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Abstract—Missing values in data are common in real world
applications. Since the performance of many data mining algorithms
depend critically on it being given a good metric over the input space,
we decided in this paper to define a distance function for unlabeled
datasets with missing values. We use the Bhattacharyya distance,
which measures the similarity of two probability distributions, to
define our new distance function. According to this distance, the
distance between two points without missing attributes values is
simply the Mahalanobis distance. When on the other hand there is
a missing value of one of the coordinates, the distance is computed
according to the distribution of the missing coordinate. Our distance
is general and can be used as part of any algorithm that computes
the distance between data points. Because its performance depends
strongly on the chosen distance measure, we opted for the k& nearest
neighbor classifier to evaluate its ability to accurately reflect object
similarity. We experimented on standard numerical datasets from the
UCI repository from different fields. On these datasets we simulated
missing values and compared the performance of the kNN classifier
using our distance to other three basic methods. Our experiments
show that kNN using our distance function outperforms the kNN
using other methods. Moreover, the runtime performance of our
method is only slightly higher than the other methods.

Keywords—Missing values, Distance metric, Bhattacharyya dis-
tance.

I. INTRODUCTION

Missing values in data are common in many real world
datasets. There are many serious data quality problems in real
datasets such as: incomplete, redundant, inconsistent and noisy
data. Missing values can be caused by human error, equipment
failure, system generated errors, and so on. Missing values in
a dataset are common in real world applications. According
to the study of Cabena [3], about 20% of the effort is spent
on the problem and data understanding, about 60% on data
preparation and about 20% on data mining and analysis of
knowledge.

Since many algorithms in data mining require a distance
function as a basic component, our goal in this paper is to
define a new unsupervised distance function, that can deal
with unlabeled datasets with missing values. In this paper
we use the Bhattacharyya distance in order to define the new
distance function. Bhattacharyya defined a distance to measure
the similarity of two probability distributions. In the simple
case when we measure the distance between two points with
no missing values, our distance is simply the Mahalanobis
distance. When on the other hand there is a missing value of
one of the coordinates, we developed a method to compute the
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distance according to the distribution of the missing coordinate
using the Bhattacharyya distance. We estimate the result of
randomly choosing a value from the coordinate’s distribution
and computing its Bhattacharyya distance.

Our metric is general and can be used with any approach
which uses a distance metric. But because its performance
depends strongly on the chosen distance measure, we opted
for the k nearest neighbor classifier [5] to evaluate its ability
to accurately reflect object similarity.

The paper is organized as follows. Previous methods which
deal with missing values are reviewed in Section II. The
distance function using Bhattacharyya distance is described
in Section III. Experimental results on numerical datasets is
presented in Section IV. Finally, our conclusions are presented
in Section V.

II. RELATED WORK

Several methods have been proposed to deal with miss-
ing data. These methods can be classified into three basic
categories: (a) Case deletion; (b) Learning without handling
missing data; (c) Missing data imputation. Some of these
methods deal with labeled data while others deal with un-
labeled data. Our approach which deals with unlabeled data,
does not fall into any of those categories. Instead, we define
a distance metric for data with missing attributes using the
Bhattacharyya distance, which measures the similarity of two
probability distributions. When a value is missing in one point,
we compute the similarity of the distribution of coordinate
with the measured value of the second point. In this section
we will review some popular methods that deal with missing
values.

The most common method is the Case Deletion method,
that ignores all the instances with missing values and per-
forms the analysis on the rest. This method has two obvious
disadvantages: (1) A substantial decrease in the size of the
dataset available for the analysis. (2) The data are not always
missing completely at random.

Another simple and common method is the Most Common
Attribute Value method. The value of the attribute that occurs
most often is selected to be the value for all the unknown
values of the attribute. The CN2 algorithm [4] uses this idea.
One main drawback in this method is, that it does not pay any
attention to the relationship between attributes. A variation of
this method which deals with labeled data, is a restriction of
the first method to the concept, i.e., to all examples within the
same value of the class as an example with a missing attribute
value [2]. This time the value of the attribute, which occurs
the most common within the same class is selected to be the
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value for all the unknown values of the attribute. This method
is also called the maximum relative frequency method, or the
maximum conditional probability method (given concept) [7].

The main idea of the Mean/Mode Imputation method is to
replace a data point with missing values with the mean/mode
of all the instances in the data. But, using a fixed instance to
replace all the instances with missing values will change the
characteristic of the original dataset; ignoring the relationship
among attributes will bias the performance of subsequent data
mining algorithms. A variation of this method is to replace the
missing data for a given attribute by the mean or mode of all
known values of that attribute in the class where the instance
with missing data belongs [8].

The k-Nearest Neighbor Imputation method uses the kNN
algorithm (using only the known values) to estimate and
replace the missing data [10], [1]. Efficiency is the biggest
trouble for this method. While the k-NN algorithm look for
the most similar instances, the whole dataset, which is usually
quite huge, has to be searched. On the other hand, the selected
value of k and the measure of similarity will impact the results
greatly.

The k-means Imputation method for predicting missing
attribute values using simple k-means clustering. The missing
attributes are assigned with one possible value each time
and the dataset is clustered using k-means to check whether
the instance is clustered in the correct class. If so then the
assigned value is made as permanent. Otherwise the clustering
is performed with the next possible value [9].

III. DISTANCE FUNCTION USING BHATTACHARY YA
DISTANCE

A. Background

A. Bhattacharyya was a statistician who worked in the 1930s
at the Indian Statistical Institute. He defined a distance to
measure the similarity of two probability distributions. We use
this metric in order to define a metric between two samples
with missing attribute values. So first we will review the
Bhattacharyya distance, and then we will describe how we
use it within our distance function.

Consider two univariate probability density functions, f1, f:
in the same domain. The Bhattacharyya distance is defined as

Dg(f1, f2) = —In(BC(f1, f2))

where BC'is the Bhattacharyya coefficient, which is a measure
of the amount of overlap between two statistical samples o
populations. For discrete probability distributions the Bhat
tacharyya coefficient will be:

BC(fi, f2) = > VFi(@)- falw),

zeX

BC(f, fo) = / Vi@ @)z,

for continuous distributions.

We will now consider the special case of Gaussian distribu-
tions. Let f1(x), f2(z) be two univariate Gaussian probability
density functions where 1 # po and o1 # o9 and:

fl(w) I./\[(/M,O'%)

and

fa(z) = N(p2, 03)
The Bhattacharyya coefficient is defined as:

BC(f12) = [ VAT (e, =
20109 p{*(#l*#zy}.

(0f +03) 4(oF 4 03)

Therefore the Bhattacharyya distance Dp is:

Dp(fi(z), fa(x)) = =In (BC(f1(x), f2(2))) =

n ( 20109 exp { — (1 — p2)? }) _
(of +03) 4(of +03)
1 of +03\ | 1(m —p2)?
2 20102 4 0%+ o2

For multivariate normal distributions f; = N(u;, X;) the
Bhattacharyya distance will be:

1 detX 1

Dp=-In| —m—sw—u |+~ — )Tyt - ,
5= (s/detEldetXb) gl —2) 2 o — piz)

where p; and X; are the means and covariance of the distri-

butions, and

X1+

==

From these equations can be concluded that the Bhat-
tacharyya distance is a generalization of the Mahalanobis
distance. When the variances of the two distributions are the
same the first term of the distance is zero as this term depends
solely on the variances of the distributions, and the distance
will be the Mahalanobis distance between two means (i1, fs.
But, on the other hand, if the means are equal and the variances
are different the Mahalanobis distance will be zero, in contrast
to the Bhattacharyya distance which takes into account the
differences between the variances (as shown in Fig. 1).

z

(b)

Fig. 1. Bhattacharyya distance for two special cases: (a) The variances are
the same (o1 = o2), means are different (111 7# p2). (b) The means are equal
(n1 = p2), variances are different (o1 # o02)

B. Our distance measure

We now turn to define our distance metric. Let A be a set of
points, where each coordinate is measured by a different sen-
sor. Given a measured value x; for the ith coordinate 7 ¢;, the
conditional probability for ¢; will be P(c;|z;) ~ N (z;,02),
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where x; is the mean and 01-2 is the variance of the sensor
which measured the coordinate ¢;. When on the other hand
the value of z; is missing then the probability distribution for
¢; might be given in advance or can be computed according
to the known values for this coordinate from the data (i.e.,
P(c;) ~ x;), where x is the distribution. In our derivation
when the distribution is unknown we estimate it using the
kernel density estimation method (KDE) from the measured
values.

Note that since each specific coordinate is measured by the
same sensor and under the same conditions, each coordinate
has a specific variance o2. Our method can be generalized to
deal with coordinates whose measurements are dependant, but
for simplicity we assume that the coordinates measurements
are independent. Under these assumptions we will treat each
coordinate separately.

Given two sample points X and Y, the goal is to compute
the distance between them. Let x; and y; be the ith coordinate
values from points X, Y respectively. There are three possible
cases for the values of x; and y;: (1) Both values are given.
(2) One value is missing. (3) Both values are missing.

1) Two values are known: When the values of x; and y;
are given the distance between them will be defined as:

Dp(zi,y:) = DB(N(xi,07), N(yi,055)) =
1 : ; 1 (x; —y:)?
L (Caton)  Li—y)
2 20'1'10'1'2

4 ~2 2

4 07 + 0
Since z; and y; were measured by the same sensor o;, =
0i, = 0; and thus

1 (z; —y:)?

Q 2
8 o

Dp(wi,yi) = (1)
As mentioned above, this is the Mahalanobis distance which
is the standard distance measurement between two points. I~
this case, the runtime complexity is O(1).

2) One value is missing: Suppose that z; is missing an
the value y; is given. Since the value of z; is unknown, we ca
not compute its Bhattacharyya distance. Instead we model th
distance as a random selection of a point from the distributio
of its coordinate y; and compute its distance. The mean ¢
this computation is our distance. We will estimate this valu
as follows: We divide the range of ¢; [min(c;), max(¢;)] int.
I — 1 equal intervals (my, ..., m;) as illustrated in Fig. 2.

For each value m; we can estimate its probability density
p(m;) using the KDE. The probability for the jth interval Aj

is:
. max(c;) — min(c;
P(8j) = plmy) - 22X Z min(c)
As a result, we approximate the Mean Bhattacharyya dis-
tance (M Dp) between y; and the distribution as:

-1
MDg(xi,yi) = Y P(8;)Dp(N(mj,01), N (yi, 01))-
j=1
This metric measures the distance between y; and each
suggested value of x; and takes into account the probability for
this value according to the evaluated probability distribution.

pim,) 1

y |

N FUTRY uz
A, A A A

1 2

Fig. 2. An example for the normal kernel density estimation results
for coordinate c;. m; denotes the selected points and p(m;) denotes the
probability density for m;.

This is in contrast to the Most Common Attribute Value
method. There the value of the attribute that occurs most
often is selected to be the value for all the unknown values
of the attribute and imply that the probability of the most
common attribute value is 1 and O for all other possible values.
Furthermore our distance is different from the Mean Attribute
Value method, where the mean of a specific attribute is
selected to replace the unknown values of the attribute because
it does not take into account the dispersion of the values in
the distribution. Thus for example two distributions with the
same mean and different variances (as can be seen in Fig. 3)
will get the same distance whereas in our method the distance
increases as a function of the variance.

mean, =mode,.

(@) (b)

Fig. 3. (a) and (b) show two distributions with the same mean and different
variances. The distance computed for these two distributions is different.

Fig. 4 illustrates the dependance of our distance on the
variance of distribution Y;. When the variance is close to
the measurement variance o2 the distance will converge to
the value achieved for a measured value. As the variance
increases the distance increases until it converges to the
distance achieved for the uniform distribution.

In this case (i.e., one value is missing), the runtime of our
method is O(1), because according to this metric the algorithm
has to compute ! — 1 Bhattacharyya distances. On the other
hand as [ increases so does the accuracy of the distance
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Fig. 4. The distance between a measured point and an unknown value with
different values of the variance o2 of the distribution x;.

estimate. There is therefore a trade off between the accuracy
of the estimate and the the complexity of the algorithm. From
our experiments we did not find a significant change in the
performance of the classification algorithms as a function of
l.

3) The two values are missing.: In this case in order
to estimate the Mean Bhattacharyya Distance we have to
randomly select values for both x; and y;. Both these values
are selected from distribution ;. In order to compute the mean
the following double sum has to be computed.

MDpg =
-1 1-1
D) P(A1g)P(Ag) DB(N (mig, 05), N (ma;, 0)).

g=1j=1

Consider again the examples in Fig. 3. The M Dp  of
the first distribution with the larger variance will naturally
be larger than the M Dp of the second distribution with the
smaller variance. Fig. 5 shows the dependance of M D g
on the variance o2 of the distribution y;. As the distribution
is more dispersed, the value of the M Dp increases. In this
example the distributions y; were Gaussian but the relationship
is general.

251 1

MD,

151 1

05 1

Fig. 5. The value of M D p as a function of the variance o2 of the distribution
X

As in this case no value has to be known in order to compute
the M Dp the distance between two missing values from a
specific coordinate will be fixed, and has to be computed only
once. It therefore does not have any effect on the runtime of
the algorithm.

IV. EXPERIMENTS ON NUMERICAL DATASETS

In order to measure the ability of the new distance func-
tion to reflect the actual similarity or dissimilarity between
instances with missing values we compare the performance
of the kNN (k = 1) classifier on complete data (i.e., without
missing values) to the performance of the kNN classifier using
our distance (KNN-BH), the kNN-MC (i.e., Most Common
attribute value), the kNN-MA (i.e., the Mean value of each
Attribute), and the kKNN-MI(Mean Imputation) that replaces
a data point with missing values with the mean of all the
instances in the data, on the same datasets with missing values.
All the algorithms were implemented in Matlab.

We ran our experiments on six standard numerical datasets
from the Machine Learning Repository (UCI) [6]from different
fields: the Australian credit approval dataset, the Pima Indians
diabetes dataset, the Breast Cancer dataset, the Hayes Roth
dataset, the Seeds dataset and the Iris dataset. The first three
dataset were a two-class classification problem, while the last
three datasets were a three-class classification problem. The
Australian dataset contains 690 instances. The Pima Indians
diabetes dataset contains 762 instances. The Breast Cancer
dataset contains 683 instances divided into two classes. The
Hayes Roth dataset contains 160 instances. The Seeds dataset
dataset contains 210 instances, and the Iris dataset contains
150. The characteristics of all the datasets can be seen in
Table 1. All these datasets were labeled, but this knowledge
was used only to evaluate the accuracy of the resulting
classifier. In all experiments these datasets are assumed to be
unlabeled.

TABLE I
DATASET PROPERTIES

Dataset Dataset size | Classes
Australian 690 x 14 2
Pima Indians 762 x 8 2
Breast Cancer 683 x 8 2
Hayes Roth 160 x 5 3
Seeds 210 x 7 3
Iris 150 x 4 3

In the first stage of the experiments, from each dataset a
set of size 10%-50% of the dataset is randomly drawn to be
samples with missing values, where at least one coordinate
from each instance was selected randomly to be the missing
value. After that, from each dataset a set of 10% of the dataset
was drawn randomly to be the training dataset (i.e., labeled)
and the rest is the testing dataset. (Note that the training
dataset may contains instances with missing values.) Then the
accuracy was evaluated for each set of missing values by the
ability of the KNN classifier to label the data. The results are
averaged over 10 different runs on each dataset. A resulting
curve was constructed for each dataset to evaluate how well
the algorithm performed.
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Fig. 6. Results of 1NN without missing values, INN-BH, INN-MC, 1NN-MS and 1NN-MA algorithms over six numerical datasets with missing values.

A. Results

As can be seen from Fig. 6, the kNN-BH was superior
and outperforms the other algorithms. The learning curves
are constructed by computing the ratio of correctly classified
instances to the whole unlabeled data.

For the Australian, Pima Indians, Breast Cancer and Iris
datasets, the curves show that the KNN-BH obviously outper-
forms the other methods, while for the two rest datasets the
benefit of the KNN-BH algorithm appears when the percent
of the missing values becomes large as can be seen in
Figs. 6(e&(f)). This improvement in KNN-BH accuracy is
due to the ability of the proposed metric which uses the
Bhattacharyya distance to better measure the actual similarity
between the objects with missing values. Moreover, according
to the results curves the performances of the KNN-MC and
kKNN-MA were comparable, while the performance of the
kNN-MS was poorly.

V. CONCLUSIONS

Missing attribute values are very common in real-world
datasets. Several methods have been proposed to measure the
similarity between objects with missing values. In this work,
we have proposed a new unsupervised distance learning metric
based on data attributes distribution using the Bhattacharyya
distance and used it within the ANN classifier framework.
According to this distance, the distance between two points
without missing attributes values is simply the Mahalanobis
distance. When on the other hand there is a missing value of

one of the coordinates, the distance is computed according to
the distribution of the missing coordinate.

In contrast to many approaches in this field, our method does
not require any knowledge about the classes and the algorithm
is applied to unsupervised datasets.

In our experiments we used the one nearest neighbor clas-
sifier to measure the ability of our metric to reflect the actual
similarity between objects with missing values. We compared
the performance of the KNN method using our metric with
three basic methods. From the experiment we conclude that
our distance is a more appropriate function to measure the
similarity between objects with missing value especially when
the percent of the missing values is becomes large. This is
because when the missing data is small, the missing value
does not influence the similarity value significantly.

This proposed distance is general and can be used as part of
any algorithm that computes the distance between data points.
Moreover, this distance can be used for different datasets in
different application areas.
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