
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3221


Abstract—Nowadays, the mathematical/statistical applications

are developed with more complexity and accuracy. However, these
precisions and complexities have brought as result that applications
need more computational power in order to be executed faster. In this
sense, the multicore environments are playing an important role to
improve and to optimize the execution time of these applications.
These environments allow us the inclusion of more parallelism inside
the node. However, to take advantage of this parallelism is not an
easy task, because we have to deal with some problems such as: cores
communications, data locality, memory sizes (cache and RAM),
synchronizations, data dependencies on the model, etc. These issues
are becoming more important when we wish to improve the
application’s performance and scalability. Hence, this paper describes
an optimization method developed for Systemic Model of Banking
Originated Losses (SYMBOL) tool developed by the European
Commission, which is based on analyzing the application's weakness
in order to exploit the advantages of the multicore. All these
improvements are done in an automatic and transparent manner with
the aim of improving the performance metrics of our tool. Finally,
experimental evaluations show the effectiveness of our new
optimized version, in which we have achieved a considerable
improvement on the execution time. The time has been reduced
around 96% for the best case tested, between the original serial
version and the automatic parallel version.

Keywords—Algorithm optimization, Bank Failures, OpenMP,
Parallel Techniques, Statistical tool.

I. INTRODUCTION

OWADAYS economy analyses play a key role policy
decisions. For this reason, the number of

mathematical/statistical models used by academia and by
practitioners is rapidly increasing. Most of them have been
then translated into tools or software with the aim of
simulating the behavior of the economy, the financial markets
behaviour etc. However, these tools rely on models, which are
more and more complex to obtain more and more accurate
results. This of course requires high computational power to
be executed in a reasonable amount of time.

Also, there are models that have been developed in serial
and then they have been translated to parallel. However to
perform this upgrade to the parallel architectures, we have to
consider diverse key points such as: core communications,
data localities, dependencies, process communications,

Ronal Muresano and Andrea Pagano are from European Commission, Joint

Research Centre (JRC), Institute for the Protection and the Security of the
Citizen (IPSC), Scientific Support to Financial Analysis Unit, Via E. Fermi,
2749, CP. 21027 Ispra, Italy (Tel.: +39 0332-78-9315, e-mail:
ronal.muresano@jrc.europa.ec.eu, andrea.pagano@jrc.europa.ec.eu).

The opinions presented here are exclusively those of the authors and do not
in any way represent those of the European Commission.

memory size, network exchanges etc., in order to improve the
performance metrics. For this reason, it is important to
develop suitable strategies in order to manage the
inefficiencies generated by the overhead added by the parallel
library [1], in order to obtain benefits from such computational
multi-core or parallel capacities and to improve the
performance application metrics.

In this sense, this paper describes the adaptation techniques
and the optimization process done on the SYMBOL model to
improve its performance in two directions: execution time and
scalability. SYMBOL is a statistical tool, which estimates the
losses deriving from bank defaults, explicitly linking Basel
capital requirements to the other key tools of the banking
safety net, i.e. Deposit Guarantee Schemes, and bank
Resolution Funds [2]. This tool has been used by Commission
Services to prepare various Impact Assessments of European
Commission (EC) regulatory proposals to enhance financial
stability and prevent future crises (Capital Requirement
Directive Proposal, Bank and Financial Institutions resolution
Framework and Financial Transactions Tax). Moreover,
SYMBOL is used to analyze the contributions of individual
banks to total losses originated in the banking sector. This is
an area of particular interest to policy-makers, as information
on the factors determining risk contributions could be used in
areas such as taxation of financial institutions (i.e. risk levies)
and structural reform (e.g. analysis of too big to fail issues).

To improve SYMBOL, we have developed an optimization
method that includes five steps. These steps allow us not only
to optimize the tool; they also permit us to execute it in an
automatic and transparent manner in order to exploit in the
best manner the multicore architecture. Results obtained show
an improvement of more than 90% comparing the original
serial version with the new optimized parallel version.

Moreover based on the input data, the model select the best
configuration (number of parallel thread) to minimize the
execution time taking into account different aspects as: cores
communications, data locality, memory sizes (cache and
RAM), synchronizations, data dependencies on the model.
Hence, this new approach takes advantage of the benefits of
the computational power of multi-core architecture in order to
improve the execution time with two goals: executing with
large data sets and scaling the number or default scenarios.
However, these goals have to consider obtaining shorter
response time (drooping the execution time), and also using in
an efficient manner the computational resources.

The paper is structured as follows: a brief description of the
SYMBOL model in Section II. Section III describes a model
and its step in order to make an automatic tuning of SYMBOL

Ronal Muresano, Andrea Pagano

N

Automatic Tuning for a Systemic Model of Banking
Originated Losses (SYMBOL) Tool on Multicore

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3222

on multicore environments. Section IV presents the
optimization results for the SYMBOL model. Conclusions are
discussed in Section V.

II. SYSTEMIC MODEL OF BANKING ORIGINATED LOSSES

(SYMBOL) MODEL

The SYMBOL model simulates the distribution of losses in
excess of banks' capital within a banking system (usually a
country) using micro-data from banks' balance sheets. This
distribution is derived aggregating at system level losses in
excess of banks' capital of individual institutions in the
system.

Individual banks losses are generated via Monte Carlo
simulation using the Basel Foundation Internal Ratings Based
(FIRB) loss distribution function. This function is based on the
Vasicek model [3], which in broad terms extends the Merton
model [4] to a portfolio of borrowers1,based on an estimate of
the average default probability of the portfolio of assets of
individual bank. Usually, each SYMBOL simulation ends
when 100,000 runs with at least one default are obtained2. The
model can also be run under the hypothesis that contagion can
start among banks, via the interbank lending market. In this
case, additional losses due to a contagion mechanism are
added on top of the losses generated via Monte Carlo
simulations, hence additional banks may default (see also Step
4 below). The model can take into account the existence of a
safety-net for bank recovery and resolution, where Bail-in
(BiB), Deposit Guarantee Schemes (DGS) and Resolution
Funds (RF) intervene to cover losses exceeding bank capital
before they can hit PF.

Before entering into the technical details of the model, we
briefly state its underlying assumptions:
1. SYMBOL approximates all risks as if they were credit

risk;
2. SYMBOL assumes that the FIRB formula applies for all

banks and adequately represents risks banks are exposed
to;

3. Banks in the system are correlated with a given factor (see
Step 2 below)

4. The only contagion channel is the interbank lending
market (see Step 4 below)

5. SYMBOL assumes that all events happen at the same

1 The Basel Committee permits banks a choice between two broad

methodologies for calculating their capital requirements for credit risk. One
alternative, the Standardized Approach, measures credit risk in a standardized
manner, supported by external credit assessments. The other alternative is the
Internal Rating-Based (IRB) approach which allows institutions to use their
own internal rating-based measures for key drivers of credit risk as primary
inputs to the capital calculation. Institutions using the Foundation IRB (FIRB)
approach are allowed to determine the borrowers' probabilities of default
while those using the Advanced IRB (AIRB) approach are permitted to rely
on own estimates of loss given default and exposure at default. These risk
measures are converted into risk weights and regulator estimates of loss given
default and exposure at default. These risk measures are converted into risk
weights and regulatory capital requirements by means of risk weight formulas
specified by the Basel Committee. The Basel risk weight formula for market
risk is specifically calibrated version of the Vasicek model for credit portfolio
losses. On the Basel FIRB approach see [5]-[7].

2 This is needed to guarantee stability of the tail of the distribution
simulated.

time (i.e. there is no sequencing in the simulated events,
except when contagion between banks is considered).

We continue this section detailing steps/assumptions of
SYMBOL.

A. Steps of SYMBOL Model

1. Estimation of the Implied Obligors Probability of Default
(IOPD) of the Portfolio of Each Individual Bank

SYMBOL approximates all risks as if they were credit risk
and assumes that the Basel FIRB approach appropriately
describes credit risk banks are exposed to. The model
estimates the average IOPD of the portfolio of each individual
bank using its total MCR3declared in the balance sheet by
numerical inversion of the Basel FIRB formula for credit risk.
Individual bank data needed to estimate the IOPD are banks
MCR and total assets, which can be derived from the balance
sheet. All other parameters are set to their regulatory default
values.

2. Simulation of Correlated Losses for the Banks in the
System

Given the estimated average IOPD, SYMBOL assumes that
correlated losses hitting banks can be simulated via Monte
Carlo using the same FIRB formula and imposing a
correlation structure among banks (with a correlation set to
R=50%). This correlation exists either as a consequence of the
banks' common exposure to the same borrower or, more
generally, to a particular common influence of the business
cycle4. In each simulation run j, losses for bank I are simulated
as (1):

)](*
1

)(**
1

1
[* ,

11
jiiij N

R

R
IOPDN

R
NLGDL 







(1)

where N is the normal probability function and N-1(αi,j)are
correlated normal random shocks, and IOPDi is the average
implied obligors probability of default estimated for each bank
in step 1. LGD is the Loss Given Default, set as in Basel
regulation to 45%.

3. Determination of the Default Event

Given the matrix of correlated losses, SYMBOL determines
which banks fail. As illustrated in Fig. 1, a bank default
happens when simulated obligor portfolio losses exceed the
sum of the expected losses (EL) and the total actual capital (K)
given by the sum of its MCR plus the bank's excess capital, if
any (2):

3 Banks must comply with capital requirements not only for their lending

activity and credit risk component. Banks assets are in fact not only made up
of loans, and there are capital requirements that derive from market risk,
counter-party risk, and operational risk, etc. The main assumption currently
behind SYMBOL is that all risk can be approximated as credit risk. Except for
very large banks with extensive and complex trading activities, this
simplifying assumption is not excessively distortive as credit risk usually
accounts for a very large share of banks' total capital requirements.

4 The choice of the 50% correlation is based on [8] a discussion and a
sensitivity check on this assumption can be found in [2].

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3223

lo
re
un

in
pr
lo
V
of
th
th
bu
ne
le

th
cr
sy
m
th
th
lo
in

pu
w
ea
pr
am
sh
ca
eq
de

The light-gra

osses are co
epresented, wh
nder the adopt

Fig. 1 Ind

More, the p
ndividual bank
robability of e
osses that are

VaR is the Val
f 0.1%, i.e. lo
he Basel VaR
he light-gray a
uffer on top
eeded for dete
vel of total ca

4. Contagion

SYMBOL ca
he default of
reditor banks,
ystem. SYMB

market in caus
he interbank m
he system. In
osses on the o
nterbank debts

As bank-to-
ublicly availa

whole matrix o
ach bank is l
roportionality
mount of losse
hare of its cre
ase of a bank j
qual to (3), wh
ebts and credit

L

ay area in Fi
vered by pr
hile the dark
ted definition.

dividual bank lo

probability de
k is skewed to
extremely larg
closer to the

lue at Risk co
osses from the

with probabil
area as banks

of the mini
ermining the
apital.

Mechanism (

an include a d
one bank can
thus triggerin
OL focuses o
ing contagion

market, the mo
fact, the fai

others, equal t
s.
-bank interba

able, an appro
of interbank l
linked with a

to distribute
es distributed
editor exposur
j fails, losses d
here IB- and I
ts of a bank:

iji KEl ,

ig. 1 represen
rovisions and

k-gray shows
.

oss probability d

ensity functio
 the right, i.e.

ge losses and
average/expe

orresponding t
e obligors' por
lity 99.9%. Th
s generally ho
imum capital
default event

Optional)

direct contagi
n compromise
ng a domino e

on the role of t
n. The more a
ore it will suf
ilure of a ban
to 40% of the

ank lending
oximation is
linkages. SYM

all others and
e additional c

to each bank
re in the inter
due to the con
IB+ are respe

iK

nts the region
d total capi
when banks

density function

on of losses
 there is a ver
a high probab

ected loss. Th
to a confidenc
rtfolio are low
his percentile
old an excess
l requirement
for each ban

ion mechanism
e the solvency
effect in the b
the interbank
a bank is exp
ffer from a de
nk drives add

e amounts of i

positions a
needed to bu

MBOL assum
d uses a crite
contagion loss

is determined
rbank market
ntagion on ban
ectively the in

 (2)

n where
tal are
default

n

for an
ry small
bility of
e Basel
ce level
wer that

falls in
capital

t. Data
nk is its

m since
y of its
banking
lending
osed in

efault in
ditional
its total

are not
uild the

mes that
erion of
ses: the
d by the
. In the
nk k are
terbank

ad
ba
ad

ass

on
the
acr

the
[9]
los
tes
the
the
co
SY
ass
of

cap
sys
no
sys

rec
ma
can
(4.
for
thr

pro
Th
are
SY
ba
Un
act
Fin
tak
for
fou

III.

tas

C
kL

A default dr

dditional due t
ank default. T
dditional bank

The magnitu
sumptions ma
First, the 40%

n as losses to
e criterion of
ross banks.
A loss of 40%
e upper bound
]-[11]. Conce
sses according
st has been de
e structure of
e magnitude
ncentration o

YMBOL are n
sumption. Da

f interbank deb

5. Aggregated

Aggregate lo
pital plus pote
stem in each

on-failed bank
stem remain v
The model ca
capitalisation
aintain all ban
n be set equa
.5% or 8% Ri
r non-default
reshold.
These steps h
ocessing, the
he first step is
e generated,
YMBOL, whe
ank system in
nion. Also, th
tual capital. A
nally, last part
ke into accou
reseen reform
und on [13], [

. A METHOD

Adapting an
sk due to data

i
Contagion
k %40

riven by con
to the contagi
This contagio
defaults.

ude of contag
ade:
% percentage o

creditor bank
proportionali

% on the inte
d of economi

erning the fact
g to a criterio
eveloped in [1
f the interbank

of contagio
f interbank li
not relevantly
ta needed to s

bts and credits

d Distribution

sses are obtai
ential recapita
simulation ru

ks, reflecting
viable.
an also estima
needs, i.e. th

nks in the syst
al to the Base
isk Weighted A
ted banks wh

have been div
SYMBOL ex
the pre-proce
then the step

ere are simulat
ntegrated into
his part comp
All this part w
t is the post-p
unt different

ms. Some exam
14].

D FOR OPTIMIZ

ENVIR

application to
a dependencie





 k

j
h

IB
IB%

ntagion effect
ion channel l
on process st

gion effects d

of interbank d
ks in case of f
ity used to di

erbank exposu
ic research on
t that the mo

on of proportio
12] in order to
k positions sy
on. The test,
inkages, demo
y affected by
simulate cont
s for each indi

of Losses for

ined summing
alisation need
un. This inclu

the fact tha

ate the distrib
he amount of
tem viable. Re
el Minimum C
Assets (RWA
hen simulated

vided into thr
xecution and t
essing part in w
ps 2 to 4 are
ted the econom

o each countr
pares the loss
was developed
rocessing of t
setting and a
mples of SYM

ZING SYMBO
RONMENTS

o a multi-core
s many econo





h

k

jIB

ts occurs wh
oss causes an
tops when n

depends on th

debits that are
failure, and, s
stribute these

ure is coheren
n this issue, s
del distribute
onality, a sen
o test if variat
ystematically c
 which vari
onstrates that
this proporti

tagion is the a
ividual bank.

the Whole Sy

g losses in exc
ds of all banks
udes both fail
at all banks

bution of losse
f capital requ
ecapitalisation
Capital require
A)) and are est
d losses erod

ree main part
the post-proce
which the inp
e the main c
mic scenarios
ry of the Eu
ses with the
d in a serial C
the model, wh
asset the imp
MBOL uses

OL ON MULTIC

node is not a
omic models d

 (3)

henever
ny new
no new

he two

passed
second,

losses

nt with
see e.g.
s extra
sitivity

tions in
change
es the
losses

onality
amount

ystem

cess of
s in the
ed and
in the

es plus
ired to

n needs
ements
timated
de this

ts (pre-
essing).
put data
core of
s of the
uropean

bank's
C tool.

here we
pact of
can be

CORE

an easy
depend

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3224

on
an
pe
sc
on
ar
di
op
st
ch

ho
ha
ph
an
of
al
m
so
pr
th
or
la
(w
or

F

te
re
ex
an
de
im
ex
SY
am
10

te
m
th

n. For this rea
nd executing
erformance im
calability). Th
n these archi
rising from su
irection, in w
ptimization pr
eps, which
haracteristics i

This method
owever, it can
aving similar
hases: code an
nd how it mu
f the executio
ll the key e

modified to ta
oftware imple
roposed in the
hat allows SYM
r parallel) in o
ast two steps c
where are vali
riginal data) (F

Fig. 2 Method f

These steps

chniques, as
espect to the
xecution with
nd second is
efault scenari
mproving the
xecution time
YMBOL (ex
mount of defa
00% equal to t

Finally, our
chniques, but

manner the bes
he multi-core a

ason, we hav
SYMBOL c

mprovement
here are resea
itectures [1],

uch studies hav
which are the
rocess. In this

allow us
in order to def
d was mainl

n be clearly ap
behavior. O

nd model anal
st be modifie
on), designing
elements are
ake advantage
ementation (h
e previous step
MBOL to be
order to impr
concern the te
idated that dat
Fig. 2).

for improving an

allow us to ap
to manage tw
execution tim
 large input d
when we ar

os. In other
e performanc
e as well a
ecuting with
aults). At the
the original ve
r method no
t it also select
t amount of co
architecture.

ve created a m
considering a
(execution ti

archers exploi
[15]. Many

ve allowed pr
e best solutio
sense, we hav
to evaluate

fine the optim
ly designed

pplied to other
Our method is
lysis (where w
d in order to
g optimization

evaluated an
e of the mult
here we app
p and we crea
executed in it

rove the perfo
sting version
ta obtained ar

nd analyzing SY

pply the optim
wo main issue
me: the first o
data (e.g. larg
re trying to s
words, we cr

ce in terms
as enhancing

large input
end, final out
ersion.

ot only deals
ts in an autom
ores in order t

method for an
as a key po
ime, efficien
iting the para

y of these so
rogrammers to
ons to apply
ve developed
 the applic

mization polici
to tune SYM

r econometric
s integrated b
we analyze the

increment the
n techniques
nd designed,
ti-core archit

ply all the c
ate an automa
ts best version
ormance). Fina
and data verif

re 100% equa

YMBOL perfor

mization and p
es of SYMBO
one is related
ge banking sy
scale the num
reate a new

of decreasin
 the scalabi
data and a

tput result sho

s with optim
matic and tran
to take advant

nalyzing
oint the
cy and
allelism
olutions
o take a

in the
a set of
cation’s
es.
MBOL;
models
by five
e model
e speed
(where
 hence
ecture),
changes
atic tool
n (serial
ally the
fication

al to the

rmance

parallel
OL with
d to the
ystems)

mber of
version
ng the
ility of

bigger
ould be

mization
nsparent
tages of

ord
mu
SY
it
inc
dif
(E
as
Ge
an
ex
If w
ba
is m

wh
va
co
dis
da
of
da
de

ex
sim
ex
tha
ev

can
ex
tim
sce
wh
Ge
of

A. Code and M

The goal of th
der to define
ulti-core arch
YMBOL has d

does not al
creased. To ob
fferent sets o
U) countries.

Lithuania (
ermany (with

nalysis are de
ecution time
we observe, f

anks) and Spai
much lower th

Fi

A similar sit

hich the numb
aries almost of
ntagion part
sable). In con

ata input execu
f banks). The
ata can need a
fault scenario
On the other
ecution time,

mulate. This
ecution will b
at it makes to
idenced on th
Fig. 4 shows
n observe a li
ecution time

me for an inpu
enarios. This
here we have
ermany (1113
f banks from

Model Analys

his step is to d
the optimizat

hitecture. How
data dependen
ways grow
bserve this, w

of data input
It has been ex

(with 10 ban
more than 1

etailed in Fig
will not only

for example, th
in (133 banks
han Spain (alm

ig. 3 SYMBOL

tuation happe
ber of banks i
f one order of
(interbank fla

nclusion, the e
uted as a who
reason of thi

a different am
os.
r hand, the ot
, is the numb

parameter e
be stopped. On
o grow the ex

he Fig. 4.
 the execution
inear relation
in both case

ut data, when
linear behav

e selected tw
 banks) and t
different EU

is on the Mult

draw the behav
tion policies t
wever, we ha
ncies behavio
when the nu

we have execu
from differe

xecuted with
nks) and wit
1100 banks).
. 3, where w
depend on th

he execution t
s), we can see
most divided b

L Application an

ens with Gree
is similar, but
f magnitude, b
ag enable) or
execution time
ole, not just on
s behavior is
ount of iterati

ther paramete
ber of defaul
establishes th
ne advantages
xecution time

n time averag
between num

es. We could
n we scale the
vior can be e
wo large inpu
the second is

countries (27

ticore Node

vior of SYMB
to be applied
ave to consid
r, which mea
umber of ba

uted SYMBOL
ent European
small input ex
th big samp
The results

we can observ
he number of
time for Franc
e that France's
by two).

nalysis

ece and Bulg
t the executio

both when usi
not (interban

e will depend
n their size (n
because each

ions to get the

r, which affe
lts that we w
he limit whe
s of this param
e linearly as

ges of each, a
mber of defau

infer the exe
e number of d
videnced in F
ut, the first
a mix betwee
727 banks). I

BOL in
on the
er that

ans that
anks is
L using

Union
xample
ples as
of this
ve that
banks.

ce (149
s time

garia in
on time
ing the
nk flag
on the

number
h input
e same

cts the
wish to
ere an

meter is
can be

and we
ults and
ecution
defaults
Fig. 4,
one is

en a set
In both

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3225

cases, the execution time grows considerably if we increase
the number of default. For example, for the case of some EU
countries with 1.000.000 defaults the execution time is around
4 days and 5 hours. Hence, the execution time begins to be
non-viable, considering that simulations of the 28 countries of
the EU should be executed frequently. These simulations
justify the need for parallelizing and optimizing the SYMBOL
code.

Fig. 4 Effects of scaling the default parameters on SYMBOL

Up to now, we have analyzed the input parameters. Next
step is to analyze the execution on the multi-core architecture.
In this sense, we have to clearly define the benefits of the
multi-core architecture in order to improve the execution time
keeping in mind: executing with larger problem sizes and
scaling the number or default scenarios. However, these goals
have to be achieved obtaining shorter response time (dropping
the execution time), but also using in an efficient manner the
computational resources. Hence, we have analyzed the
SYMBOL model in order to identify which part of the code
presents dependencies and which part of the code can be
executed in parallel. It is important to understand that these
dependencies create synchronization problems that affect
seriously the execution time in a parallel version.

Under this focus, we have divided the code on five main
parts, which represent more than 96% of the execution on
SYMBOL. These parts are: initialization of the problem
(where are define all the variables and are created all the
elements need to start the execution), a random generator,
Monte Carlo simulation module, Regulatory capital (Regcap)
analysis function (all these three part are repeated depending
on the number of defaults), and the last part is the contagion
analyzing (this is performed when a default scenario is found).
Then, to evaluate each part of the code we have executed
using different data input (small, medium and large) in order
to know the real behavior of SYMBOL. The results obtained
are summarized on Fig. 5, where we can observe how each
part can vary on time depending on the data input.

If we observe the Fig. 5, we can detail the impact of each
function on the execution. For example, the Regcap function
on the small input as Lithuania has a bigger impact than other
functions with almost 54% of the execution, but for a big
input, as Italy, the Monte Carlo simulation represents near

93%. On the contrary, when we compare the results of Poland
and Bulgaria, we see that both RegCap functions and the
Monte Carlo simulation have similar impact over the
execution time. Hence, the main conclusion we can derive
from these results is that the RegCap function has a big impact
on small input, while the Monte Carlo function has a huge
impact on large input data. Both parts need to be addressed in
the optimization process.

Fig. 5 SYMBOL function analysis execution time

Another analysis that we have to consider is related to the
multi-core architecture that we will use to execute SYMBOL.
In particular, one needs to take into account different
architectures, for example, dual core, quad core, double quad
core, etc. (Fig. 6), as well as the way they use different cache
levels as L2 or L3, the use hyperthreading technology or
hypertransport implementation to communicate between
cores, different RAM memory size, etc. All these elements can
be used to increment the speed on the execution, but, on the
other hand they also raise issues, if they are not managed
correctly. For this reason, we will optimize SYMBOL tool
considering the main multi-core architectural aspect in order
to obtain the best profit on the executions.

Fig. 6 Different Multicore Architecture

Once all parameters, architecture and the code, we start to

design and apply the optimization techniques as will be
explained below.

B. Designing and Implementing the Optimization Process

Here, we create and develop the optimization techniques

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3226

th
op
co
m
pa
th
su
th
m
to
th
ar
H
ve
pa

fu
in
ca
SY
de
str
Su
th
str
un
re
fro
a

an
ha
C
re
re
re
ca
(1
Th
de
sim

hat will imp
ptimization w
onfiguration i

multi-core arch
arallel executi
he overhead a
uch as OpenM
hese parallel to

manage careful
o worse execu
he code has a
re huge amoun

Hence, we ha
ersions: an o
arallel version

Fig

In the new
unction's redun
n order to dele
an be perfor
YMBOL mo
eveloped a pa
rategies in
ummarizing, t

he loop and fu
ructures using
nrolling techn
edundancy. Th
om this new s
well-known p

C. Optimized

To create a
nalyze the red
ave evaluated

code in ord
emoved or
edundancies.
epresents the
alculates the b
1).This functio
his means th
epending on
mulate.

prove the
will allow
in order to t
hitecture. How
ion is not alw
added by the
MP, MPIch, O
ools (or strateg
lly. In some c

ution time whe
lot of commu

nt of data syn
ave decided
ptimized seri

n (for large and

g. 7 SYMBOL

serial versi
ndancies calls
ete a set of rep
rmed conside
odel. Out of
arallel version

order to
the serial vers

function calls
g memory al
nique (Fig. 7
hen, the paral
serial version
parallel library

d Serial Versio

a new optimi
dundancies ins

both the anal
der to determ

be groupe
An example
code of the
banks losses
on is called a
at it is execu
the number

execution of
setting up

take the most
wever, it is im
ways the best

parallel libra
OpenMPI, Op
gies) add over
cases, the par
en we have sm
unication exc

nchronization
to divide S

ial (used for
d medium inp

Optimization P

ion, we main
s and we grou
peated instruc
ering data de
f this serial
n, which inclu
optimize th

sion is mainly
redundancies

lignments, an
7) for deletin
llel approach
and it uses Op

y.

on

ized serial v
side of the co
ytical model o
mine which
ed for del
e is shown
Regulatory c
for banks i

cross all itera
uted thousand

of defaults

f SYMBOL
the best r

t advantages
mportant to ma

solution, bec
aries impleme
penMP-MPI, e
rhead that hav

rallelization w
mall workload
changes, and/o
inside the alg

SYMBOL in
small input)

put).

Procedure

nly remove
up the loop st
ctions. This gr
ependencies

version, we
ude a set of p
e execution

y focused on d
s, managing th
d applying th
ng the comp
of SYMBOL
penMP[16], w

version, we h
ode. In this sen
of SYMBOL
instructions

leting comp
in Fig. 8,

apital calcula
as was estim

ations for each
ds or million

that users w

. This
running

of the
ark that
ause of

entation
etc. All
ve to be

will lead
d and if
or there
gorithm.
to two

) and a

all the
tructure
rouping
on the
e have
parallel

time.
deleting
he data
he loop
putation

L moves
which is

have to
nse, we
and the
can be

putation
which

ation (it
mated in

h bank.
s times
wish to

im
ma
po
the
Re
ele
ne
wi

D)
eq
sim
rep
ori
be
run
tim
da
ex
(27
va
co
we

SY
it
ex
cal
co
Ho
co
ba
ex
str
kin
ins
[17

As we obser
mpact on smal
ake an analysi

oints with and
em. Then, nex
egcap equation
ements that ca
w algorithm
ithout any cruc

Fig.

The new cod

), which are
quation, and
mulation (line
petitiveness o
iginal code. T
fore of the lo
n. This optim

me, but it also
ata of A, B, C
ecution. How
773 banks), t

ariable, which
mputers integ
e can remove
The next op

YMBOL was
use two func
ample used
lculates the
rrelation mat
owever, the o
nsiderable, if

alance this ove
ecution time.

ructures, if are
nd of matrix
side of the str
7] These defi

rved before i
ll and medium
is of the code
without depe

xt step is to s
n, which is ev
an be calculat
is proposed
cial dependen

8 Regcap Func

de integrates 4
e the decom

they are ca
 9, Fig. 9). In

of computation
These values a
oop structure

mization decre
o increases th
C and D have
wever, for the
the amount o
is not a relev

grate more tha
the redundanc

ptimization is
originally cre
ctions of this

is "gsl_lin
Cholesky d

trix used in
overhead adde
f we are not
erhead, the us
Hence, it is b

e not really ne
structure int

ructure specif
initions increa

in Fig. 5, thi
m input. Then
with the obje
ndencies with

separate the p
valuated for ea
ted as constan
(see Fig. 9),

ncy are calcula

tion in C Algor

4 global varia
mposition of
alculated for
other words,

n, which was
are calculated

where the co
eases conside
he memory al
e to be mainta

most deman
of memory w
vant value con
an 4GB. This
cies on the cod
s related to
ated using the
library insid

nalg_cholesky
decomposition

n the Monte
ed by the GL
using many

se of GSL lib
better to avoid
eeded. The ma
tegrates a set
fically six ele
ase the memo

is function h
n, our proposa
ctive of determ

h the aim of sp
part dealing w
ach iteration a
nts values. He
where all ele

ated first.

rithm in C

ables (A, B,
the initial R
all banks

we have dele
s a weakness

d in the lines 6
ore of SYMB

erably the exe
llocation, due
ained during
ding test perf

was 22 KB fo
nsidering that c
example show
de.
the data str

e GSL library
de of the code
y_decomp",
n applied t

Carlo simu
LS data struc
math operati
rary can wors
d defining GS
ain reason is th
t of data def
ments for eac

ory allocation

has big
al is to
mining
plitting

with the
and the
ence, a
ements

C, and
Regcap
in the

eted the
in the

6 to 16
BOL is
ecution

to the
all the

formed
or each
current

ws how

ructure.
due to

e. One
which

to the
ulation.
cture is
ions to
sen the

SL data
hat this
finition
ch data
needs,

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3227

which is an important key, when data on the code are aligned
to take advantage of L1 and L2 cache memory.

For this reason, we have decided to modify the data
structure using the memory alignment and pointer arithmetic.
These allocations allow us to improve the spatial locality [18].
In addition, using this technique, we can reduce the cache
misses and improve the execution time considerably. Also,
these modifications do not only allow us to improve the
computational speed, but also, it creates the possibility to
apply parallel strategies as it will be detailed in next
subsection.

The last optimization is about the loop unrolling. This
technique is a well-known code transformation for improving
the application performance and it has been applied in the
most time consuming function Monte Carlo simulation (Fig.
5). It can improve from 10% to 30% the execution time,
depending on the impact of the loop inside the code [19],
because the branch instructions are reduced and the index
variable is modified fewer times. Also, this method exploits
greater instruction-level parallelism.

All these changes give rise to a new version of SYMBOL,
with the main objective being minimizing the execution time.
For this reason, once we finished all the modifications, we
have evaluated a set of different data input from small to big.
This evaluation is detailed in Fig. 10, where we can observe
the positive effect of the optimization process. Here, we have
a considerable improvement, up to 60% on the best case
(Lithuania) where the execution time goes from 23 to 8
seconds.

However, our main objective is to reduce considerably for
the medium and big test cases. We can observe that for
Germany we get a 51% of improvement (execution time goes
from 1 hour and 18 minutes to less than 38 minutes). For the
other medium input cases, the improvements are around 56%
(Fig. 10). It is important to note that this new version is not
only faster, bur even more important, it has been developed
thinking to a parallel version.

D. Parallel Version of SYMBOL

Once we have finished the serial version, we start the
analysis of the parallel version. Hence, we analyze the parallel
standards to be applied to SYMBOL. In other words, we have
exploited the possibility of developing a version which allows
us to execute SYMBOL on a multi-core cluster through
message passing interface (MPI) libraries [20], or in a hybrid
environment using multi-core and graphics processing unit
(GPU). However, it is worthwhile to notice that, SYMBOL
presents a lot of data dependencies, and they increase when we
are executing the model with the contagion flag on. It means
that we face a module by module execution and each module
needs to collect the information in order to calculate the next
step. At the end, if we use MPI we need to send a huge
amount of messages by iteration, which can degrade execution
performance due to synchronization problems.

Fig. 9 Recode Regcap Function, Optimized Version of SYMBOL

For this reason, we look for a solution, which allow us to

make a parallelization inside the machine with the aim of
managing the overhead added by the parallel library. In
particular we can use OpenMP library. This is a well-known
set of parallel libraries becoming more and more popular,
since the number of cores inside the computer is increasing.
Currently, we have systems where the number of cores can be
4, 6, 8, etc., per processor and with multiple processors in each
machine. This large number of cores would allow us to create
a small high-speed environment.

OpenMP is a portable, scalable tool, which allows
programmers, using a simple interface, to create parallel
region where the code is executed in parallel on multiple
threads sharing data. However, we have to take care of data
sharing between threads and we have to avoid the
dependencies inside of the loop structures in order not to
create deadlock scenarios or situations where the overhead can
get worse the execution time.

Fig. 10 Serial Execution using both original and optimized version of
SYMBOL (100.000) defaults

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3228

In some cases, the parallel execution can take more time
than the serial version, mainly because of synchronization
problems between the parallel processes (or threads) such as:
communication imbalances, congestion in the communication
paths (memory or network), overheads added by the
parallelism, few amount of computed data against the
communications performed, etc. This can be evidenced on Fig.
11, where execution performances of the small inputs are
seriously affected by the parallelization. Execution time can be
double when we are executing with two or more threads.

Fig. 11 Worst Parallel results using SYMBOL and OpenMP

However, we have selected a medium and big input to test

the improvement achieved using the parallelization. Using a
correct input data, the parallel version needs shorter execution
time, but results depend on the number of threads open for
execution. As an example, we look at the case of Great Britain
(Fig. 12). In this case when using two threads, the parallel
version is faster than serial version. Hence, if we increase the
number of threads (e.g. 4,6,8,10, ...) the performance will not
improve because the overhead generated by threads is bigger
than computation time of the workload. A similar behavior has
been obtained for Spain, where the execution time improve
until four threads (Fig. 12). These results show that as the
number of banks increases, execution using threads starts to be
an ideal solution.

Also, Fig. 12 shows two additional examples where the
OpenMP version is exploiting the parallelism (Italy and
Germany examples). In both cases we have opened until 12
threads and with these setting, we have the fastest execution
time. For example in the case of Germany, the execution time
has dropped off from 38 minutes of the optimized version, to
less than 5 minutes using the OpenMP version.

This improvement represents gains around to 87% of the
time. However, it is important to understand that the number
of threads will be limited by two main factors: number of
physical cores on the machine and the computational
workload of the input data5.

5 For these experiments, we have used a machine with two Intel

processor Xeon X5670 with 6 core each processor.

E. Automatic Tuning of SYMBOL on Multicore
Environments

To address the problem of the threads discussed in the
previous Section, we need to create an analysis to determine
the ideal number of threads according to the input data in a
transparent manner. Hence, we have created an automatic
procedure which set the ideal number of threads to be opened
for the parallel version or it simply selects the optimized serial
version. To define the ideal number of banks by thread that we
have to open, we have evaluated the overhead created by the
OpenMP implementation on each iteration on SYMBOL.

An example of this characterization is detailed in Fig. 13,
where we have selected the worse cases (i.e. Great Britain and
Spain) or small inputs. We have divided the code in two main
parts, the code that use the OMP primitives and the rest of the
program (Fig. 13). The serial execution gives better
performances than the Omp Parallel using 2 threads for small
input (Lithuania, Greece and Bulgaria), mainly because of the
overhead added by the OpenMP library. For example, if we
observe the average on the execution time by thread and
iteration, they are around 8.0 E-6 and 9 E-6 second for all
these small inputs, considering that the number of total
iteration were 4.692.777, 5.874.684 and 2.787.7592
respectively for 100.000 defaults. However, if we analyze the
average execution time for the serial version, their values are
lower than 3E-6. Then, we can conclude that the minimum
overhead by iteration is around 9.0E-6 and 1.0E-5 second by
iteration. In this case, all executions with a lower average by
thread than this threshold overhead has to use the serial
optimized version.

On the other hand, we have analyzed the medium input to
observe the impact of the thread overhead. In this case, we
have selected two cases Great Britain with 82 banks and Spain
with 133 banks. The results of the characterization can be
found on Fig. 14, and we can observe that the OpenMP
version is getting better results that the serial version

Fig. 12 Improving Parallel execution of SYMBOL using OpenMP

However, these improvements are achieved until a specific

point. For example in Great Britain, the execution with two
threads is better than serial but when we execute with four

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3229

threads the execution begins to be worse. A similar behavior
occurs with Spain, where the execution time is better when we
execute with two or four threads but it start to get worse when
the number of thread is equal to six.

Fig. 13 Serial and OpenMP Thread characterization for small inputs

In particular, if we observe the execution time average for

the worse cases (4 threads for Great Britain and 6 threads for
Spain), we can determine that the overhead of the parallel
implementation is affecting the performance. In both cases the
values of the execution time average by threads are lower than
10E-5. This means that they are below of the threshold of the
minimum added overhead of the OpenMP. Then, if we
consider the execution time of Spain with 4 threads open, we
can observe that the execution average is around 1.3E-5 that is
higher than the minimum overhead and its more or less 33
banks by thread. For this reason, we have defined our
threshold as 30 banks in order to define an approximate value
that gives us the minimum requirement in order to cover the
overhead added by the OpenMp solution. However, the
maximum number of threads is limited by the physical
capacity of the multi-core architecture. This value has been
tested with a set of different input as can be evidenced on the
performance evaluation.

Fig. 14 Thread characterization for medium inputs

 Once defined this value we can create an automatic tool of
SYMBOL. This tool is compiled using pre-processor macros,
where, by using conditional compilation, we can control
which part of the code will be executed in serial or parallel.
Also, in the case of executing in parallel, we have to define the
maximum number of threads that the machine can support
using the analysis explained before of the number of threads.

Fig. 15 Thread characterization for medium inputs

The parallel and serial version are called using a batch file,

which would determine the version (serial or parallel) and the
amount of threads that has to be used considering the input.

Summarizing SYMBOL is executed automatically and it
follows the flowchart defined on Fig. 15, where an input needs
at least 60 banks in order to open at least two OMP threads on
the parallel version. Also, if the number of threads obtained is
bigger than the number of cores of the machine, then
SYMBOL uses as a number of threads the maximum capacity
of the system. For example, Germany has 1113 banks divided
by 30 is equal to 37 threads, but this number cannot be bigger
that the physical support of the machine. For this reason, the
number of threads defined will be the maximum established
by the multi-core architecture.

F. Testing and Data Verification of SYMBOL

All versions developed have been tested with a strict
procedure, where we have compared the results of original
version using a set of different input data. Then, we evaluated
all results obtained through the different versions with the aim
of determining the effectiveness of each version. The results
obtained show an accuracy of 100% between original version
output data and the output of the optimized version of
SYMBOL.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3230

IV. PERFORMANCE EVALUATION OF SYMBOL

To test the new optimization of SYMBOL, we have used a
MAC machine composed by two processor of 2.93 Ghz 6
Core Intel Xeon, 64 GB 1333 Mhz DDR3 memory RAM, Mac
OS X lion 10.7.5 operative system, and gcc 4.6.2 compiler.
Furthermore, the inputs used have been classified in small,
medium and large according to the number of banks. This
evaluation tries to demonstrate the improvement of the two
main issues of SYMBOL: execution time and scalability of the
default scenarios. In this sense, Fig. 16 shows the execution
time obtained for 100.000 defaults using the new automatic
SYMBOL tool.

We recall that the number of threads to be opened,
according to the number of banks, is automatically chosen by
our tool, and we can take the most out of the multi-core
machine. For example, in the Great Britain example, the
number of threads opened is two, while in Germany the
number of threads is 12 (see Fig. 16). For the cases of small
input as a Lithuania and Poland are used the serial version and
their improvements are around 60% and 56% respectively.
Also, analyzing the performance results in Fig. 16, we can see
the considerable improvements we have comparing the
original SYMBOL and the new optimized SYMBOL tool.
These improvements range from 52% to 94%. In this case, we
can observe how our tool can open the right number of cores
in order to improve the execution time.

Another analysis is related to the scalability of SYMBOL
when we increase the default scenarios. In this sense, we have
observed that SYMBOL can request a lot of time to execute
big simulations (Fig. 4). In this case, we increased the number
of default scenarios from ten thousand to one million and the
results are summarized in Fig. 17, where considerable
improvement is achieved by the new SYMBOL parallel
version when it is run with a large number of banks and with
large number of default scenarios. These tests were done using
a mix input of different EU countries with 2727 banks.

Fig. 16 SYMBOL execution using the automatic tool

Results show a huge reduction on the execution time (96%

in the best case), which leads to have simulation running for

few hours instead of several days as is presented in Fig. 17.

Fig. 17 SYMBOL Execution using the automatic tool and increasing
the problem size

The last evaluation of the tool is the performance analysis

on speed and efficiency, between the new optimized serial
version and the OMP parallel. Overall performance evaluation
are shown in Table I, where two performance metrics have
been analyzed: speedup and computational efficiency. The
speedup refers to how much a parallel algorithm is faster than
a corresponding sequential algorithm. In this sense, we
calculate it using the serial time divided by the parallel time.

As we can detail on the Table I, the efficiency begin to be
around 100% using all the architecture and a big data input
(Some EU Countries). This is due to the overhead of the OMP
library start to be irrelevant on the execution time. However,
For Spain and France the comparison between the optimized
serial and the parallel version using 4 threads (see Table I),
will give: speedups around 1.44 and 1.85 and the efficiency
are 36% and 46.35%, respectively. In both cases, the impact of
the added overhead affects the linearity grow of the speedup.

TABLE I

PERFORMANCE EVALUATION OF SYMBOL TOOL

Data Input
N Threads

Opened
Speedup

Optim /Parallel
Efficiency

Optim /Parallel
Spain (133) 4 1.44 36.00%

France (149) 4 1.85 46.35%

Italy (567) 12 5.57 46.40%

Germany (1113) 12 9.42 78.51%

Some EU Countries (2727) 12 11.93 99.34%

V. CONCLUSIONS

In this paper, we have presented a case-study where
SYMBOL model has been adapted automatically and
transparently to the multi-core architecture. To make this, we
have created a method, where we have analyzed the analytical
model and its characteristics, and then we have proposed a set
of changes that have been performed on SYMBOL tool in
order to improve its overall performance. This method
integrates five main steps, starting to an analysis of the
SYMBOL and finishing with the verification of the output

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:8, No:10, 2014

3231

results. All these steps allow us to improve and to execute
SYMBOL exploiting the multi-core architecture.

In addition, the new SYMBOL tool can automatically set up
its working framework to take the most advantages from the
multi-core architecture. In particular, it detects which version
to use (either serial or parallel) using the input information,
and then it defines the number of threads needed to get a faster
execution. The new approach of SYMBOL has been tested
using a set of different input data and the results show the
effectiveness of the improvements, where for some cases can
achieve a reduction around 96% on the execution time using
the parallel version and around 55% for the optimized serial.

Finally, we have evaluated the effects on the new SYMBOL
when we increase the number of default scenarios. In this
case, we can scale both input data and number of defaults and
the results show a considerable improvement around 96% on
the execution time for the best case tested. Now it is viable to
use this new SYMBOL version because we can analyze the
consequences of bank failures and its effects over a larger
amount of banks in the European Union banking sector as was
demonstrated in our experimental validation.

REFERENCES
[1] Michailidis, P., Margaritis, K. .Efficient Multi-Core Computations in

Computational Statistics and Econometrics, IEEE 15th Int.Conference
on Computational Science and Engineering (CSE), pp.267274.

[2] De Lisa R., Zedda S., Vallascas F., Campolongo F., Marchesi M.,
2011,Modelling Deposit Insurance Scheme losses in a Basel 2
framework, Journal of Financial Services Research, Volume: 40 Issue: 3
pp.123-141

[3] Vasicek O. A., 2002, Loan portfolio value, Risk
http://www.risk.net/data/Pay per view/risk/technical/2002/1202 loan.pdf

[4] Merton R.C., 1974, On the pricing of corporate debt: the risk structureof
interest rates, Journal of Finance, 29, 449-470

[5] Basel Committee on Banking Supervision, 2005, An Explanatory
Noteon the Basel II IRB Risk Weight Functions
http://www.bis.org/bcbs/irbriskweight.pdf

[6] Basel Committee on Banking Supervision, 2006, International
Convergence of Capital Measurement and Capital Standards
http://www.bis.org/publ/bcbs128.pdf

[7] Basel Committee on Banking Supervision, 2010 rev 2011, A global
regulatory framework for more resilient banks and banking systems
http://www.bis.org/publ/bcbs189.pdf

[8] Sironi A., Zazzara C., 2004, Applying Credit Risk Models to Deposit
Insurance Pricing: Empirical Evidence from the Italian Banking System,
Journal of International Banking Regulation, 6(1)

[9] James C., 1991, The Loss Realized in Bank Failures, Journal of
Finance,46, 1223-42

[10] Mistrulli P.E., 2007, Assessing Financial Contagion in the Interbank
Market: Maximum Entropy versus Observed Interbank Lending
Patterns, Bank of Italy Working Papers n. 641

[11] Upper C., Worms A., 2004, Estimating Bilateral Exposures in the
German Interbank Market: Is there Danger of Contagion?, European
Economic Review, 8, 827-849

[12] Zedda S., Cannas G., Galliani C., De Lisa R., 2012, The role of
contagion in financial crises: an uncertainty test on interbank patterns,
EUR Report 25287, ISSN 1831-9424, ISBN 978-92-79-23849-9
http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/256
95/1/lbna25287enn.pdf

[13] European Commission, Directorate-General for Economic and Financial
Affairs, 2011, Public finances in EMU 2011, European Economy 3 2011
http://ec.europa.eu/economyfinance/publications/european
economy/2011/pdf/ee-2011-3 en.pdf

[14] European Commission, Directorate-General for Economic and Financial
Affairs, 2012, Fiscal Sustainability Report, European Economy 8—
2012http://ec.europa.eu/economyfinance/publications/european
economy/2012/pdf/ee-2012-8 en.pdf

[15] De Rose C., Fernandes P., Lima A, Sales A. and Webber, 2011,
Exploiting Multi-core Architectures in Clusters for Enhancing the
Performance of the Parallel Bootstrap Simulation Algorithm, IEEE
International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), pp 1442-1451

[16] OpenMP Architecture Review Board, 2013, OpenMP Application
Program Interface

[17] Galassi M, Davies J, Theiler J, Brian G, Jungman G., Alken P., Booth
M., Rossi F., 2013, GNU Scientic Library Reference Manual,
http://www.gnu.org/software/gsl/manual/gsl-ref.pdf

[18] Faria Nuno, Silva Rui and Sobral Joao, 2013, Impact of Data Structure
Layout on Performance, 21st Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 117-
120,Ireland

[19] Davidson, Jack W., Jinturkar, Sanjay, 2001, An Aggressive Approach to
Loop Unrolling, Technical Report, University of Virginia, USA

[20] Message Passing Interface Forum, 2012, MPI: A Message-Passing
Interface Standard Version 3.0 Technical report, 2012

Ronal Muresano was born in Barquisimeto Venezuela, in 1979. He received
the Bachelor degree in Computer Engineering from the University Valle del
Momboy, Valera, Trujillo, Venezuela in 2002, and the Master and PHD in
high performance computing by University Autonoma of Barcelona (UAB),
Spain, in 2008 and 2011 respectively.

In 2002, he has joined to the Computer Engineering Department as a
professor at the University Valle del Momboy until 2007. Since 2007 until
2013, he was part of the Computer Architecture and Operative Systems
(CAOS) department as a research staff and assistant professor at the
University Autonoma of Barcelona (UAB), Spain, where his main interest was
on software optimization on multicore architecture and parallel computing.
His is currently working in the European Commission (EU), at Joint Research
Center (JRC) in the Scientific Support to Financial Analysis (SFA) unit as a
research staff.

Andrea Pagano was born in Rome in 1964. He has a Ph.D. in mathematics
from Bown Universisty.

After few years in academia working on complex geometry, he started to
work on environmental modeling at ENEA. In 2005 he joined the Joint
Research Center (JRC) of the European Commission (EC), where he worked
on Global Sensitivity Analysis. In 2011 he joined the group of Economic and
Financial Analyses where he works as data analyst and modeler.

