a
correlation structure among banks (with a correlation set to
R=50%). This correlation exists either as a consequence of the
banks' common exposure to the same borrower or, more
generally, to a particular common influence of the business
cycle®. In each simulation run j, losses for bank I are simulated
as (1):

1 . R .
L, = LGD *N[Jﬁ*N 1 I0PD )+ ([t N )] (1)

where N is the normal probability function and N™'(q jare
correlated normal random shocks, and IOPD; is the average
implied obligors probability of default estimated for each bank
in step 1. LGD is the Loss Given Default, set as in Basel
regulation to 45%.

3.Determination of the Default Event

Given the matrix of correlated losses, SYMBOL determines
which banks fail. As illustrated in Fig. 1, a bank default
happens when simulated obligor portfolio losses exceed the
sum of the expected losses (EL) and the total actual capital (K)
given by the sum of its MCR plus the bank's excess capital, if

any (2):

* Banks must comply with capital requirements not only for their lending
activity and credit risk component. Banks assets are in fact not only made up
of loans, and there are capital requirements that derive from market risk,
counter-party risk, and operational risk, etc. The main assumption currently
behind SYMBOL is that all risk can be approximated as credit risk. Except for
very large banks with extensive and complex trading activities, this
simplifying assumption is not excessively distortive as credit risk usually
accounts for a very large share of banks' total capital requirements.

* The choice of the 50% correlation is based on [8] a discussion and a
sensitivity check on this assumption can be found in [2].
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The light-gray area in Fig. 1 represents the region where
losses are covered by provisions and total capital are
represented, while the dark-gray shows when banks default
under the adopted definition.

*
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Fig. 1 Individual bank loss probability density function

More, the probability density function of losses for an
individual bank is skewed to the right, i.e. there is a very small
probability of extremely large losses and a high probability of
losses that are closer to the average/expected loss. The Basel
VaR is the Value at Risk corresponding to a confidence level
of 0.1%, i.e. losses from the obligors' portfolio are lower that
the Basel VaR with probability 99.9%. This percentile falls in
the light-gray area as banks generally hold an excess capital
buffer on top of the minimum capital requirement. Data
needed for determining the default event for each bank is its
level of total capital.

4.Contagion Mechanism (Optional)

SYMBOL can include a direct contagion mechanism since
the default of one bank can compromise the solvency of its
creditor banks, thus triggering a domino effect in the banking
system. SYMBOL focuses on the role of the interbank lending
market in causing contagion. The more a bank is exposed in
the interbank market, the more it will suffer from a default in
the system. In fact, the failure of a bank drives additional
losses on the others, equal to 40% of the amounts of its total
interbank debts.

As Dbank-to-bank interbank lending positions are not
publicly available, an approximation is needed to build the
whole matrix of interbank linkages. SYMBOL assumes that
each bank is linked with all others and uses a criterion of
proportionality to distribute additional contagion losses: the
amount of losses distributed to each bank is determined by the
share of its creditor exposure in the interbank market. In the
case of a bank j fails, losses due to the contagion on bank k are
equal to (3), where IB- and IB+ are respectively the interbank
debts and credits of a bank:

1B,

D hjiB;

A default driven by contagion effects occurs whenever
additional due to the contagion channel loss causes any new
bank default. This contagion process stops when no new
additional bank defaults.

The magnitude of contagion effects depends on the two
assumptions made:

First, the 40% percentage of interbank debits that are passed
on as losses to creditor banks in case of failure, and, second,
the criterion of proportionality used to distribute these losses
across banks.

A loss of 40% on the interbank exposure is coherent with
the upper bound of economic research on this issue, see e.g.
[9]-[11]. Concerning the fact that the model distributes extra
losses according to a criterion of proportionality, a sensitivity
test has been developed in [12] in order to test if variations in
the structure of the interbank positions systematically change
the magnitude of contagion. The test, which varies the
concentration of interbank linkages, demonstrates that losses
SYMBOL are not relevantly affected by this proportionality
assumption. Data needed to simulate contagion is the amount
of interbank debts and credits for each individual bank.

L(k:ontagioni — 40%|Bj _ (3)

5.Aggregated Distribution of Losses for the Whole System

Aggregate losses are obtained summing losses in excess of
capital plus potential recapitalisation needs of all banks in the
system in each simulation run. This includes both failed and
non-failed banks, reflecting the fact that all banks in the
system remain viable.

The model can also estimate the distribution of losses plus
recapitalisation needs, i.e. the amount of capital required to
maintain all banks in the system viable. Recapitalisation needs
can be set equal to the Basel Minimum Capital requirements
(4.5% or 8% Risk Weighted Assets (RWA)) and are estimated
for non-defaulted banks when simulated losses erode this
threshold.

These steps have been divided into three main parts (pre-
processing, the SYMBOL execution and the post-processing).
The first step is the pre-processing part in which the input data
are generated, then the steps 2 to 4 are the main core of
SYMBOL, where are simulated the economic scenarios of the
bank system integrated into each country of the European
Union. Also, this part compares the losses with the bank's
actual capital. All this part was developed in a serial C tool.
Finally, last part is the post-processing of the model, where we
take into account different setting and asset the impact of
foreseen reforms. Some examples of SYMBOL uses can be
found on [13], [14].

III. A METHOD FOR OPTIMIZING SYMBOL ON MULTICORE
ENVIRONMENTS

Adapting an application to a multi-core node is not an easy
task due to data dependencies many economic models depend
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on. For this reason, we have created a method for analyzing
and executing SYMBOL considering as a key point the
performance improvement (execution time, efficiency and
scalability). There are researchers exploiting the parallelism
on these architectures [1], [15]. Many of these solutions
arising from such studies have allowed programmers to take a
direction, in which are the best solutions to apply in the
optimization process. In this sense, we have developed a set of
steps, which allow wus to evaluate the application’s
characteristics in order to define the optimization policies.

This method was mainly designed to tune SYMBOL,;
however, it can be clearly applied to other econometric models
having similar behavior. Our method is integrated by five
phases: code and model analysis (where we analyze the model
and how it must be modified in order to increment the speed
of the execution), designing optimization techniques (where
all the key elements are evaluated and designed, hence
modified to take advantage of the multi-core architecture),
software implementation (here we apply all the changes
proposed in the previous step and we create an automatic tool
that allows SYMBOL to be executed in its best version (serial
or parallel) in order to improve the performance). Finally the
last two steps concern the testing version and data verification
(where are validated that data obtained are 100% equal to the
original data) (Fig. 2).
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Fig. 2 Method for improving and analyzing SYMBOL performance

These steps allow us to apply the optimization and parallel
techniques, as to manage two main issues of SYMBOL with
respect to the execution time: the first one is related to the
execution with large input data (e.g. large banking systems)
and second is when we are trying to scale the number of
default scenarios. In other words, we create a new version
improving the performance in terms of decreasing the
execution time as well as enhancing the scalability of
SYMBOL (executing with large input data and a bigger
amount of defaults). At the end, final output result should be
100% equal to the original version.

Finally, our method not only deals with optimization
techniques, but it also selects in an automatic and transparent
manner the best amount of cores in order to take advantages of
the multi-core architecture.

A.Code and Model Analysis on the Multicore Node

The goal of this step is to draw the behavior of SYMBOL in
order to define the optimization policies to be applied on the
multi-core architecture. However, we have to consider that
SYMBOL has data dependencies behavior, which means that
it does not always grow when the number of banks is
increased. To observe this, we have executed SYMBOL using
different sets of data input from different European Union
(EU) countries. It has been executed with small input example
as Lithuania (with 10 banks) and with big samples as
Germany (with more than 1100 banks). The results of this
analysis are detailed in Fig. 3, where we can observe that
execution time will not only depend on the number of banks.
If we observe, for example, the execution time for France (149
banks) and Spain (133 banks), we can see that France's time
is much lower than Spain (almost divided by two).
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Fig. 3 SYMBOL Application analysis

A similar situation happens with Greece and Bulgaria in
which the number of banks is similar, but the execution time
varies almost of one order of magnitude, both when using the
contagion part (interbank flag enable) or not (interbank flag
disable). In conclusion, the execution time will depend on the
data input executed as a whole, not just on their size (number
of banks). The reason of this behavior is because each input
data can need a different amount of iterations to get the same
default scenarios.

On the other hand, the other parameter, which affects the
execution time, is the number of defaults that we wish to
simulate. This parameter establishes the limit where an
execution will be stopped. One advantages of this parameter is
that it makes to grow the execution time linearly as can be
evidenced on the Fig. 4.

Fig. 4 shows the execution time averages of each, and we
can observe a linear relation between number of defaults and
execution time in both cases. We could infer the execution
time for an input data, when we scale the number of defaults
scenarios. This linear behavior can be evidenced in Fig. 4,
where we have selected two large input, the first one is
Germany (1113 banks) and the second is a mix between a set
of banks from different EU countries (2727 banks). In both
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cases, the execution time grows considerably if we increase
the number of default. For example, for the case of some EU
countries with 1.000.000 defaults the execution time is around
4 days and 5 hours. Hence, the execution time begins to be
non-viable, considering that simulations of the 28 countries of
the EU should be executed frequently. These simulations
justify the need for parallelizing and optimizing the SYMBOL
code.

1000000 040
100000 36582

10000

Execution Time (Sec) Log 10
2
a
Execution lime Average by Default (Sec)

1000 10000 100000 1000000
Mumber of Default

mSome EU Countries (2727 Banks)
& Average by default (Some EU Countries)

aGemany (1123 Banks)
+ Average by default (Germany)

Fig. 4 Effects of scaling the default parameters on SYMBOL

Up to now, we have analyzed the input parameters. Next
step is to analyze the execution on the multi-core architecture.
In this sense, we have to clearly define the benefits of the
multi-core architecture in order to improve the execution time
keeping in mind: executing with larger problem sizes and
scaling the number or default scenarios. However, these goals
have to be achieved obtaining shorter response time (dropping
the execution time), but also using in an efficient manner the
computational resources. Hence, we have analyzed the
SYMBOL model in order to identify which part of the code
presents dependencies and which part of the code can be
executed in parallel. It is important to understand that these
dependencies create synchronization problems that affect
seriously the execution time in a parallel version.

Under this focus, we have divided the code on five main
parts, which represent more than 96% of the execution on
SYMBOL. These parts are: initialization of the problem
(where are define all the variables and are created all the
elements need to start the execution), a random generator,
Monte Carlo simulation module, Regulatory capital (Regcap)
analysis function (all these three part are repeated depending
on the number of defaults), and the last part is the contagion
analyzing (this is performed when a default scenario is found).
Then, to evaluate each part of the code we have executed
using different data input (small, medium and large) in order
to know the real behavior of SYMBOL. The results obtained
are summarized on Fig. 5, where we can observe how each
part can vary on time depending on the data input.

If we observe the Fig. 5, we can detail the impact of each
function on the execution. For example, the Regcap function
on the small input as Lithuania has a bigger impact than other
functions with almost 54% of the execution, but for a big
input, as Italy, the Monte Carlo simulation represents near

93%. On the contrary, when we compare the results of Poland
and Bulgaria, we see that both RegCap functions and the
Monte Carlo simulation have similar impact over the
execution time. Hence, the main conclusion we can derive
from these results is that the RegCap function has a big impact
on small input, while the Monte Carlo function has a huge
impact on large input data. Both parts need to be addressed in
the optimization process.
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Fig. 5 SYMBOL function analysis execution time

Another analysis that we have to consider is related to the
multi-core architecture that we will use to execute SYMBOL.
In particular, one needs to take into account different
architectures, for example, dual core, quad core, double quad
core, etc. (Fig. 6), as well as the way they use different cache
levels as L2 or L3, the use hyperthreading technology or
hypertransport implementation to communicate between
cores, different RAM memory size, etc. All these elements can
be used to increment the speed on the execution, but, on the
other hand they also raise issues, if they are not managed
correctly. For this reason, we will optimize SYMBOL tool
considering the main multi-core architectural aspect in order
to obtain the best profit on the executions.

Node

Processor

Node Node

Processor

=
Core 7 Core 8

=]

‘

c) Doble Quad Core Node

Processor Processor Processor

a) Dual Core Node

b) Doble Dual Core Node
Fig. 6 Different Multicore Architecture
Once all parameters, architecture and the code, we start to

design and apply the optimization techniques as will be
explained below.

B. Designing and Implementing the Optimization Process
Here, we create and develop the optimization techniques
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that will improve the execution of SYMBOL. This
optimization will allow setting up the best running
configuration in order to take the most advantages of the
multi-core architecture. However, it is important to mark that
parallel execution is not always the best solution, because of
the overhead added by the parallel libraries implementation
such as OpenMP, MPIch, OpenMPI, OpenMP-MPI, etc. All
these parallel tools (or strategies) add overhead that have to be
manage carefully. In some cases, the parallelization will lead
to worse execution time when we have small workload and if
the code has a lot of communication exchanges, and/or there
are huge amount of data synchronization inside the algorithm.
Hence, we have decided to dividle SYMBOL into two
versions: an optimized serial (used for small input) and a
parallel version (for large and medium input).

-

Function
analysis

Data i
analysis and loop
structures grouping

!

Serial Version

Defining Parallel Threads Solutions
Regions (OMP)

Parallel
Version
Automatic

resources
management

Memory Alignments

\ J

Loop Enrolling

1/O managing

Fig. 7 SYMBOL Optimization Procedure

In the new serial version, we mainly remove all the
function's redundancies calls and we group the loop structure
in order to delete a set of repeated instructions. This grouping
can be performed considering data dependencies on the
SYMBOL model. Out of this serial version, we have
developed a parallel version, which include a set of parallel
strategies in order to optimize the execution time.
Summarizing, the serial version is mainly focused on deleting
the loop and function calls redundancies, managing the data
structures using memory alignments, and applying the loop
unrolling technique (Fig. 7) for deleting the computation
redundancy. Then, the parallel approach of SYMBOL moves
from this new serial version and it uses OpenMP[16], which is
a well-known parallel library.

C.Optimized Serial Version

To create a new optimized serial version, we have to
analyze the redundancies inside of the code. In this sense, we
have evaluated both the analytical model of SYMBOL and the
C code in order to determine which instructions can be
removed or be grouped for deleting computation
redundancies. An example is shown in Fig. 8, which
represents the code of the Regulatory capital calculation (it
calculates the banks losses for banks i as was estimated in
(1).This function is called across all iterations for each bank.
This means that it is executed thousands or millions times
depending on the number of defaults that users wish to
simulate.

As we observed before in Fig. 5, this function has big
impact on small and medium input. Then, our proposal is to
make an analysis of the code with the objective of determining
points with and without dependencies with the aim of splitting
them. Then, next step is to separate the part dealing with the
Regcap equation, which is evaluated for each iteration and the
elements that can be calculated as constants values. Hence, a
new algorithm is proposed (see Fig. 9), where all elements
without any crucial dependency are calculated first.

double regcap(double %, double Yy, double k) {

double a, exl, ex2, TheR;

exl = l-exp(-50+x);

ex2 = 1/(1-exp(-50));

TheR = 0.12w»eXlwseX2+0.24# ((l-exl)wex2);

a = (ke«gsl_cdf ugaussian p(
pow(1-TheR, -0.5)«

gsl_cdf_ ugaussian Pinv(x
} + pow(ThaR/(1-TheR),

0.5)*y)} - x+«k)+ pow
(1-1.5+ba(x), -1)+1.06;
return(a);
/+ Main SYMBOL cCode «/
While (nDefaults <« nTotbefaults) //
/+ 1) Random Generator Function and Monte Carlo

simulations/
for (i=0; i<nbanks; i++)
{ Baseloss = regcapl(datali] [0], market[bl, LGD);}
/+ 3) Evaluating of a Dafault scenaric «/
/# 4) Contagion Part of the Algorithm =/
if (hadDefault) //if there is a default
nDefaults++;

Fig. 8 Regcap Function in C Algorithm in C

The new code integrates 4 global variables (A, B, C, and
D), which are the decomposition of the initial Regcap
equation, and they are calculated for all banks in the
simulation (line 9, Fig. 9). In other words, we have deleted the
repetitiveness of computation, which was a weakness in the
original code. These values are calculated in the lines 6 to 16
before of the loop structure where the core of SYMBOL is
run. This optimization decreases considerably the execution
time, but it also increases the memory allocation, due to the
data of A, B, C and D have to be maintained during all the
execution. However, for the most demanding test performed
(2773 banks), the amount of memory was 22 KB for each
variable, which is not a relevant value considering that current
computers integrate more than 4GB. This example shows how
we can remove the redundancies on the code.

The next optimization is related to the data structure.
SYMBOL was originally created using the GSL library due to
it use two functions of this library inside of the code. One
example wused is "gsl linalg cholesky decomp", which
calculates the Cholesky decomposition applied to the
correlation matrix used in the Monte Carlo simulation.
However, the overhead added by the GLS data structure is
considerable, if we are not using many math operations to
balance this overhead, the use of GSL library can worsen the
execution time. Hence, it is better to avoid defining GSL data
structures, if are not really needed. The main reason is that this
kind of matrix structure integrates a set of data definition
inside of the structure specifically six elements for each data
[17] These definitions increase the memory allocation needs,
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which is an important key, when data on the code are aligned
to take advantage of L1 and L2 cache memory.

For this reason, we have decided to modify the data
structure using the memory alignment and pointer arithmetic.
These allocations allow us to improve the spatial locality [18].
In addition, using this technique, we can reduce the cache
misses and improve the execution time considerably. Also,
these modifications do not only allow us to improve the
computational speed, but also, it creates the possibility to
apply parallel strategies as it will be detailed in next
subsection.

The last optimization is about the loop unrolling. This
technique is a well-known code transformation for improving
the application performance and it has been applied in the
most time consuming function Monte Carlo simulation (Fig.
5). It can improve from 10% to 30% the execution time,
depending on the impact of the loop inside the code [19],
because the branch instructions are reduced and the index
variable is modified fewer times. Also, this method exploits
greater instruction-level parallelism.

All these changes give rise to a new version of SYMBOL,
with the main objective being minimizing the execution time.
For this reason, once we finished all the modifications, we
have evaluated a set of different data input from small to big.
This evaluation is detailed in Fig. 10, where we can observe
the positive effect of the optimization process. Here, we have
a considerable improvement, up to 60% on the best case
(Lithuania) where the execution time goes from 23 to 8
seconds.

However, our main objective is to reduce considerably for
the medium and big test cases. We can observe that for
Germany we get a 51% of improvement (execution time goes
from 1 hour and 18 minutes to less than 38 minutes). For the
other medium input cases, the improvements are around 56%
(Fig. 10). It is important to note that this new version is not
only faster, bur even more important, it has been developed
thinking to a parallel version.

D.Parallel Version of SYMBOL

Once we have finished the serial version, we start the
analysis of the parallel version. Hence, we analyze the parallel
standards to be applied to SYMBOL. In other words, we have
exploited the possibility of developing a version which allows
us to execute SYMBOL on a multi-core cluster through
message passing interface (MPI) libraries [20], or in a hybrid
environment using multi-core and graphics processing unit
(GPU). However, it is worthwhile to notice that, SYMBOL
presents a lot of data dependencies, and they increase when we
are executing the model with the contagion flag on. It means
that we face a module by module execution and each module
needs to collect the information in order to calculate the next
step. At the end, if we use MPI we need to send a huge
amount of messages by iteration, which can degrade execution
performance due to synchronization problems.

double regeoapz{int i, double V)
{ return{ (LGD+gsl_cdf_ugaussian P+ (A+1) ++ (B+i)+ ¥)
- (CHi) ) # (* (D+i)) ) ;)

J* Main SYMBOL Code »/
S#0ptimization of the Regcap function, deleting the

redundancies =/

L= (double %) malloc (sizeof (double)snbanks);

S+the same allocation must be done for B,C
and D o=/

double ex2= 1/ (1-exp(-50});

for{i=0;i< nbanks; i++)

{ exl=1-exp(-S0«datal[i] [0]]);

TheR=0.12+ex1lwvex2+0.24» [ (1-8x1) »ex2);

ba=pow(0.11852-0.05478«1log (data[i] [0]), 2},
#(A+i)= pow(l-TheR, -0.5)+gsl_cdf_ ugaussian_ Pinv(
*(B+l TheR), 0.5}
«(Cri)=datali] [0] +LGD;

« (Dell=pow(l-1.5+ba, -1)+1.08;

While (nDefaults < nTotDefaults) {
/+ 1) Randem Generator Function «/

for (b=0; benbanks; b++)
Baseloss = regcapz (b, market[b]);

F+ 3) Bvaluating of a Default scenario =/

/* 4) Contagion Part of the Algorithm =/

it (hadDefault} //if there is a derfaulc

nhefaults++;

1
Fig. 9 Recode Regcap Function, Optimized Version of SYMBOL

For this reason, we look for a solution, which allow us to
make a parallelization inside the machine with the aim of
managing the overhead added by the parallel library. In
particular we can use OpenMP library. This is a well-known
set of parallel libraries becoming more and more popular,
since the number of cores inside the computer is increasing.
Currently, we have systems where the number of cores can be
4, 6, 8, etc., per processor and with multiple processors in each
machine. This large number of cores would allow us to create
a small high-speed environment.

OpenMP is a portable, scalable tool, which allows
programmers, using a simple interface, to create parallel
region where the code is executed in parallel on multiple
threads sharing data. However, we have to take care of data
sharing between threads and we have to avoid the
dependencies inside of the loop structures in order not to
create deadlock scenarios or situations where the overhead can
get worse the execution time.
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Fig. 10 Serial Execution using both original and optimized version of
SYMBOL (100.000) defaults
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In some cases, the parallel execution can take more time
than the serial version, mainly because of synchronization
problems between the parallel processes (or threads) such as:
communication imbalances, congestion in the communication
paths (memory or network), overheads added by the
parallelism, few amount of computed data against the
communications performed, etc. This can be evidenced on Fig.
11, where execution performances of the small inputs are
seriously affected by the parallelization. Execution time can be
double when we are executing with two or more threads.

3801
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Execution Time (Sec)

1001

§01

, —EE

Lithuania (10 Banks) Poland (34 Banks)

Bulgaria (22 Banks)
OOptimized Version @2TH @4TH o8TH ©8TH 010TH @12TH

Fig. 11 Worst Parallel results using SYMBOL and OpenMP

Grecia (20 Banks)

However, we have selected a medium and big input to test
the improvement achieved using the parallelization. Using a
correct input data, the parallel version needs shorter execution
time, but results depend on the number of threads open for
execution. As an example, we look at the case of Great Britain
(Fig. 12). In this case when using two threads, the parallel
version is faster than serial version. Hence, if we increase the
number of threads (e.g. 4,6,8,10, ...) the performance will not
improve because the overhead generated by threads is bigger
than computation time of the workload. A similar behavior has
been obtained for Spain, where the execution time improve
until four threads (Fig. 12). These results show that as the
number of banks increases, execution using threads starts to be
an ideal solution.

Also, Fig. 12 shows two additional examples where the
OpenMP version is exploiting the parallelism (Italy and
Germany examples). In both cases we have opened until 12
threads and with these setting, we have the fastest execution
time. For example in the case of Germany, the execution time
has dropped off from 38 minutes of the optimized version, to
less than 5 minutes using the OpenMP version.

This improvement represents gains around to 87% of the
time. However, it is important to understand that the number
of threads will be limited by two main factors: number of
physical cores on the machine and the computational
workload of the input data’.

5

For these experiments, we have used a machine with two Intel
processor Xeon X5670 with 6 core each processor.

E. Automatic SYMBOL on Multicore

Environments

To address the problem of the threads discussed in the
previous Section, we need to create an analysis to determine
the ideal number of threads according to the input data in a
transparent manner. Hence, we have created an automatic
procedure which set the ideal number of threads to be opened
for the parallel version or it simply selects the optimized serial
version. To define the ideal number of banks by thread that we
have to open, we have evaluated the overhead created by the
OpenMP implementation on each iteration on SYMBOL.

An example of this characterization is detailed in Fig. 13,
where we have selected the worse cases (i.e. Great Britain and
Spain) or small inputs. We have divided the code in two main
parts, the code that use the OMP primitives and the rest of the
program (Fig. 13). The serial execution gives better
performances than the Omp Parallel using 2 threads for small
input (Lithuania, Greece and Bulgaria), mainly because of the
overhead added by the OpenMP library. For example, if we
observe the average on the execution time by thread and
iteration, they are around 8.0 E-6 and 9 E-6 second for all
these small inputs, considering that the number of total
iteration were 4.692.777, 5.874.684 and 2.787.7592
respectively for 100.000 defaults. However, if we analyze the
average execution time for the serial version, their values are
lower than 3E-6. Then, we can conclude that the minimum
overhead by iteration is around 9.0E-6 and 1.0E-5 second by
iteration. In this case, all executions with a lower average by
thread than this threshold overhead has to use the serial
optimized version.

On the other hand, we have analyzed the medium input to
observe the impact of the thread overhead. In this case, we
have selected two cases Great Britain with 82 banks and Spain
with 133 banks. The results of the characterization can be
found on Fig. 14, and we can observe that the OpenMP
version is getting better results that the serial version

Tuning  of

2800

2280

o s o= om

® B8 & 8

8 8 & 8§
]

Execution Time (Sec)
g

o Ml

GB-2010 (828) Italy (567 Banks) Germany (1113 Banks)

Spain (133 Banks)
D Optimized Version ©2TH @4 TH D8TH ©8TH =10TH @12TH

Fig. 12 Improving Parallel execution of SYMBOL using OpenMP

However, these improvements are achieved until a specific
point. For example in Great Britain, the execution with two
threads is better than serial but when we execute with four
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threads the execution begins to be worse. A similar behavior
occurs with Spain, where the execution time is better when we
execute with two or four threads but it start to get worse when
the number of thread is equal to six.
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Fig. 13 Serial and OpenMP Thread characterization for small inputs

In particular, if we observe the execution time average for
the worse cases (4 threads for Great Britain and 6 threads for
Spain), we can determine that the overhead of the parallel
implementation is affecting the performance. In both cases the
values of the execution time average by threads are lower than
10E-5. This means that they are below of the threshold of the
minimum added overhead of the OpenMP. Then, if we
consider the execution time of Spain with 4 threads open, we
can observe that the execution average is around 1.3E-5 that is
higher than the minimum overhead and its more or less 33
banks by thread. For this reason, we have defined our
threshold as 30 banks in order to define an approximate value
that gives us the minimum requirement in order to cover the
overhead added by the OpenMp solution. However, the
maximum number of threads is limited by the physical
capacity of the multi-core architecture. This value has been
tested with a set of different input as can be evidenced on the
performance evaluation.
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Fig. 14 Thread characterization for medium inputs

Once defined this value we can create an automatic tool of
SYMBOL. This tool is compiled using pre-processor macros,
where, by using conditional compilation, we can control
which part of the code will be executed in serial or parallel.
Also, in the case of executing in parallel, we have to define the
maximum number of threads that the machine can support
using the analysis explained before of the number of threads.

Executing SYMBOL
with the input
parameters

Reading the number
of banks

Output
results

Selecting the integer part:
it defines Nthreads

Nthreads=Max_Thread

Nthreads=Nthreads
obtained

Executing OMP
version

__End

Fig. 15 Thread characterization for medium inputs

The parallel and serial version are called using a batch file,
which would determine the version (serial or parallel) and the
amount of threads that has to be used considering the input.

Summarizing SYMBOL is executed automatically and it
follows the flowchart defined on Fig. 15, where an input needs
at least 60 banks in order to open at least two OMP threads on
the parallel version. Also, if the number of threads obtained is
bigger than the number of cores of the machine, then
SYMBOL uses as a number of threads the maximum capacity
of the system. For example, Germany has 1113 banks divided
by 30 is equal to 37 threads, but this number cannot be bigger
that the physical support of the machine. For this reason, the
number of threads defined will be the maximum established
by the multi-core architecture.

F. Testing and Data Verification of SYMBOL

All versions developed have been tested with a strict
procedure, where we have compared the results of original
version using a set of different input data. Then, we evaluated
all results obtained through the different versions with the aim
of determining the effectiveness of each version. The results
obtained show an accuracy of 100% between original version
output data and the output of the optimized version of
SYMBOL.
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IV. PERFORMANCE EVALUATION OF SYMBOL

To test the new optimization of SYMBOL, we have used a
MAC machine composed by two processor of 2.93 Ghz 6
Core Intel Xeon, 64 GB 1333 Mhz DDR3 memory RAM, Mac
OS X lion 10.7.5 operative system, and gcc 4.6.2 compiler.
Furthermore, the inputs used have been classified in small,
medium and large according to the number of banks. This
evaluation tries to demonstrate the improvement of the two
main issues of SYMBOL.: execution time and scalability of the
default scenarios. In this sense, Fig. 16 shows the execution
time obtained for 100.000 defaults using the new automatic
SYMBOL tool.

We recall that the number of threads to be opened,
according to the number of banks, is automatically chosen by
our tool, and we can take the most out of the multi-core
machine. For example, in the Great Britain example, the
number of threads opened is two, while in Germany the
number of threads is 12 (see Fig. 16). For the cases of small
input as a Lithuania and Poland are used the serial version and
their improvements are around 60% and 56% respectively.
Also, analyzing the performance results in Fig. 16, we can see
the considerable improvements we have comparing the
original SYMBOL and the new optimized SYMBOL tool.
These improvements range from 52% to 94%. In this case, we
can observe how our tool can open the right number of cores
in order to improve the execution time.

Another analysis is related to the scalability of SYMBOL
when we increase the default scenarios. In this sense, we have
observed that SYMBOL can request a lot of time to execute
big simulations (Fig. 4). In this case, we increased the number
of default scenarios from ten thousand to one million and the
results are summarized in Fig. 17, where considerable
improvement is achieved by the new SYMBOL parallel
version when it is run with a large number of banks and with
large number of default scenarios. These tests were done using
a mix input of different EU countries with 2727 banks.

3
5000 ] 100%
5
4500 A ; 90%
4000 ] 80%
N [1zm| 127H|
o 3500 A %
@ -
0 5
® 3000 & 8 60%
E A . & e
£ 2500 A 0
2 —
§ 2000 M| 0%
o 4TH - 2 |
1500 = b
_| M =
1000 - 2TH . g &
g g 3a [15F |l
500 . He =53 - o
g i by 1 =2 e
¢ D= [l —l iy = - 4
Lithuania Poland Great France Spain Italy Germany
(10) 20) Britain (149) (133) (567) (1113)

(82)
Country (Banks)

D Original Serial Version @ Optimized Serial Version

TH | Number of OMP Threads
BEBOMP (Parallel Version using Threads) A Improvement Percentage

Fig. 16 SYMBOL execution using the automatic tool

Results show a huge reduction on the execution time (96%
in the best case), which leads to have simulation running for

few hours instead of several days as is presented in Fig. 17.
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Fig. 17 SYMBOL Execution using the automatic tool and increasing
the problem size

The last evaluation of the tool is the performance analysis
on speed and efficiency, between the new optimized serial
version and the OMP parallel. Overall performance evaluation
are shown in Table I, where two performance metrics have
been analyzed: speedup and computational efficiency. The
speedup refers to how much a parallel algorithm is faster than
a corresponding sequential algorithm. In this sense, we
calculate it using the serial time divided by the parallel time.

As we can detail on the Table I, the efficiency begin to be
around 100% using all the architecture and a big data input
(Some EU Countries). This is due to the overhead of the OMP
library start to be irrelevant on the execution time. However,
For Spain and France the comparison between the optimized
serial and the parallel version using 4 threads (see Table 1),
will give: speedups around 1.44 and 1.85 and the efficiency
are 36% and 46.35%, respectively. In both cases, the impact of
the added overhead affects the linearity grow of the speedup.

TABLEI
PERFORMANCE EVALUATION OF SYMBOL ToOL
Data Input Nol;)l;rlf:(‘ii ) Opt?gle;clgsrzllel Opliit;fric/lllei]:a}ilel
Spain (133) 4 1.44 36.00%
France (149) 4 1.85 46.35%
Italy (567) 12 5.57 46.40%
Germany (1113) 12 9.42 78.51%
Some EU Countries (2727) 12 11.93 99.34%

V. CONCLUSIONS

In this paper, we have presented a case-study where
SYMBOL model has been adapted automatically and
transparently to the multi-core architecture. To make this, we
have created a method, where we have analyzed the analytical
model and its characteristics, and then we have proposed a set
of changes that have been performed on SYMBOL tool in
order to improve its overall performance. This method
integrates five main steps, starting to an analysis of the
SYMBOL and finishing with the verification of the output
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results. All these steps allow us to improve and to execute
SYMBOL exploiting the multi-core architecture.

In addition, the new SYMBOL tool can automatically set up
its working framework to take the most advantages from the
multi-core architecture. In particular, it detects which version
to use (either serial or parallel) using the input information,
and then it defines the number of threads needed to get a faster
execution. The new approach of SYMBOL has been tested
using a set of different input data and the results show the
effectiveness of the improvements, where for some cases can
achieve a reduction around 96% on the execution time using
the parallel version and around 55% for the optimized serial.

Finally, we have evaluated the effects on the new SYMBOL
when we increase the number of default scenarios. In this
case, we can scale both input data and number of defaults and
the results show a considerable improvement around 96% on
the execution time for the best case tested. Now it is viable to
use this new SYMBOL version because we can analyze the
consequences of bank failures and its effects over a larger
amount of banks in the European Union banking sector as was
demonstrated in our experimental validation.
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