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 
Abstract—A theoretical investigation on the effects of both 

steady-state and dynamic deformations of the foils on the dynamic 
performance characteristics of a self-acting air foil journal bearing 
operating under small harmonic vibrations is proposed. To take into 
account the dynamic deformations of foils, the perturbation method is 
used for determining the gas-film stiffness and damping coefficients 
for given values of excitation frequency, compressibility number, and 
compliance factor of the bump foil. The nonlinear stationary 
Reynolds’ equation is solved by means of the Galerkins’ finite 
element formulation while the finite differences method are used to 
solve the first order complex dynamic equations resulting from the 
perturbation of the nonlinear transient compressible Reynolds’ 
equation. The stiffness of a bump is uniformly distributed throughout 
the bearing surface (generation I bearing). It was found that the 
dynamic properties of the compliant finite length journal bearing are 
significantly affected by the compliance of foils especially whenthe 
dynamic deformation of foils is considered in addition to the static 
one by applying the principle of superposition. 
 

Keywords—Elasto-aerodynamic lubrication, Air foil bearing, 
Steady-state deformation, Dynamic deformation, Stiffness and 
damping coefficients, Perturbation method, Fluid-structure 
interaction, Galerk infinite element method, Finite difference method. 

I. INTRODUCTION 

IR foil bearings so-called aerodynamic journal bearings 
are the machine components which find nowadays 

widespread use in very high speed, lightly loaded oil-free 
rotating turbo machinery because they have theoretically no 
speed limitations, and they are environmentally benign. In the 
design of such bearings, it is of cardinal importance to 
enhance their steady state and dynamic performance 
characteristics for the safety operation, especially against the 
external dynamic excitations [1], [2]. Fig. 1 shows a schematic 
picture of a typical elastically supported foil bearing. As 
illustrated, it schematically consists of a cylindrical shell 
(sleeve) lined with corrugated bumps (bump foil) topped with 
a thin flat foil (top foil). The bump foil serves as a support for 
the top metal foil and its compliant feature allows the top foil 
to deform under the action of aerodynamic pressure. This 
latter is generated in the air film when the shaft (journal) 
rotates over a certain angular speed. Air foil bearings were 
constantly modified several times in order to improve their 
performances. In fact, there are three generations of air foil 
bearings. One distinguishes one generation from another by 
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the complexity of the spring resistance in the bump foil. The 
latest bump foil bearings being developed are of the so-called 
“generation III” variety [3], [4]. The bumps of the first designs 
of these bearings, so-called generation I, are uniformly stiff. 
Generation II bump foils vary but only on one axis. In 
generation III bearings, however, the stiffness of the bumps is 
varied to optimize air film pressure. This complex variation of 
bump stiffness increases the load capacity of generation III 
bearings to more than twice that of best previous generation 
designs. Historically, air foil bearings first came into wide-
spread use in the 1960’s, when they began to appear in such 
applications as the air-cycle machines (ACM) that cool and 
pressurize commercial and military airplanes and, more 
recently, natural-gas compressors. These bearings have several 
advantages over oil lubricated bearings [5].  
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Fig. 1 Cross section schematic of a typical foil bearing 
 

They have theoretically no speed limitations, and they 
usually work better at temperature extremes than oil bearings 
because most oils break down at very high temperatures and 
become overly viscous at low temperatures [4]. Besides, they 
require less maintenance and they can be stored indefinitely, 
unlike oiled bearings, which must be cleaned and run 
periodically. And they are environmentally benign. On the 
other hand, an engine that incorporates air foil bearings will be 
lighter than its oil-dependent counterpart [6]. Foil bearings are 
somewhat lighter than the ball bearings they replace. This is 
due to the elimination of the lubrication system (pumps, 
filters, plumbing and so on) that oil-lubricated bearings require 
[7], [8]. Over the past decades, a considerable number of 
theoretical and experimental studies have been made on the 
performance characteristics of air-lubricated bearings by many 

Analysis of a Self-Acting Air Journal Bearing: 
Effect of Dynamic Deformation of Bump Foil 

H. Bensouilah, H. Boucherit, M. Lahmar 

A



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:10, 2014

1676

 

re
w
ta
ad
m
in
co
bo
w
pr
de
so
fr
fro
vi
m
un
ca
(1
str
de
 

th

w
st
th
fo
th
co
pr

h

esearchers [9].
works treating 
aking into con
ddition to the 

main objective
nvestigate the
ompliant self-
oth static and 

which is built
rinciple of 
etermine how
ome operatin
equency. The
om the view p
ibrations amp

method, and w
nbalance resp
alculations are
1) rigid gas be
ructure is c
eformations ar

Fig. 2

II

A. Steady-Sta

For a comp
hickness is cal

 

where U0 is the
eady-state aer

he corrugated 
oundation, i.e. 
hroughout the 
onsideration, t
roportional to 

 

tb

hb



. As far as we 
the dynamic

nsideration the
static one eve

e of the pres
e stiffness an
f-acting air lu

dynamic defo
t up with th
superposition

w these rotor
ng conditions
e rotor-dynam
point of linear
plitudes of the
will serve as 
ponse analyse
e generally pe

earing, (2) only
considered, 
re taken into a

2 Detailed conf

I. MATHEMAT

ate Film Thick

pliant journal
culated by 

0 1Ch 

e radial deform
rodynamic pr
sub-foil is mo
the stiffness o
bearing surfa

the steady-stat
the pressure d

s

 l  

know, there a
c properties o
e dynamic de
en for highly l
sent research
nd damping 
ubricated bea
formations of 
hin metal foi
. In additio

r-dynamic coe
s, such as 

mic coefficient
r dynamics, i.e
e rigid rotor 

input data f
es of rotor-b
erformed for 
y static deform
(3) both st

account. 

figuration of the

TICAL FORMUL

kness Expressi

l bearing, th

0 cos1  
 

mation of the 
ressure. As a 
odeled as a sim
of a bump is u
ace (isotropic 
te radial defor
difference p0

are very few r
of such beari
formation of 
loaded bearin

h is to theor
characteristic

aring by cons
the bearing st
ils by applyi
on, one desi
efficients var
dynamic ex
s will be dete
e. for small ha
using a pertu

for the stabili
bearing system

the following
mation of the b
tatic and d

 

e bump foil 

LATION 

ion 

he steady-stat

0U     

bump foil du
first approxim

mple Winkler
uniformly dist
stiffness). W

rmation of a b
ap0
, i.e. 

Smooth top foil

Bump foil

L

 

research 
ings by 
foils in 

ngs. The 
retically 
cs of a 
sidering 
tructure 
ing the 
ires to 
ry with 
citation 

ermined 
armonic 
urbation 
ity and 
m. The 
g cases: 
bearing 

dynamic 

 

te film 

 (1) 

e to the 
mation, 
r elastic 
tributed 

With this 
bump is 

 

wh

pre
 

 
rep

pro

2,s

bu
Po
Ac
 

In 
 

wh
as:
 

Eq

ha
be
att

 

wh

an

att
tra
the

fun

co

 

 

L

here 0p  and 

essures, respe

presents the 

oportional to t

s is the bump

ump foil thick
oisson’s ratio
ccordingly, th

h

dimensionles

here   is th
: 

B.  Steady-Sta
quations, and B

If we assume
armonic motio
aring at frequ
titude angle m




here  
nd   are c

titude angle, 
ansient hydrod
e following 

nctions are th

mplex dynam

3
0 0p h


 
 



LU  00

ap
 
are the s

ctively. 

0

2


E

s
L

compliance 

the bump foil 

p pitch, l is ha

kness, E and 
o of bump 
e steady-state 

Ch  00 c1 

ss form, (3) rea

1
~

0 h 

he dimensionl

2  a

CE

p

ate and Dynam
Boundary Con

 that the journ
on of small a
uency ν, the in
may be express

ie0
 

0  ,  

 is the relativ

complex amp

respectively
dynamic lubr
differential 

he steady sta

mic pressures Q

0p

z



     




 app 0
       

steady-state ga

 2

3

1 








bt

l

 

of the bum

stiffness bK

alf of the bum

σ are the Yo
foil material
 film thicknes

 pL 00cos
 

ads 

~cos 00  p
 

less complian

 2

3

1 








b

a

t

l

E

s  

mic Compress
nditions  

nal (rotor) is e
amplitudes w

nstantaneous e
sed respective

t~ and
0 

0 and i

ve excitation f

litudes of ec

y. Under the
rication probl
equations wh

ate air-film pr

Q
~

 and Q
~

 : 

3 0
0 0

p
p h

z

    




                    

as-film and am

mp foil, inv

. As depicted 

mp length, bt
oung’s modul
l, respectivel
ss is written as

ap         

1           

nce operator d

sible Reynolds

excited into a 
within the com
eccentricity rat
ly as [10]: 

tie
~ ; 

1          

frequency, an

ccentricity rat

ese condition
lem is govern
hose the un

ressure 0
~p , a

 0 0p h








        (2) 

mbient 

versely 

in Fig. 

 is the 

us and 
ly [1]. 
s

 
        

(3) 

        
(4) 

defined 

s’ 

simple 
mpliant 
tio and 

     (5) 

nd 
tio and 

ns, the 
ned by 

nknown 

and the 

        (6) 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:10, 2014

1677

 

 

 






























































































































































































00

00
00

00

0

0

0

0
0

3
0

00
00

0

0

0

0
0

3
0

0
3

00
3

0

~

~

~

~
~~2~

~

~

~
~~

~

~

~~

~
~

~~
~~

3

~

~
3~

~
~~

~

~

~~

~

~

~~
~~

~

~
~~

~

~
~~

p

Q

h

h
hpi

p

Q

h

h
hp

h

h

zz

p

h

hp
ph

h

h

p

Q
hp

p

Q

zz

p

p

Qp
ph

z

Q
ph

z

Q
ph

























   (7) 

 

with   Uh
~

cos
~

  

 

 






























































































































































































00

00
00

00

0

0

0

0
0

3
0

00
00

0

0

0

0
0

3
0

0
3

00
3

0

~

~

~

~
~~2~

~

~

~
~~

~

~

~~

~
~

~~
~~

3

~

~
3~

~
~~

~

~

~~

~

~

~~
~~

~

~
~~

~

~
~~

p

Q

h

h
hpi

p

Q

h

h
hp

h

h

zz

p

h

hp
ph

h

h

p

Q
hp

p

Q

zz

p

p

Qp
ph

z

Q
ph

z

Q
ph

























 

(8) 

 

with   Uh
~

sin
~

  

It is noted that (6) is a nonlinear equation while (7) and (8) 

are complex linear with equations respect to Q
~

and Q
~

, and 

they are easily solved if the steady-state film thickness 0

~
h  and 

steady-state pressure field 0
~p  are obtained from (4) and (6). 

The boundary conditions associated to these equations are: 
 

1~
0 p at

2
1~ z

                              
(9a) 

 

     1~,2~~,0~
00  zpzp                    

(9b) 
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20 
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zp 


       (9c) 

 
 and 

0
~~

  QQ at
2

1~ z                       (10a)
  
 

    0~,2
~~,0

~
 zQzQ                   

(10b) 

 

    0~,2
~~,0

~
 zQzQ                  

 (10c) 

C. Fluid-Film Dynamic Coefficients 

The complex distributions Q
~

 and Q
~

 are obtained from 

(7) and (8) from which the eight dynamic coefficients in the 
 , -coordinate system can be calculated by integrations: 

 
1

2 2

0 0

2 cosZ Q dzd


         ; 
1

2 2

0 0

2 cosZ Q dzd


          

 (11) 
1

2 2

0 0

2 sinZ Q dzd


         ; 
1

2 2

0 0

2 sinZ Q dzd


          

 
where  BiAZ  , etc. are the dimensionless complex 

impedances, and   ZalA Re , and   ZB Im1 , etc. 

are the dimensionless stiffness and damping coefficients, 
respectively. 

III. NUMERICAL TREATMENT OF STEADY-STATE AND 

DYNAMIC REYNOLDS’ EQUATIONS  

In the present investigation, the stationary equation is 
solved using the Galerkin’s finite element method while the 
dynamic equations are solved by means of the finite difference 
technique. Because of the axial symmetry of the bearing, so 
only the half bearing is divided into 

zNN 
 equal rectangular 

cells (elements) with an area equal to z~  where 

zN
z

N
2

1~ and
2





 

are the mesh sizes in the 

circumferential and axial directions, respectively. 

IV. METHOD OF SOLUTION  

The steady-state solution of elastoaero dynamic problem 
which is considered as a highly nonlinear fluid-structure 
interaction problem is obtained by the substitution method. 
This method consists of building up a series of solutions

  0
0P ,   1

0P , .....,   1
0

kP ,   kP0  ;   kP0 being calculated 

from   1
0

kP by solving the linear system: 

 
          1

00
1

0
  kkk PFPPK ; k=1, 2, ....kmax 

 
We can write this in incremental form by introducing the 

residual vector   kR : 

 
                 1

0
1

0
1

0
1

0
  kkkkk PPKPFPRR  

         kkk RPPK 
0

1
0

 
        kkk PPP 00

1
00    

 
where Ω0 is a relaxation factor which ensures and accelerates 
the convergence of the iterative process. 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:10, 2014

1678

 

 

To obtain the steady-state and dynamic solutions of elasto-
aerodynamic problem, the following steps of the 
computational procedure are then performed: 
1. Select the input parameters of the problem 

 ,, , C L, ,R , 0   p,  E ,  , s , l ,t ab  . 

2. Initialize the iteration number k to 0, the norm n to 1., 

and the global vector containing nodal dimensionless 

steady-state pressures    10 kP . 

3. While    max and kkn p   , do 

 Set 1 kk  
 Calculate the dimensionless steady-state film thickness 

profile using (4) for eachnode of the finite element grid 
 Initialize global matrices [K] and {F} to 0. 
 For each element: 

 Extract the elementary vector   1
0

kp  from the global 

vector   1
0

kP  as well as the elementary global 

coordinates arrays of each node by means of the 
connectivity array 

 Compute the elementary matrices    1
0

k
e pk  and 

   1
0

k
e pf  using the Gauss-Legendre quadrature 

 Assemble  ek in  K , and  ef  in  F  

 Form the reduced matrices  rK  and  rF  by 

introducing the essential boundary conditions (9a) and 
(9b) 

 Solve the reduced linear system       r
k

r FPK
r

0 for the 

reduced global pressure vector 
  k

r
P0 using the successive 

over-relaxation (SOR) method to take into account the 
boundary condition (9c) 

 Form the global pressure vector   kP0 from   k

r
P0 and the 

values of boundary conditions 

 Calculate         1
000

 kkk PPP and the relative 

least square norm of   kP0 , i.e. 
    
    kk

kk

PP

PP
n

00

00 
  

 Update the global pressure vector: 
        kkk PPP 00

1
00    

4. End do while  
5. Calculate the steady-state lift force and the steady-state 

attitude angle 0  

6. Code the nodes for which the steady-state pressure is 
greater than the ambient pressure. This step is necessary 
to solve the first order complex dynamic equations. 

7. Solve the linear partial differential equations, (7) and (8) 
over the finite difference grid with SOR scheme to obtain 

the complex dynamic pressures Q
~

and Q
~

. It should be 

noted that the calculations are performed for each coded 

node belonging to the over-ambient region without 
vanishing the computed negative pressure terms. The 
pressure convergence criterion is 

   

 
5

1

1

10~

~~


















 
k

kk

ij

ijij

Q

QQ
Max





 

where the symbol  means 

here the magnitude of the complex quantity
   

 1

1

~

~~



 
k

kk

ij

ijij

Q

QQ




, and α=(ε, ø). 

8. Compute the fluid-film complex impedances and deduce 
the stiffness and damping coefficients. 

V. RESULTS AND DISCUSSION  

Based on the analysis described in the present paper, two 
separate computer codes were developed to study the effects 
of elastic deformations of the bump foil on the steady state and 
dynamic performance characteristics of a compliant air foil 
bearing using the algorithm described above. 
 

 

(a) Rigid gas bearing 
 

 

(b) Compliant gas foil bearing 

Fig. 3 Steady-state pressure distributions 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:10, 2014

1679

 

 

A. Effects of Elastic Deformations in Both Steady State and 
Dynamic Pressures  

The calculations were performed for: 07.1 , 4.0 ,

5.0L
R , 3102 R

C  which are the steady-state 

eccentricity ratio, the compressibility number, the compliance 
factor, and the aspect and clearance ratios of the journal 
bearing, respectively. Fig. 3 depicts the steady-state pressure 
profiles and contours calculated in the half bearing for a 

highly loaded journal bearing operating at 0 =0.8. It is 

observed that the effect of the bump-foil elasticity leads to a 
spreading of the pressure distribution in the circumferential 
direction of the bearing over a greater area and to an important 
reduction of the peak pressure inducing a reduction of the 
journal bearing carrying capacity. The increasing of the fluid-
film thickness over the whole bearing area explains the 
pressure drop.  

It is also observed that the 3-D plots of the steady-state 
pressure field present sub-ambient pressures which occur in 
the divergent region of both rigid and compliant foil bearings. 
The existence of sub-ambient region provides the suction 
necessary to replenish the air pumped out by side. 

In Figs. 4 and 5, we compare the distributions of real and 

imaginary parts of the complex dynamic pressure Q
~

 

calculated in the half bearing for rigid and compliant bearings 

and 0 =0.8. As found under steady-state conditions, the 

elastic deformations of the bump foil also affect the maximum 
value of both dynamic pressures and this effect is more 
pronounced when the dynamic deformation is considered in 
addition to the static one. Similar trends were observed for the 

real and imaginary parts of the dynamic pressure Q
~

.  

Besides, it should be pointed out that almost similar trends 
were found for both rigid and compliant self-acting liquid-
lubricated journal bearings (incompressible case) [10]. 
 

 

(a) α=0.0 
 

 

(b) α=0.4 (Static deformation only) 
 

 

(c) α=0.4 (both static and dynamic deformations) 

Fig. 4 Representations in 3D of the real part of the dynamic pressure 

Q
~  

 

 

(a) α=0.0 
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(b) α=0.4 (Static deformation only) 
 

 

(c) α=0.4 (both static and dynamic deformations) 

Fig. 5 Representations in 3D of the imaginary part of the dynamic 

pressure Q
~

 

B. Effects of Dynamic Deformations on the Dynamic 
Coefficients 

In Fig. 6, stiffness and damping coefficients of the rigid air 
bearing are plotted as a function of excitation frequency ratio. 

The rotor speed is38krpm and the steady-state eccentricity 
ratio is 0.8 (heavy load). The results show that the dynamic 
coefficients stay mainly constants for high values of the 
excitation frequency.  

However, we observe a nonlinear evolution of these 
coefficients for lower frequency ratios. The direct stiffness 

coefficient in the load (vertical) direction XXa  is the largest 

and it increases as the excitation frequency ratio γ increases. 
The direct stiffness coefficient in the horizontal direction 

YYa  displays similar behaviour, except that it peaks at a 

smaller value.  

The cross-coupled stiffness coefficients YXXY aa , , and the 

direct stiffness YYa  are significantly smaller in magnitude 

than the direct stiffness in the vertical direction XXa over the 

entire range of excitation frequency ratios investigated. 

The damping coefficients decrease monotonically and 
converge with increasing excitation frequency ratio. 

Furthermore, the values of cross-coupled damping 

coefficients XYb and YXb  differ from each other significantly 

instead of being equal as predicted by the incompressible 
hydrodynamic lubrication theory. 

It can be concluded that the excitation frequency sensitively 
affects the air foil bearing dynamic coefficients, and all the 
damping coefficients decrease in higher frequency region and 
vanish when  .  

 

 

 

Fig. 6 Stiffness and damping coefficients of the rigid air bearing as 
functions of excitation frequency ratio 

 
In Figs. 7 and 8, stiffness and damping coefficients 

calculated for a compliant foil bearing are plotted as a function 

of excitation frequency ratio for 8.00  .  

We observe that the elastic deformations of the bump foil 
significantly affect the eight dynamic coefficients over the 
entire range of excitation frequencies, and this effect is more 
pronounced when the dynamic deformation is considered in 
addition to the static one.  

Compared to the rigid case, the taking into account of both 
static and dynamic deformations of the bump foil leads to an 
important reduction of stiffness and damping coefficients. 
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Fig. 7 Stiffness coefficients of the compliant air foil bearing as 
functions of excitation frequency ratio 

 

 

 

 

Fig. 8 Damping coefficients of the compliant air foil bearing as 
functions of excitation frequency ratio 
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VI. CONCLUSIONS  

The following conclusions are drawn from the results 
obtained in this investigation:  
1) The excitation frequency sensitively affects the air foil 

bearing dynamic coefficients even in the rigid case;  
2) The elastic deformations of the bump foil affect the 

maximum value of both steady-state and dynamic 
pressures and this effect is more pronounced when the 
dynamic deformations are considered in addition to the 
static ones;  

3) The taking into account of dynamic deformations of the 
bump foil leads to an important reduction of the stiffness 
and damping coefficients over the entire range of 
excitation frequencies.  
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