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Abstract—The travelling salesman problem (TSP) is a 

combinatorial optimization problem in which the goal is to find the 

shortest path between different cities that the salesman takes. In other 

words, the problem deals with finding a route covering all cities so 

that total distance and execution time is minimized. This paper adopts 

the nearest neighbor and minimum spanning tree algorithm to solve 

the well-known travelling salesman problem. The algorithms were 

implemented using java programming language. The approach is 

tested on three graphs that making a TSP tour instance of 5-city, 10 –

city, and 229–city. The computation results validate the performance 

of the proposed algorithm. 

 

Keywords—Heuristics, minimum spanning tree algorithm, 

Nearest Neighbor, Travelling Salesman Problem (TSP).  

I. INTRODUCTION 

HEN solving problems with computers it quite quickly 

becomes obvious that some problems are fundamentally 

harder to solve than others. While for some problems it is 

possible to design ingenious algorithms that solve the problem 

efficiently, for others it seems considerably harder, or even 

impossible to come up with any algorithms at all. 

The theory of computational complexity makes it possible 

to formalize the concepts of “easy” and “hard” problems and 

the distinction between them. Problems can be formally 

classified based on their complexity [1], and if a problem 

belongs to the class of NP-hard or complete problems, we 

know in advance that there is little hope of finding an efficient 

and exact algorithm for solving it. Any exact algorithm for 

such a problem has an execution time exploding for increasing 

problem sizes, and is often useless for most practical purposes. 

The search for alternative algorithms is thus justified, there 

is a demand for faster algorithms that do not necessarily 

produce the exact optimal solution, but in most cases provide 

solutions of sufficient quality. Such methods are called 

heuristic algorithms or approximation algorithms. One 

member of the NP-complete class and possibly the most well–

known is the Traveling Salesman Problem (TSP). The 

Traveling Salesman Problem has commanded much attention 

of mathematicians and computer scientists specifically 

because it is so easy to describe and so difficult to solve. The 
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problem can be stated as: given a finite number of “cities" 

along with the cost of travel between each pair of them, find 

the cheapest way of visiting all of the cities and returning to 

your starting point. The travel costs are symmetric in the sense 

that traveling from city X to city Y costs just as much as 

traveling from Y to X.  

As noticed in [1], what makes TSP such an interesting 

problem is not its direct applicability, since few real problems 

may actually be described as TSPs, but the fact that TSPs are 

frequent components of combinatorial optimization problem.  

TSP is also an interesting problem because of the wealth of 

knowledge that has been accumulated over the years. 

Because of the hardness of NP-complete problems, no one 

has found a polynomial-time algorithm for TSP. Therefore 

much research has concentrated on approximation algorithms 

whose goal is to find near optimal rather than optimal tours, 

but it does not mean that it is impossible to solve any large 

instances of such problems.  

II. THE TRAVELLING SALESMAN PROBLEM 

A. Formulation 

In order to formalize the definition of the traveling 

salesman problem, several basic computer scientific terms 

must be defined. The first is that of a graph. This term is used 

to describe a set of vertices, or nodes, and a set of edges that 

connect the vertices. A complete graph has an edge between 

all pairs of vertices. These edges can be directed or undirected 

and can have weights associated with them. A path between 

two vertices is a sequence of edges that begins at one vertex 

and ends at another vertex. A cycle is a path that begins and 

ends at the same vertex. A Hamiltonian cycle is a cycle 

covering all nodes in the graph exactly once. 

The Traveling Salesman Problem can now be formally 

defined as follows: 

Determine the shortest Hamiltonian Cycle in a complete 

weighted graph. 

B. Solution Algorithms 

As it is described on [2], there are three types of approach 

for solving NP complete problems:  

• Devising algorithms for finding exact solution (they will 

work reasonably fast only for relatively small problem 

sizes) 
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• Devising “sub-optimal” or heuristic algorithms that 

deliver seemingly or provably good solutions, but which 

could not proved to be optimal. 

• Finding special cases for the problem for which either 

exact or better heuristic are possible. 

In particular here are the Solution algorithms for TSP: 

1. Exact Algorithms 

The exact algorithms are guaranteed to find an optimal 

solution but may take an exponential number of iterations.  

This means that you have to generate all possible routes and 

takes the shortest. This becomes impractical as the number of 

towns, N, increases since the number of possible routes is        

! (N-1). The most effective exact algorithms are cutting –plane 

or facet –finding algorithms [3]. These algorithms are quite 

complex, and are very demanding of computer power. For 

example the exact solution for 15,112 Germany cities was 

determined over a period of 22.6 years on a network of 110 

processors located at Rice University and Princeton University 

[2].  

2. Approximation (or Heuristic) Algorithms 

These algorithms are much faster and they obtain good 

solutions, but they do not guarantee the optimal solution. 

Some of them give solutions that on average differ only by a 

few percent (2-3%) from the optimal solution [2]. Therefore, if 

a small deviation from optimum can be accepted, it may be 

appropriate to use an approximation algorithm. 

The heuristic algorithms can be categorized into the 

following three classes: [3] 

• Tour construction algorithms  

• Tour improvement algorithms 

• Composite algorithms 

• Tour Construction Algorithms 

In tour construction algorithms, the tour is built from 

scratch and the cities are added one at a time until a complete 

tour is found. The best tour construction algorithms usually 

get within 10-15% of optimally. An Example of a tour 

constructor algorithm is: 

The Nearest Neighbor Algorithm 

This is perhaps the simplest and most straightforward TSP 

heuristic, which is normally fairly close to the optimal route, 

and it does not take too long to execute (the time complexity is 

�����, where n is the number of  the cities). The key to this 

algorithm is to always visit the nearest city. Select a starting 

point, as long as there are cities that have not yet been visited, 

visit the nearest city that still has not appeared in the tour, 

finally, return to the first city. 

Nearest Insertion 

Nearest insertion is quit straightforward .The basics idea of 

this algorithm is to select the shortest edge, and make a 

subtour of it, then select a city not in the subtour, having the 

shortest distance to any one of the cities in the subtour. Find 

an edge in the subtour such that the cost of inserting the 

selected city between the edge’s cities will minimal. Repeat 

the selection of the cities until no more cities remain. The time 

complexity for this algorithm is �����. 

 Other Examples of tour constructor algorithms include 

cheapest insertion farthest insertion and random insertion [4].  

• Tour Improvement Algorithms 

The tour construction heuristic is a greedy approach. The 

part of the tour, which is already built, remains unchanged 

during the tour construction process. No attempt is made to 

change or undo part of the tour that has been built. This is in 

contrast to the tour improvement heuristic which changes the 

configuration of the tour during the iterative improvement 

process until a short tour is found. A simple example of this 

type of algorithm is the: 

2-Opt Algorithm  

This algorithm starts from either a random tour or from the 

tour that resulted from the nearest neighbor heuristic. In this 

method replace 2 links of the tour with 2 other links in such a 

way that the new tour length is shorter. Continue in this way 

until no more improvements are possible. 

• Composite Algorithms 

Use a construction algorithm to obtain an initial solution 

and then improve it using an improvement algorithm. An 

example of such algorithms is: 

Simulated Annealing Algorithm  

This algorithm has been successfully adapted to give 

approximate solutions for the TSP. The basics idea of 

simulated annealing (SA) is from the statistical mechanics and 

motivated by an analogy of behavior of physical systems in 

the presents of a heat bath. This algorithm obtains better 

solution by gradually going from one solution to the next. 

3. Special Cases : TSP With Triangle Inequality 

In mathematics, the triangle inequality is a statement which 

states roughly that the distance from A to B to C is never 

shorter than going directly from A to C. We say that the cost 

function c satisfies the triangle inequality if for all vertices u, 

v, w ∈ V,  

 

c (u, w) ≤ c (u, v) + c(v,w). 

 

In other words, the cheapest (shortest) way of going from 

one city to another is the direct route (straight line) between 

two cities. In particular, if every city corresponds to a point in 

Euclidean space, and distance between cities corresponds to 

Euclidean distance, then the triangle inequality is satisfied (in 

this paper we consider the problem of TSP with the additional 

constraint that edge weights satisfy the triangle inequality.) In 

this method, first compute a minimum spanning tree, whose 

weight is a lower bound on the length of an optimal travelling 

salesman tour, and then use the minimum spanning tree to 

create a tour whose cost is no more than twice that of 

minimum spanning tree’s weight, as long as the cost function 

satisfies the triangle inequality: 

a. Select starting city as root vertex in graph G 
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b. Find minimum spanning tree of G using Prim’s or 

Kruskal’s algorithm 

c. Starting from root, traverse the spanning tree using depth 

first search (DFS). 

d. Construct the path according to order of nodes visited in 

DFS 

III. DESIGN 

 As we mentioned, TSP problem can be view as a graph 

problem, with nodes for cities and edges for trips. In this stage 

we decide what classes will be needed to build this application 

and how those classes are related.  

The fundamental decisions about designing a class involve 

selecting its fields.   

In the main class, which is a Graph class, we will associate 

with each vertex v all the vertices to which v is adjacent. And 

we will include with each adjacent vertex w the weight of the 

edge < v, w>, that is we will associate with each vertex v in 

the Graph object all the vertex – weight Paris of the form <w, 

weight>. Because the order of the vertex weight pairs (edge) is 

not important, a LinkedList object is the collection that will be 

chosen to hold the vertex-weight pairs. Now we will need a 

collection to associate a given vertex v with the LinkedList 

object of vertex – weight pairs <w, weight>, where w is 

adjacent to v and weight is the weight of the edge .The idea of 

this association is that, given a vertex v, we want to quickly 

access the associated LinkedList object, as the term 

“association” suggests we will map each vertex to its 

LinkedList object, for speed a HashMap object is chosen. 

In the HashMap, each key will be a vertex (Vertex class), 

each value will be a LinkedList object whose elements are 

objects in an Edge class. The Edge class will contain a Vertex 

object and a double value, and methods getToVertex () and 

getWeight (). Because each vertex is associated with its list of 

neighbors, this representation is referred to as an adjacency list 

representation. 

Fig. 1 shows a graph that represents the cities and the 

relationship between them (distance), and Fig. 2 shows its 

representation by Graph class. 

 

 

Fig. 1 A completed weighted graph in which the vertices represented 

cities and the weights represent the distance between these cities 

 

Fig. 2 The internal representation of the graph in Fig. 1 by adjacency 

list vertex Map 

A. Construct Nearest Neighbor Algorithm 

We construct this algorithm as a LinkedList object of 

vertices. The strategy for this constructer is to first visit the 

start point in the tour (vertex v) and mark it as visited, then 

store it in the LinkedList collection, now we look for the 

nearest vertex  w adjacent to the start vertex by iterating over 

v’s neighbors using getmin () method, the pair (w,wweight) 

will be the smallest edge that connected to v, using the 

getTovertex() method  we pick the w vertex and we mark it as 

visited, we store it in the collection, then loop until the 

collection has as many vertices as the original graph. Finally 

we go back to the start vertex v. 

Suppose we want to construct the nearest neighbor 

algorithm for the graph on Fig. 1. 

Pick the start vertex in the tour; which is for example A 

,mark it as visited ,store it in the LinkedList L. Iterating over 

A’s neighbors  <E,189>,<D, 712>,<C,2407>,<B,2457> to get 

the edge that has the minimum weigh ,which is <E,189> ,store 

the vertex E in the collection and mark it as visited. During the 

next iteration on the E’s neighbors that has not been in the 

collection < D, 848>, <C, 2489>, <B, 2600>, the vertex D will 

be stored in the collection. During the next iteration over D’ 

neighbors <C, 1737>, <B, 1752>, the vertex C will be stored 

on the collection. Finally on the iteration over C’s neighbors, 

which is, the only one left on the graph that has not been 

visted, vertex B will be stored on the collection. Going back to 

the start vertex A we complete the tour of the TSP.  
 

 

Fig. 3 Applying the nearest neighbor algorithm on Fig. 1 
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B. Creating Minimum Spanning Tree 

In a graph spanning tree is a tree that consists of all the 

vertices and some of the edges (and their weights) from the 

graph. A graph may have many spanning trees. A minimum 

spanning tree is a spanning tree which the sum of all weights 

is no greater than the sum of all the weights in any other 

spanning tree. 

An algorithm to construct a minimum spanning tree is due 

to R.C.Prim (1957). The strategy of this algorithm is: 

Start with an empty tree T and add the start vertex v in the 

tour to the tree. For each vertex w such that (v, w) is an edge 

with weight wweight, save the ordered triple <v, w, wweight > 

in a collection. Then loop until T has as many vertices as the 

graph. During each loop iteration, remove from the collection 

the triple <x, y, yweight>for which yweight is the smallest 

weight of all triples in the collection; if y is not already in T, 

add y and the edge (x, y) to T and save in the collection every 

triple <y, z, zweight>such that z is not already in T and (y, z) 

is an edge with weight zweight. Because we need to be able to 

add element that is a triple, to the collection and to remove the 

triple with lowest weight, priority queue is an appropriate 

collection to do this task quickly with a heap implementation. 

Here the explanation of how the Prim’s algorithm (The time 

complexity is O (V log E+E)) works using the graph in Fig. 1. 

Initially, the tree and the PriorityQueue object pq are both 

empty. Pick A (which is the start city in the tour), add to pq 

each triple of form <A, w, wweight> where (A, w) is an edge 

with weight wweight. Fig. 4 shows the contents of T and pq at 

this point (the triples in pq are shown in increasing order of 

weight, and the remove Min method returns the triples with 

the smallest weight). 

When the lowest-weighted triple, <A, E, 189> is removed 

from pq, the vertex E and the edge (A, E) are added to T, and 

the triples <E, D, 848>, <E, C, 2489> and <E, B, 2600> are 

added to pq (Fig. 5). 

During the next iteration, the triple <A, D, 712> is removed 

from pq, the vertex D and the edge (A, D) are added to T, and 

the triples < D, C, 1737> and <D,B,1752> are added to pq 

(Fig. 6). 

During the next iteration, the triple <E, D, 848> is removed 

from pq, but noting is added to T or pq because D is already in 

T. 

During next iteration the triple (D, C, 1737> is removed 

from the pq, the vertex C is and the edge (D, C) is added to T. 

and the triples < C, B, 958> added to pq (Fig. 7). 

During the next iteration, the triple <C, B, 958>is removed 

from the pq, the vertex B and the edge (C, B) is added to T, 

and noting is added to pq because all of C’s edges are already 

in T and we are done (Fig. 8). 

 

T              Priority Queue 

A                (A,E,189) 

                                (A,D,712) 

           (A,C,2407) 

     (A,B,2457) 

Fig. 4 The content of T and pq during the application of Prim’s 

algorithm to the graph in Fig. 1 

 

T              Priority Queue 

AE            (A,D,712) 

                           (E,D,848) 

                             (A,C,2407) 

                             (A,B,2457) 

                            (E,C,2489) 

                           (E,B,2600) 

Fig. 5 The content of T and pq during the application of Prim’s 

algorithm to the graph in Fig. 1 

 

T            Priority Queue 

AE,AD                     (E,D,848) 

  (D,C,1737) 

  (D,B,1752) 

  (A,C,2407) 

  (A,B,2457) 

  (E,C,2489) 

  (E,B,2600) 

Fig. 6 The content of T and pq during the application of Prim’s 

algorithm to the graph in Fig. 1 

 

T           Priority Queue 

AE,AD,DC      (C,B,958) 

             (D,B,1752) 

                          (A,C,2407) 

                      (A,B,2457) 

                      (E,C,2489) 

                                        (E,B,2600) 

Fig. 7 The content of T and pq during the application of Prim’s 

algorithm to the graph in Fig. 1 

 

T               Priority Queue 

AE,AD,DC,CB          (D,B,1752) 

(A,C,2407) 

    (A,B,2457) 

    (E,C,2489) 

    (E,B,2600) 

Fig. 8 The content of T and pq during the application of Prim’s 

algorithm to the graph in Fig. 1 

C. Depth First Search  

The MST gives an upper bound for the minimal tour of the 

graph. To find a solution for the traveling salesman problem is 

to traverse the MST. This will be done by using a graph –

traversal algorithm; depth first search (DFS). The strategy 

followed by depth – first Search, as its name implies, to search 

“deeper” in the sub-graph we obtained from the MST 

whenever possible; after visiting a given vertex, we visit each 

not –yet reached vertex in a path that starts at the given vertex. 

We then back up to the most recently visited vertex that has a 

not –yet-reached adjacent vertex. Another path is begun 

starting with that unvisited vertex. With a depth – first search 

the next vertex to be visited is the most recently reached 

vertex, to do so the appropriate collection to store the vertices 

is a Stack. 

We will explain the idea behind the depth –first search in 

relation to the minimum-spanning tree that we get in the last 

section Fig. 9. 
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Fig. 9 Minimum spanning tree for the graph on Fig. 1 

 

Pick starting point – in this case, vertex A, visit this vertex 

push it into a stack so we can remember it and mark it so we 

will not visit it again. Next we go to any vertex adjacent to A 

that has not yet been visited so we are at E. At this point we 

need to do something else because there are no unvisited 

vertices adjacent to E. So we pop E off the stack, which brings 

us back to A. The next vertex adjacent to A is D, visit it push 

it in the stack and mark it as visited. Repeat this rule we visit 

C and then B and we are done. 

Order of traversal in DFS: A → E →D →C→B  

To complete the tour for the traveling salesman problem we 

go back to start point; A. 

IV. CLASS DIAGRAM 

The UML class diagram describes the system design that 

we have developed in terms of the classes and the relationship 

between them. 

 

 

Fig. 10 Class diagram for the system 

V. IMPLEMENTATION AND TESTING 

A. Implementation 

Implementation involves developing a graph data structure 

to hold the data; developing two methods to implement the 

Nearest Neighbor and Minimum Spanning Tree algorithms; 

and finally developing an interface to allow the user interact 

with the system.  

In the Graph class the main attribute is a vertex Map that 

involves four one – line method definitions: 

<<interface>> 
PriorityQueue 

size():int 

isEmpty():boolean   
add (Object element): 

getMin():Object 

removeMin():Object 

 Heap  

size:int 
heap:Object[] 

Comparator: comparator; 

 Heap()         
 Heap (Comparator comp)  

  size():int  

 isEmpty():boolean  
add(Object element)  :void 

 getMin():Object 

removeMin():Object 
percolateUp():void 

percolateDown(int  key):void  
heapSort (Object[ ] key):void  

Edge 

To: Vertex. 
Weight: int 

getToVertex() :Vertex     

getWeight():int 

toString() :String 

* 

EdgeTriple 

 from:Vertex, 
 to:Vertex 

weight:double 

 EdgeTree (String item:Vertex String 
item:Vertex,double item: )  

getFromVertex() :Vertex 

getToVertex() :Vertex 
getWeight():double  compareTo 

(edge:Object ) 
toString():String  

* 

Graph 

 
VertexMap: HasMap 

 

isEmpty():boolean 
size() :int. 

getEdgeWeigh(key:Object):double 

containsVertex (key:Object): boolean 
isEdge (key:Object): boolean 

addVertex(key:Object):void 

addEdge (key:Object1,Object2,int):boolean 
removeVertex(key:Object):boolean    

removeEdge(key:Object1,Object2):boolean 

toString():String 
getmin(key:Object ):Edge 

theNearestNeighbourAlgorithm(key:String):LinkList 
minimum Spanning tree(key:Vertex):Graph 
dfs(key:String): LinkList 

getdistanceNearst(key:String):double 

getdistanceSpanning(key:String):double 
comparison(key:String):string 

Vertex 

VertexString: String  
 

getVertex():String 

compareTo(Object key):int        
toString():String  
 equals (Object key):boolean       

hashCode() :int 

1 1 
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1. public Graph()  

This method creates an empty Graph 

2. public boolean isEmpty() 

This method returns true if this Graph is empty; otherwise, it 

returns false.   

3. public int size()  

This method returns the number of vertices in the Graph. 

4. public boolean containsVertex (Vertex vertex) 

This method returns true if the Graph contains vertex; 

otherwise, it returns false. 

5. Adding a vertex to a Graph is straightforward: 

public boolean addVertex (Vertex vertex) {   

  if (vertexMap.containsKey (vertex)) 

    return false; 

       vertexMap.put(vertex,new LinkedList()); 

   return true; 

} // method advertex 

 

In our design of the Graph class, vertices were stored as 

keys in a HashMap object. Each value field in the HashMap 

object was an adjacency list of vertex– weight pairs, 

specifically, a linked list of the neighbors (and edge weights) 

of the vertex key. So here if the vertex is not already in this 

Graph, add it to the Graph.Otherwise skip. 

Adding an edge <v1, v2> to the Graph class requires adding 

the destination vertex and the weight <v2, weight> to the 

LinkedList object associated with v1.  

 

public boolean addEdge (Vertex v1, Vertex  v2, double 

weight)  

{ 

 addVertex (v1); 

 addVertex (v2);   

      Edge e = new Edge (v2, weight); 

      ((LinkedList)vertexMap.get (v1)).add (e); 

  return true; 

 }  

6. Isedge Method  

To determine if the Graph object contains a given edge <v1, 

v2> we iterate over v1’s associated LinkedList object 

searching for a vertex v2. If found the true is returned. 

Otherwise, false is returned.  

 

Public Boolean isEdge(Vertex v1,Vertex v2) 

 { 

    if(! (vertexMap.containsKey (v1) &&                     

    vertexMap.containsKey (v2))) 

     return false; 

     Iterator itr= ((LinkedList)vertexMap.get(v1)).iterator(); 

while (itr.hasNext()) 

if(((Edge)itr.next()).getToVertex().equals (v2)) 

 return true; 

 return false; }  

7. getEdgeWeight Method  

To determine the weight of the given edge <v1, v2> we 

iterate over v1’s associated LinkedList object searching for a 

vertex v2. If found the weight associated with this vertex is 

returned. Otherwise, -1.0 is returned, which indicates <v1,v2> 

is not an edge in the Graph object.  

 

public double getEdgeWeight (Vertex v1, Vertex v2) { 

 

 if(!(vertexMap.containsKey(v1)&& vertexMap.containsKey 

(v2))) 

 return -1; 

LinkedList list = (LinkedList)(vertexMap.get (v1)); 

 Iterator itr = list.iterator(); 

     while (itr.hasNext()) { 

 Edge e = (Edge)(itr.next()); 

 if (e.getToVertex().equals (v2)) 

 return e.getWeight(); 

} // while 

        return -1.0;  // there is no edge <v1, v2>    }  

8. clearMarks Method  

Before we start implementing our two algorithms, for all 

vertices in the Graph we must set the field mark in the vertex 

class to false to indicate they are not yet visited. 

 

private void clearMarks () 

    { 

     Iterator itr= vertexMap.keySet().iterator(); 

     while (itr.hasNext()) 

  { 

      Vertex vertex = (Vertex)(itr.next()); 

    vertex.clear();      

    }//while        }  

Now we are ready to implement our algorithms; nearest 

neighbor algorithm and minimum spanning tree. 

9. getmin Method  

In this method we iterate over a given vertex’s neighbors, 

pick out the edge that has the minimum weight and that hasn’t 

been visited, if found return it and mark it as visited. We will 

use this method in the theNearestNeighbourAlgorithm() 

method to select what vertex we go to next . 

 

public Edge getmin(Vertex  from) { 

 Edge current; 

 LinkedList l; 

 if (!vertexMap.containsKey (from) ) 

  return null; 

 l= ((LinkedList)vertexMap.get (from)); 

 if (l!=null){ 

int index=0; 

Edge min =(Edge)l.get(index); 

while (min.getToVertex().mark == true){  

index++; 

min =(Edge)l.get(index);     

} 
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Iterator itr =((LinkedList)vertexMap.get 

    (from)).iterator(); 

while (itr.hasNext()){ 

current = (Edge)itr.next();  

if(current.getToVertex().mark == false){ 

if (current.getWeight()<min.getWeight()) 

  { 

 min=current;   } 

}  

} 

min.getToVertex().mark =true;  

    return min ;  } 

return null; } 

10. theNearestNeighbourAlgorithm Method  

The start vertex in the tour is a parameter in this method .To 

calculate the time to perform this method 

System.currentTimeMillis() will be used at the beginning and 

the end of this method. 

We start by inserting the start vertex v in an empty 

LinkedList object and then we mark it as visited. Then we 

iterate over v’s neighbors to pick out the smallest edge that is 

connected to this vertex using getMin() method .If found take 

the end point (vertex) of this edge by getTovertex() method 

and add this vertex to the LinkedList object .Loop until 

LinkedList has as many vertices as the original Graph. Now 

go back to the start vertex and add it to the end of LinkedList 

and return the LinkedList object. 

 

public LinkedList theNearestNeighbourAlgorithm(String s) { 

vertex start=getv(s);      

long beginTime = System.currentTimeMillis(); //...Get the 

start time... 

      LinkedList cycle = new LinkedList(); 

      Edge e;     

      Vertex v; 

      clearMarks (); 

      if (!vertexMap.containsKey (start) ) 

  return null; 

      cycle.add (start); 

      start.mark=true; 

      v = start; 

while (cycle.size() < size())         { 

           e=getmin(v);                 

           if (e!=null)            { 

              v=e.getToVertex(); 

              cycle.add (v); 

            } //if       

        } //while 

 cycle.add (start); 

long endTime=System.currentTimeMillis();//Get the end  time 

elapsedTime1=(double)(endTime- beginTime) / (double)1000; 

 return cycle;    }  

11.getMinimumSpanning Tree Method 

As we indicated earlier we will save the edge triple < v, w, 

weight> in a priority queue, where weight is the f the edge 

connecting the two vertices. The root of the tree is the start 

vertex or point in the tour. First we iterate over the root’s 

neighbors; for each neighbor w, we add the edge triple <root, 

w, weight> to the priority queue. Then, until the tree has as 

many vertices as the original Graph, we remove an edge <x ,y, 

weight> that has the smallest weight from the priority queue .  

If y is not already in tree, we add y and edge <x ,y> to tree 

and for each neighbor z of y ,if z is not already in tree  we add 

the edge triple <y ,z, weight> to the priority queue  

 

public Graph getMinimumSpanningTree(Vertex root) { 

   Graph tree = new Graph();    

        PriorityQueue pq = new Heap(); 

        Edge e; 

        EdgeTriple edge; 

        Vertex w,x,y,z; 

        Iterator itr,itr1;     

        double weight; 

        if (isEmpty()) 

            return null; 

   tree.addVertex (root); 

        itr= ((LinkedList)vertexMap.get (root)).iterator(); 

        while (itr.hasNext()) { 

            e = (Edge)itr.next(); 

            w = e.getToVertex(); 

            weight = e.getWeight(); 

            edge = new EdgeTriple (root, w, weight); 

            pq.add (edge); 

        } // adding root's edges to pq 

        while (tree.size() < size()) { 

            edge = (EdgeTriple)pq.removeMin(); 

            x = edge.getFromVertex(); 

            y = edge.getToVertex(); 

            weight = edge.getWeight(); 

            if (!tree.containsVertex (y)) { 

                tree.addVertex (y); 

                tree.addEdge (x, y, weight); 

                itr1 = ((LinkedList)vertexMap.get (y)).iterator(); 

                while (itr1.hasNext()) { 

                    e = (Edge)itr1.next(); 

                    z = e.getToVertex(); 

                    if (!tree.containsVertex (z)) { 

                        weight = e.getWeight(); 

                        edge = new EdgeTriple (y, z, weight); 

                        pq.add (edge); 

                    } // z not already in tree 

                } // iterating over y's neighbors 

            } // y not already in tree }  

          return tree; 

    } // method getMinimumSpanningTree 

12.DFS Method 

The key for the DFS is being able to find the vertices that 

are unvisited and adjacent to a specified vertex. By iterating 

over the vertex’s neighbors, pick out the adjacent vertex and 

then check whether this vertex is unvisited. If so you’ve found 

what you want – the next vertex to visit. We put the code for 
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this process in the getAdjUnvisitedVertex () method. In this 

method we make the subGraph a HashMap object that holds 

the Minimum Spanning Tree for the Graph from specified 

vertex (starting point). Then iterate over this vertex’s 

neighbors and return the adjacent vertex that has not been 

visited. 

 

public Vertex getAdjUnvisitedVertex(Vertex v) 

{ 

HashMap        

 subGraph=getMinimumSpanningTree(v).vertexMap; 

LinkedList edgeList = (LinkedList)subGraph.get (v); 

Iterator itr = edgeList.iterator(); 

while (itr.hasNext()) { 

Edge e = (Edge)itr.next(); 

Vertex to = e.getToVertex();             

  if(!to.mark)              

   return to;      

   }   

            return null; 

    }// end getAdjUnvisitedVertex 

 Stack stack = new Stack();     

Vertex current; 

 LinkedList path= new LinkedList();     

clearMarks (); 

 stack = new Stack();   

stack.push (start);    // begin at vertex start 

start.mark=true;   // mark it 

path.add(start);    // add it to the path 

while( !stack.isEmpty() )      // until stack empty, 

{ 

  // get an unvisited vertex adjacent to stack top 

 Vertex v = getAdjUnvisitedVertex( (Vertex)stack.peek() ); 

 if(v == null)                    // if no such vertex, 

 stack.pop(); 

 else                           // if it exists, 

 { 

      v.mark = true;  // mark it 

  stack.push(v); // push it 

path.add(v); //add it to the path  

 } 

}  // end while  

path.add(start); //add the start node to complete the path   long 

endTime = System.currentTimeMillis(); //...Get the end   

         time... 

elapsedTime2=(double)(endTime- beginTime) / (double)1000; 

         return path;     

} 

 

Now we are ready for the dfs () method of the minimum 

spanning tree. In this method we use a Stack object, with push, 

peek, and pop methods. 

Push the start vertex in the stack and mark it as visited and 

in the same time store it in a LinkedList (to make the tour). 

 We examine the vertex at the top of the Stack, using     

peek (), and try to find unvisited neighbor of this vertex using 

getAdjUnvisitedVertex (). If it doesn’t find one pops the stack 

.If it finds such a vertex visit it and pushes it onto the stack 

and stores it in the LinkedList. Then loop until the stack is 

empty. Now back to the start vertex to complete the tour. 

 

public LinkedList dfs(String d)  // depth-first search 

{     

long beginTime = System.currentTimeMillis(); //...Get the 

start time... 

Vertex start=getv(d);       

} 

 

To calculate the total length of the tour by nearest neighbor 

and minimum spanning tree algorithms we use similar 

methods. In both of them we call the collection that contains 

the specified algorithm. To store the total length of the tour we 

declare a variable of type double and we loop over the 

elements in that collection. During the loop and for each pair 

of these elements we check whether they form an edge on the 

Graph class, using is Edge () method .If so calculate the sum 

of the weight of these edges using getEdgeWeight () method.  

 

public  double getdistanceNearst(String p) {  

  LinkedList s=theNearestNeighbourAlgorithm(p); 

  double d=0; 

  int index=0; 

  String n="";  

  while (index<s.size()-1){ 

   Vertex vx =(Vertex)s.get(index); 

   Vertex w =(Vertex)s.get(index+1); 

   if (isEdge(vx,w)){ 

     d+=getEdgeWeight(vx,w);     

     index++; 

   }  

  } 

  return d;  

  } 

public double getdistanceSpanning(String p) 

 { 

  LinkedList s=dfs(p); 

  double distance=0; 

  int index=0;  

  while (index<s.size()-1)  

   { 

   Vertex vx =(Vertex)s.get(index); 

   Vertex w =(Vertex)s.get(index+1); 

   if (isEdge(vx,w)){ 

        distance+=getEdgeWeight(vx,w);                     

index++; 

 }  

            } 

  return distance; 

 } 

13.Comparison Method  

Finally this method is used to make a comparison on the 

performance of our two algorithms, in terms of the total length 

of the tour and the time elapsed.  
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  public String comparison (String p) 

   { 

    String com=""; 

   double distance1=0; 

       double distance2=0; 

    distance1=getdistanceNearst(p); 

  distance2=getdistance(p); 

  if (distance1<distance2) 

com="The  Nearest Neighbour is better  than Minmum 

Spanning Tree by Factor: "+(distance2-distance1); 

  else if(distance1>distance2) 

com="Minmum Spanning Tree is better than  Nearest 

Neighbourby Factor: "+(distance1-distance2); 

  else com="They are Equal"; 

  return com; 

  } 

B. User Interface 

The main part for implementing any application is to 

implement its Human – computer Interface efficiently. A GUI, 

that is simple and convenient to use, results in an efficient and 

user – friendly application. The class TSP contains all feature 

of GUI, which builds the front end for the user to interact with 

this application. Use the following swing components: 

1- Panels: these are swing objects and they are used in our 

system to frame the various other swing objects together. 

2- Labels: these are used to describe various functions in the 

system. 

3- Command Buttons: these buttons are not toggled on and 

off, but instead act as “push” buttons. When user presses 

the enter key, or click on a button that has the focus an 

event is fired that can be caught by an action listener 

associated with the button this listener performs the action 

associated with the command.  

4- JTextArea is used as display area to show the result of 

queries. 

5-  ComboBoxes: a combo box is a special text field with a 

drop down list .the text field displays the currently 

selected from the list. This list appears when the user 

clicks the down arrow displayed in the text field. 

C. Testing  

This section deals with testing the system and the stages 

involved in performing the test. There are two main stages in 

testing this system, Unit Testing and Integration Testing. 

1. Unit Testing  

This stage is concerned with testing the individual 

components (classes or methods) of system in isolation. Most 

of the problems that we faced, was in the Graph class .In terms 

of what is the appropriate data structure that can be used to 

represent edges in the form of adjacency list; which is usually 

represented by LinkedList object and how can we map each 

vertex to its LinkedList. We tried several data structure such 

as ArrayList, Vector and others. And finally we came up with 

the HashMap data structure for speed.  

 

 

2. Integration Testing  

This stage tests the complete application. It is done by 

applying the application on three test graphs (in our case) that 

represent the instance of the TSP of size; 5-city, 10-city, and 

29-city. The programmer is sure that the system will perform 

as expected and the required functionality is there. The users 

are now given the chance to test the application as the 

following: 

 

 

Fig. 11 Choosing the problem size 

 

This is the first screen the user will see .It allow the user to 

choose what problem size would he like to implement and 

apply the two algorithms upon them.  Comobox Model does 

this task. Then a list of the city in the tour will be displayed on 

the screen using JtextAera. 

 

 

Fig. 12 The selecting of the start city in the tour 

 

The first component in this screen is to select the start city 

in tour. Now you ready to perform any of two algorithms by 

clicking in the specific button for each algorithm. In the both 

case the tour solved by the algorithm will be displayed. 
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Fig. 13 The tour solved by Nearest Neighbor Algorithm 

 

 

Fig. 14 The tour solved by Minimum Spanning Tree 

 

 

Fig. 15 The comparison of the performance for the Nearest Neighbor 

Algorithm and Minimum Spanning Tree 

 

This screen displays the comparison of the performance for 

the both algorithms, in terms of the total length of the tour, 

and the time elapsed. 

D. Results 

As we mentioned in the last section we applied the 

application on three graphs that making a TSP tour instance 

size of 5-city, 10 –city, and 29 –city. Table I, II, III show 

results of the performance of the two algorithms: 

1.Problem  size: 5 – city 

TABLE I 

COMPARISON OF TSP ALGORITHM 

Start point 
Nearest neighbor algorithm Minimum spanning tree 

Tour length Time/second Tour length Time/second 

New York 6189.0 0 6189.0 0 

Los Angeles 6196.0 0 6196.0 0 

Seattle 6100.0 0 6100.0 0 

Chicago 6100.0 0 6100.0 0 

Boston 6196.0 0 6196.0 0 

 

Results show that in all of the cases the performance of the 

Nearest Neighbor Algorithm and Minimum Spanning Tree are 

equally in terms of the total length of the tour and the time. 

2.Problem size: 10- city: 

TABLE II 

COMPARISON OF TSP ALGORITHM 

Start point 
Nearest neighbor algorithm Minimum spanning tree 

Tour length Time Tour length Time/second 

Dublin 2610.0 0 2858.0 0.01 

Cork 2577.0 0 2653.0 0.01 

Galway 2805.0 0 2858.0 0.01 

Limerick 2570.0 0 2653.0 0.01 

Bray 2471.0 0 2606.0 0.01 

Drogheda 2610.0 0 2482.0 0.01 

Dundalk 2709.0 0 2808.0 0.01 

Strabane 2683.0 0 2540.0 0.01 

Westport 2723.0 0 2531.0 0.01 

killarney 3267.0 0 2531.0 0.011 

 

The results table show that the “Minimum Spanning Tree” 

approach is worse than “Nearest Neighbour Algorithm” both 

in time elapsed and in the total length of the tour, except  for 

four cities; Drogheda, Strabane, Westport, killarney. 
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3.Problem size: 29- city 

TABLE III 

COMPARISON OF TSP ALGORITHM 

Start point 

Nearest neighbor 
algorithm 

Minimum spanning tree 

Tour 

length 
Time/second 

Tour 

length 
Time/second 

Alaska 2218.0 0 2396.0 0.09 

Alabama 2338.0 0 2512.0 0.09 

Arkansas 2382.0 0 2509.0 0.1 

Arizona 2281.0 0 2527.0 0.08 

California 2460.0 0 2594.0 0.09 

Colorado 2224.0 0 2594.0 0.09 

Connecticut 2431.0 0 2451.0 0.09 

Delaware 2200.0 0 2380.0 0.09 

Florida 2379.0 0 2600.0 0.09 

Georgia 2367.0 0 2507.0 0.09 

Hawaii 2353.0 0 2519.0 0.09 

Iowa 2468.0 0 2595.0 0.09 

Idaho 2305.0 0 2507.0 0.09 

Illinois 2266.0 0 2352.0 0.09 

Indiana 2306.0 0 2519.0 0.1 

Kansas 2139.0 0 2536.0 0.09 

Kentucky 2266.0 0 2352.0 0.09 

Louisiana 2355.0 0 2441.0 0.09 

Massachusetts 2375.0 0 2530.0 0.09 

Maryland 2300.0 0 2507.0 0.09 

Maine 2367.0 0 2512.0 0.09 

Michigan 2313.0 0 2399.0 0.09 

Missouri 2534.0 0 2396.0 0.09 

Mississippi 2348.0 0 2451.0 0.081 

Montana 2454.0 0 2551.0 0.09 

Nebraska 2553.0 0 2334.0 0.1 

Nevada 2392.0 0 2557.0 0.1 

Texas 2382.0 0 2509.0 0.1 

 

Results show that in most of the cases the performance of 

the Nearest Neighbor Algorithm is better than and Minimum 

Spanning Tree ,both in the total length of the tour and the time 

elapsed, except for three cities; Minnesota, Missouri, 

Nebraska. 

VIII. CONCLUSIONS 

This paper implements two heuristic algorithms, namely the 

Nearest Neighbor Algorithm and Minimum spanning Tree for 

solving the traveling salesman problem. We have compared 

the performance of these algorithms. Results show that for 

small size of cities, the two algorithms are performing equally. 

With the increase in the number of the cities, the performance 

of Nearest Neighbor Algorithm seems to be better than 

Minimum spanning Tree in calculating the length of the tour. 

But the time complexity of Nearest Neighbor Algorithm is 

always lower than Minimum spanning Tree. 
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