
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1530

Abstract—The travelling salesman problem (TSP) is a

combinatorial optimization problem in which the goal is to find the

shortest path between different cities that the salesman takes. In other

words, the problem deals with finding a route covering all cities so

that total distance and execution time is minimized. This paper adopts

the nearest neighbor and minimum spanning tree algorithm to solve

the well-known travelling salesman problem. The algorithms were

implemented using java programming language. The approach is

tested on three graphs that making a TSP tour instance of 5-city, 10 –

city, and 229–city. The computation results validate the performance

of the proposed algorithm.

Keywords—Heuristics, minimum spanning tree algorithm,

Nearest Neighbor, Travelling Salesman Problem (TSP).

I. INTRODUCTION

HEN solving problems with computers it quite quickly

becomes obvious that some problems are fundamentally

harder to solve than others. While for some problems it is

possible to design ingenious algorithms that solve the problem

efficiently, for others it seems considerably harder, or even

impossible to come up with any algorithms at all.

The theory of computational complexity makes it possible

to formalize the concepts of “easy” and “hard” problems and

the distinction between them. Problems can be formally

classified based on their complexity [1], and if a problem

belongs to the class of NP-hard or complete problems, we

know in advance that there is little hope of finding an efficient

and exact algorithm for solving it. Any exact algorithm for

such a problem has an execution time exploding for increasing

problem sizes, and is often useless for most practical purposes.

The search for alternative algorithms is thus justified, there

is a demand for faster algorithms that do not necessarily

produce the exact optimal solution, but in most cases provide

solutions of sufficient quality. Such methods are called

heuristic algorithms or approximation algorithms. One

member of the NP-complete class and possibly the most well–

known is the Traveling Salesman Problem (TSP). The

Traveling Salesman Problem has commanded much attention

of mathematicians and computer scientists specifically

because it is so easy to describe and so difficult to solve. The

Fatma A. Karkory is with the Higher Institute of Refrigeration and Air

Conditioning Sokna, Libya (phone: +218913395819; e-mail: f_sokna@

yahoo.com).

Ali A. Abudalmola is with the Higher Institute of Comprehensive
professions Aljufra at Sokna, Libya (phone: +218917971489; e-mail:

talballah@hotmail.com).

problem can be stated as: given a finite number of “cities"

along with the cost of travel between each pair of them, find

the cheapest way of visiting all of the cities and returning to

your starting point. The travel costs are symmetric in the sense

that traveling from city X to city Y costs just as much as

traveling from Y to X.

As noticed in [1], what makes TSP such an interesting

problem is not its direct applicability, since few real problems

may actually be described as TSPs, but the fact that TSPs are

frequent components of combinatorial optimization problem.

TSP is also an interesting problem because of the wealth of

knowledge that has been accumulated over the years.

Because of the hardness of NP-complete problems, no one

has found a polynomial-time algorithm for TSP. Therefore

much research has concentrated on approximation algorithms

whose goal is to find near optimal rather than optimal tours,

but it does not mean that it is impossible to solve any large

instances of such problems.

II. THE TRAVELLING SALESMAN PROBLEM

A. Formulation

In order to formalize the definition of the traveling

salesman problem, several basic computer scientific terms

must be defined. The first is that of a graph. This term is used

to describe a set of vertices, or nodes, and a set of edges that

connect the vertices. A complete graph has an edge between

all pairs of vertices. These edges can be directed or undirected

and can have weights associated with them. A path between

two vertices is a sequence of edges that begins at one vertex

and ends at another vertex. A cycle is a path that begins and

ends at the same vertex. A Hamiltonian cycle is a cycle

covering all nodes in the graph exactly once.

The Traveling Salesman Problem can now be formally

defined as follows:

Determine the shortest Hamiltonian Cycle in a complete

weighted graph.

B. Solution Algorithms

As it is described on [2], there are three types of approach

for solving NP complete problems:

• Devising algorithms for finding exact solution (they will

work reasonably fast only for relatively small problem

sizes)

Fatma A. Karkory, Ali A. Abudalmola

Implementation of Heuristics for Solving Travelling

Salesman Problem Using Nearest Neighbour and

Minimum Spanning Tree Algorithms

W

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1531

• Devising “sub-optimal” or heuristic algorithms that

deliver seemingly or provably good solutions, but which

could not proved to be optimal.

• Finding special cases for the problem for which either

exact or better heuristic are possible.

In particular here are the Solution algorithms for TSP:

1. Exact Algorithms

The exact algorithms are guaranteed to find an optimal

solution but may take an exponential number of iterations.

This means that you have to generate all possible routes and

takes the shortest. This becomes impractical as the number of

towns, N, increases since the number of possible routes is

! (N-1). The most effective exact algorithms are cutting –plane

or facet –finding algorithms [3]. These algorithms are quite

complex, and are very demanding of computer power. For

example the exact solution for 15,112 Germany cities was

determined over a period of 22.6 years on a network of 110

processors located at Rice University and Princeton University

[2].

2. Approximation (or Heuristic) Algorithms

These algorithms are much faster and they obtain good

solutions, but they do not guarantee the optimal solution.

Some of them give solutions that on average differ only by a

few percent (2-3%) from the optimal solution [2]. Therefore, if

a small deviation from optimum can be accepted, it may be

appropriate to use an approximation algorithm.

The heuristic algorithms can be categorized into the

following three classes: [3]

• Tour construction algorithms

• Tour improvement algorithms

• Composite algorithms

• Tour Construction Algorithms

In tour construction algorithms, the tour is built from

scratch and the cities are added one at a time until a complete

tour is found. The best tour construction algorithms usually

get within 10-15% of optimally. An Example of a tour

constructor algorithm is:

The Nearest Neighbor Algorithm

This is perhaps the simplest and most straightforward TSP

heuristic, which is normally fairly close to the optimal route,

and it does not take too long to execute (the time complexity is

�����, where n is the number of the cities). The key to this

algorithm is to always visit the nearest city. Select a starting

point, as long as there are cities that have not yet been visited,

visit the nearest city that still has not appeared in the tour,

finally, return to the first city.

Nearest Insertion

Nearest insertion is quit straightforward .The basics idea of

this algorithm is to select the shortest edge, and make a

subtour of it, then select a city not in the subtour, having the

shortest distance to any one of the cities in the subtour. Find

an edge in the subtour such that the cost of inserting the

selected city between the edge’s cities will minimal. Repeat

the selection of the cities until no more cities remain. The time

complexity for this algorithm is �����.

 Other Examples of tour constructor algorithms include

cheapest insertion farthest insertion and random insertion [4].

• Tour Improvement Algorithms

The tour construction heuristic is a greedy approach. The

part of the tour, which is already built, remains unchanged

during the tour construction process. No attempt is made to

change or undo part of the tour that has been built. This is in

contrast to the tour improvement heuristic which changes the

configuration of the tour during the iterative improvement

process until a short tour is found. A simple example of this

type of algorithm is the:

2-Opt Algorithm

This algorithm starts from either a random tour or from the

tour that resulted from the nearest neighbor heuristic. In this

method replace 2 links of the tour with 2 other links in such a

way that the new tour length is shorter. Continue in this way

until no more improvements are possible.

• Composite Algorithms

Use a construction algorithm to obtain an initial solution

and then improve it using an improvement algorithm. An

example of such algorithms is:

Simulated Annealing Algorithm

This algorithm has been successfully adapted to give

approximate solutions for the TSP. The basics idea of

simulated annealing (SA) is from the statistical mechanics and

motivated by an analogy of behavior of physical systems in

the presents of a heat bath. This algorithm obtains better

solution by gradually going from one solution to the next.

3. Special Cases : TSP With Triangle Inequality

In mathematics, the triangle inequality is a statement which

states roughly that the distance from A to B to C is never

shorter than going directly from A to C. We say that the cost

function c satisfies the triangle inequality if for all vertices u,

v, w ∈ V,

c (u, w) ≤ c (u, v) + c(v,w).

In other words, the cheapest (shortest) way of going from

one city to another is the direct route (straight line) between

two cities. In particular, if every city corresponds to a point in

Euclidean space, and distance between cities corresponds to

Euclidean distance, then the triangle inequality is satisfied (in

this paper we consider the problem of TSP with the additional

constraint that edge weights satisfy the triangle inequality.) In

this method, first compute a minimum spanning tree, whose

weight is a lower bound on the length of an optimal travelling

salesman tour, and then use the minimum spanning tree to

create a tour whose cost is no more than twice that of

minimum spanning tree’s weight, as long as the cost function

satisfies the triangle inequality:

a. Select starting city as root vertex in graph G

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1532

b. Find minimum spanning tree of G using Prim’s or

Kruskal’s algorithm

c. Starting from root, traverse the spanning tree using depth

first search (DFS).

d. Construct the path according to order of nodes visited in

DFS

III. DESIGN

 As we mentioned, TSP problem can be view as a graph

problem, with nodes for cities and edges for trips. In this stage

we decide what classes will be needed to build this application

and how those classes are related.

The fundamental decisions about designing a class involve

selecting its fields.

In the main class, which is a Graph class, we will associate

with each vertex v all the vertices to which v is adjacent. And

we will include with each adjacent vertex w the weight of the

edge < v, w>, that is we will associate with each vertex v in

the Graph object all the vertex – weight Paris of the form <w,

weight>. Because the order of the vertex weight pairs (edge) is

not important, a LinkedList object is the collection that will be

chosen to hold the vertex-weight pairs. Now we will need a

collection to associate a given vertex v with the LinkedList

object of vertex – weight pairs <w, weight>, where w is

adjacent to v and weight is the weight of the edge .The idea of

this association is that, given a vertex v, we want to quickly

access the associated LinkedList object, as the term

“association” suggests we will map each vertex to its

LinkedList object, for speed a HashMap object is chosen.

In the HashMap, each key will be a vertex (Vertex class),

each value will be a LinkedList object whose elements are

objects in an Edge class. The Edge class will contain a Vertex

object and a double value, and methods getToVertex () and

getWeight (). Because each vertex is associated with its list of

neighbors, this representation is referred to as an adjacency list

representation.

Fig. 1 shows a graph that represents the cities and the

relationship between them (distance), and Fig. 2 shows its

representation by Graph class.

Fig. 1 A completed weighted graph in which the vertices represented

cities and the weights represent the distance between these cities

Fig. 2 The internal representation of the graph in Fig. 1 by adjacency

list vertex Map

A. Construct Nearest Neighbor Algorithm

We construct this algorithm as a LinkedList object of

vertices. The strategy for this constructer is to first visit the

start point in the tour (vertex v) and mark it as visited, then

store it in the LinkedList collection, now we look for the

nearest vertex w adjacent to the start vertex by iterating over

v’s neighbors using getmin () method, the pair (w,wweight)

will be the smallest edge that connected to v, using the

getTovertex() method we pick the w vertex and we mark it as

visited, we store it in the collection, then loop until the

collection has as many vertices as the original graph. Finally

we go back to the start vertex v.

Suppose we want to construct the nearest neighbor

algorithm for the graph on Fig. 1.

Pick the start vertex in the tour; which is for example A

,mark it as visited ,store it in the LinkedList L. Iterating over

A’s neighbors <E,189>,<D, 712>,<C,2407>,<B,2457> to get

the edge that has the minimum weigh ,which is <E,189> ,store

the vertex E in the collection and mark it as visited. During the

next iteration on the E’s neighbors that has not been in the

collection < D, 848>, <C, 2489>, <B, 2600>, the vertex D will

be stored in the collection. During the next iteration over D’

neighbors <C, 1737>, <B, 1752>, the vertex C will be stored

on the collection. Finally on the iteration over C’s neighbors,

which is, the only one left on the graph that has not been

visted, vertex B will be stored on the collection. Going back to

the start vertex A we complete the tour of the TSP.

Fig. 3 Applying the nearest neighbor algorithm on Fig. 1

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1533

B. Creating Minimum Spanning Tree

In a graph spanning tree is a tree that consists of all the

vertices and some of the edges (and their weights) from the

graph. A graph may have many spanning trees. A minimum

spanning tree is a spanning tree which the sum of all weights

is no greater than the sum of all the weights in any other

spanning tree.

An algorithm to construct a minimum spanning tree is due

to R.C.Prim (1957). The strategy of this algorithm is:

Start with an empty tree T and add the start vertex v in the

tour to the tree. For each vertex w such that (v, w) is an edge

with weight wweight, save the ordered triple <v, w, wweight >

in a collection. Then loop until T has as many vertices as the

graph. During each loop iteration, remove from the collection

the triple <x, y, yweight>for which yweight is the smallest

weight of all triples in the collection; if y is not already in T,

add y and the edge (x, y) to T and save in the collection every

triple <y, z, zweight>such that z is not already in T and (y, z)

is an edge with weight zweight. Because we need to be able to

add element that is a triple, to the collection and to remove the

triple with lowest weight, priority queue is an appropriate

collection to do this task quickly with a heap implementation.

Here the explanation of how the Prim’s algorithm (The time

complexity is O (V log E+E)) works using the graph in Fig. 1.

Initially, the tree and the PriorityQueue object pq are both

empty. Pick A (which is the start city in the tour), add to pq

each triple of form <A, w, wweight> where (A, w) is an edge

with weight wweight. Fig. 4 shows the contents of T and pq at

this point (the triples in pq are shown in increasing order of

weight, and the remove Min method returns the triples with

the smallest weight).

When the lowest-weighted triple, <A, E, 189> is removed

from pq, the vertex E and the edge (A, E) are added to T, and

the triples <E, D, 848>, <E, C, 2489> and <E, B, 2600> are

added to pq (Fig. 5).

During the next iteration, the triple <A, D, 712> is removed

from pq, the vertex D and the edge (A, D) are added to T, and

the triples < D, C, 1737> and <D,B,1752> are added to pq

(Fig. 6).

During the next iteration, the triple <E, D, 848> is removed

from pq, but noting is added to T or pq because D is already in

T.

During next iteration the triple (D, C, 1737> is removed

from the pq, the vertex C is and the edge (D, C) is added to T.

and the triples < C, B, 958> added to pq (Fig. 7).

During the next iteration, the triple <C, B, 958>is removed

from the pq, the vertex B and the edge (C, B) is added to T,

and noting is added to pq because all of C’s edges are already

in T and we are done (Fig. 8).

T Priority Queue

A (A,E,189)

 (A,D,712)

 (A,C,2407)

 (A,B,2457)

Fig. 4 The content of T and pq during the application of Prim’s

algorithm to the graph in Fig. 1

T Priority Queue

AE (A,D,712)

 (E,D,848)

 (A,C,2407)

 (A,B,2457)

 (E,C,2489)

 (E,B,2600)

Fig. 5 The content of T and pq during the application of Prim’s

algorithm to the graph in Fig. 1

T Priority Queue

AE,AD (E,D,848)

 (D,C,1737)

 (D,B,1752)

 (A,C,2407)

 (A,B,2457)

 (E,C,2489)

 (E,B,2600)

Fig. 6 The content of T and pq during the application of Prim’s

algorithm to the graph in Fig. 1

T Priority Queue

AE,AD,DC (C,B,958)

 (D,B,1752)

 (A,C,2407)

 (A,B,2457)

 (E,C,2489)

 (E,B,2600)

Fig. 7 The content of T and pq during the application of Prim’s

algorithm to the graph in Fig. 1

T Priority Queue

AE,AD,DC,CB (D,B,1752)

(A,C,2407)

 (A,B,2457)

 (E,C,2489)

 (E,B,2600)

Fig. 8 The content of T and pq during the application of Prim’s

algorithm to the graph in Fig. 1

C. Depth First Search

The MST gives an upper bound for the minimal tour of the

graph. To find a solution for the traveling salesman problem is

to traverse the MST. This will be done by using a graph –

traversal algorithm; depth first search (DFS). The strategy

followed by depth – first Search, as its name implies, to search

“deeper” in the sub-graph we obtained from the MST

whenever possible; after visiting a given vertex, we visit each

not –yet reached vertex in a path that starts at the given vertex.

We then back up to the most recently visited vertex that has a

not –yet-reached adjacent vertex. Another path is begun

starting with that unvisited vertex. With a depth – first search

the next vertex to be visited is the most recently reached

vertex, to do so the appropriate collection to store the vertices

is a Stack.

We will explain the idea behind the depth –first search in

relation to the minimum-spanning tree that we get in the last

section Fig. 9.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1534

Fig. 9 Minimum spanning tree for the graph on Fig. 1

Pick starting point – in this case, vertex A, visit this vertex

push it into a stack so we can remember it and mark it so we

will not visit it again. Next we go to any vertex adjacent to A

that has not yet been visited so we are at E. At this point we

need to do something else because there are no unvisited

vertices adjacent to E. So we pop E off the stack, which brings

us back to A. The next vertex adjacent to A is D, visit it push

it in the stack and mark it as visited. Repeat this rule we visit

C and then B and we are done.

Order of traversal in DFS: A → E →D →C→B

To complete the tour for the traveling salesman problem we

go back to start point; A.

IV. CLASS DIAGRAM

The UML class diagram describes the system design that

we have developed in terms of the classes and the relationship

between them.

Fig. 10 Class diagram for the system

V. IMPLEMENTATION AND TESTING

A. Implementation

Implementation involves developing a graph data structure

to hold the data; developing two methods to implement the

Nearest Neighbor and Minimum Spanning Tree algorithms;

and finally developing an interface to allow the user interact

with the system.

In the Graph class the main attribute is a vertex Map that

involves four one – line method definitions:

<<interface>>
PriorityQueue

size():int

isEmpty():boolean
add (Object element):

getMin():Object

removeMin():Object

 Heap

size:int
heap:Object[]

Comparator: comparator;

 Heap()
 Heap (Comparator comp)

 size():int

 isEmpty():boolean
add(Object element) :void

 getMin():Object

removeMin():Object
percolateUp():void

percolateDown(int key):void
heapSort (Object[] key):void

Edge

To: Vertex.
Weight: int

getToVertex() :Vertex

getWeight():int

toString() :String

*

EdgeTriple

 from:Vertex,
 to:Vertex

weight:double

 EdgeTree (String item:Vertex String
item:Vertex,double item:)

getFromVertex() :Vertex

getToVertex() :Vertex
getWeight():double compareTo

(edge:Object)
toString():String

*

Graph

VertexMap: HasMap

isEmpty():boolean
size() :int.

getEdgeWeigh(key:Object):double

containsVertex (key:Object): boolean
isEdge (key:Object): boolean

addVertex(key:Object):void

addEdge (key:Object1,Object2,int):boolean
removeVertex(key:Object):boolean

removeEdge(key:Object1,Object2):boolean

toString():String
getmin(key:Object):Edge

theNearestNeighbourAlgorithm(key:String):LinkList
minimum Spanning tree(key:Vertex):Graph
dfs(key:String): LinkList

getdistanceNearst(key:String):double

getdistanceSpanning(key:String):double
comparison(key:String):string

Vertex

VertexString: String

getVertex():String

compareTo(Object key):int
toString():String
 equals (Object key):boolean

hashCode() :int

1 1

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1535

1. public Graph()

This method creates an empty Graph

2. public boolean isEmpty()

This method returns true if this Graph is empty; otherwise, it

returns false.

3. public int size()

This method returns the number of vertices in the Graph.

4. public boolean containsVertex (Vertex vertex)

This method returns true if the Graph contains vertex;

otherwise, it returns false.

5. Adding a vertex to a Graph is straightforward:

public boolean addVertex (Vertex vertex) {

 if (vertexMap.containsKey (vertex))

 return false;

 vertexMap.put(vertex,new LinkedList());

 return true;

} // method advertex

In our design of the Graph class, vertices were stored as

keys in a HashMap object. Each value field in the HashMap

object was an adjacency list of vertex– weight pairs,

specifically, a linked list of the neighbors (and edge weights)

of the vertex key. So here if the vertex is not already in this

Graph, add it to the Graph.Otherwise skip.

Adding an edge <v1, v2> to the Graph class requires adding

the destination vertex and the weight <v2, weight> to the

LinkedList object associated with v1.

public boolean addEdge (Vertex v1, Vertex v2, double

weight)

{

 addVertex (v1);

 addVertex (v2);

 Edge e = new Edge (v2, weight);

 ((LinkedList)vertexMap.get (v1)).add (e);

 return true;

 }

6. Isedge Method

To determine if the Graph object contains a given edge <v1,

v2> we iterate over v1’s associated LinkedList object

searching for a vertex v2. If found the true is returned.

Otherwise, false is returned.

Public Boolean isEdge(Vertex v1,Vertex v2)

 {

 if(! (vertexMap.containsKey (v1) &&

 vertexMap.containsKey (v2)))

 return false;

 Iterator itr= ((LinkedList)vertexMap.get(v1)).iterator();

while (itr.hasNext())

if(((Edge)itr.next()).getToVertex().equals (v2))

 return true;

 return false; }

7. getEdgeWeight Method

To determine the weight of the given edge <v1, v2> we

iterate over v1’s associated LinkedList object searching for a

vertex v2. If found the weight associated with this vertex is

returned. Otherwise, -1.0 is returned, which indicates <v1,v2>

is not an edge in the Graph object.

public double getEdgeWeight (Vertex v1, Vertex v2) {

 if(!(vertexMap.containsKey(v1)&& vertexMap.containsKey

(v2)))

 return -1;

LinkedList list = (LinkedList)(vertexMap.get (v1));

 Iterator itr = list.iterator();

 while (itr.hasNext()) {

 Edge e = (Edge)(itr.next());

 if (e.getToVertex().equals (v2))

 return e.getWeight();

} // while

 return -1.0; // there is no edge <v1, v2> }

8. clearMarks Method

Before we start implementing our two algorithms, for all

vertices in the Graph we must set the field mark in the vertex

class to false to indicate they are not yet visited.

private void clearMarks ()

 {

 Iterator itr= vertexMap.keySet().iterator();

 while (itr.hasNext())

 {

 Vertex vertex = (Vertex)(itr.next());

 vertex.clear();

 }//while }

Now we are ready to implement our algorithms; nearest

neighbor algorithm and minimum spanning tree.

9. getmin Method

In this method we iterate over a given vertex’s neighbors,

pick out the edge that has the minimum weight and that hasn’t

been visited, if found return it and mark it as visited. We will

use this method in the theNearestNeighbourAlgorithm()

method to select what vertex we go to next .

public Edge getmin(Vertex from) {

 Edge current;

 LinkedList l;

 if (!vertexMap.containsKey (from))

 return null;

 l= ((LinkedList)vertexMap.get (from));

 if (l!=null){

int index=0;

Edge min =(Edge)l.get(index);

while (min.getToVertex().mark == true){

index++;

min =(Edge)l.get(index);

}

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1536

Iterator itr =((LinkedList)vertexMap.get

 (from)).iterator();

while (itr.hasNext()){

current = (Edge)itr.next();

if(current.getToVertex().mark == false){

if (current.getWeight()<min.getWeight())

 {

 min=current; }

}

}

min.getToVertex().mark =true;

 return min ; }

return null; }

10. theNearestNeighbourAlgorithm Method

The start vertex in the tour is a parameter in this method .To

calculate the time to perform this method

System.currentTimeMillis() will be used at the beginning and

the end of this method.

We start by inserting the start vertex v in an empty

LinkedList object and then we mark it as visited. Then we

iterate over v’s neighbors to pick out the smallest edge that is

connected to this vertex using getMin() method .If found take

the end point (vertex) of this edge by getTovertex() method

and add this vertex to the LinkedList object .Loop until

LinkedList has as many vertices as the original Graph. Now

go back to the start vertex and add it to the end of LinkedList

and return the LinkedList object.

public LinkedList theNearestNeighbourAlgorithm(String s) {

vertex start=getv(s);

long beginTime = System.currentTimeMillis(); //...Get the

start time...

 LinkedList cycle = new LinkedList();

 Edge e;

 Vertex v;

 clearMarks ();

 if (!vertexMap.containsKey (start))

 return null;

 cycle.add (start);

 start.mark=true;

 v = start;

while (cycle.size() < size()) {

 e=getmin(v);

 if (e!=null) {

 v=e.getToVertex();

 cycle.add (v);

 } //if

 } //while

 cycle.add (start);

long endTime=System.currentTimeMillis();//Get the end time

elapsedTime1=(double)(endTime- beginTime) / (double)1000;

 return cycle; }

11.getMinimumSpanning Tree Method

As we indicated earlier we will save the edge triple < v, w,

weight> in a priority queue, where weight is the f the edge

connecting the two vertices. The root of the tree is the start

vertex or point in the tour. First we iterate over the root’s

neighbors; for each neighbor w, we add the edge triple <root,

w, weight> to the priority queue. Then, until the tree has as

many vertices as the original Graph, we remove an edge <x ,y,

weight> that has the smallest weight from the priority queue .

If y is not already in tree, we add y and edge <x ,y> to tree

and for each neighbor z of y ,if z is not already in tree we add

the edge triple <y ,z, weight> to the priority queue

public Graph getMinimumSpanningTree(Vertex root) {

 Graph tree = new Graph();

 PriorityQueue pq = new Heap();

 Edge e;

 EdgeTriple edge;

 Vertex w,x,y,z;

 Iterator itr,itr1;

 double weight;

 if (isEmpty())

 return null;

 tree.addVertex (root);

 itr= ((LinkedList)vertexMap.get (root)).iterator();

 while (itr.hasNext()) {

 e = (Edge)itr.next();

 w = e.getToVertex();

 weight = e.getWeight();

 edge = new EdgeTriple (root, w, weight);

 pq.add (edge);

 } // adding root's edges to pq

 while (tree.size() < size()) {

 edge = (EdgeTriple)pq.removeMin();

 x = edge.getFromVertex();

 y = edge.getToVertex();

 weight = edge.getWeight();

 if (!tree.containsVertex (y)) {

 tree.addVertex (y);

 tree.addEdge (x, y, weight);

 itr1 = ((LinkedList)vertexMap.get (y)).iterator();

 while (itr1.hasNext()) {

 e = (Edge)itr1.next();

 z = e.getToVertex();

 if (!tree.containsVertex (z)) {

 weight = e.getWeight();

 edge = new EdgeTriple (y, z, weight);

 pq.add (edge);

 } // z not already in tree

 } // iterating over y's neighbors

 } // y not already in tree }

 return tree;

 } // method getMinimumSpanningTree

12.DFS Method

The key for the DFS is being able to find the vertices that

are unvisited and adjacent to a specified vertex. By iterating

over the vertex’s neighbors, pick out the adjacent vertex and

then check whether this vertex is unvisited. If so you’ve found

what you want – the next vertex to visit. We put the code for

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1537

this process in the getAdjUnvisitedVertex () method. In this

method we make the subGraph a HashMap object that holds

the Minimum Spanning Tree for the Graph from specified

vertex (starting point). Then iterate over this vertex’s

neighbors and return the adjacent vertex that has not been

visited.

public Vertex getAdjUnvisitedVertex(Vertex v)

{

HashMap

 subGraph=getMinimumSpanningTree(v).vertexMap;

LinkedList edgeList = (LinkedList)subGraph.get (v);

Iterator itr = edgeList.iterator();

while (itr.hasNext()) {

Edge e = (Edge)itr.next();

Vertex to = e.getToVertex();

 if(!to.mark)

 return to;

 }

 return null;

 }// end getAdjUnvisitedVertex

 Stack stack = new Stack();

Vertex current;

 LinkedList path= new LinkedList();

clearMarks ();

 stack = new Stack();

stack.push (start); // begin at vertex start

start.mark=true; // mark it

path.add(start); // add it to the path

while(!stack.isEmpty()) // until stack empty,

{

 // get an unvisited vertex adjacent to stack top

 Vertex v = getAdjUnvisitedVertex((Vertex)stack.peek());

 if(v == null) // if no such vertex,

 stack.pop();

 else // if it exists,

 {

 v.mark = true; // mark it

 stack.push(v); // push it

path.add(v); //add it to the path

 }

} // end while

path.add(start); //add the start node to complete the path long

endTime = System.currentTimeMillis(); //...Get the end

 time...

elapsedTime2=(double)(endTime- beginTime) / (double)1000;

 return path;

}

Now we are ready for the dfs () method of the minimum

spanning tree. In this method we use a Stack object, with push,

peek, and pop methods.

Push the start vertex in the stack and mark it as visited and

in the same time store it in a LinkedList (to make the tour).

 We examine the vertex at the top of the Stack, using

peek (), and try to find unvisited neighbor of this vertex using

getAdjUnvisitedVertex (). If it doesn’t find one pops the stack

.If it finds such a vertex visit it and pushes it onto the stack

and stores it in the LinkedList. Then loop until the stack is

empty. Now back to the start vertex to complete the tour.

public LinkedList dfs(String d) // depth-first search

{

long beginTime = System.currentTimeMillis(); //...Get the

start time...

Vertex start=getv(d);

}

To calculate the total length of the tour by nearest neighbor

and minimum spanning tree algorithms we use similar

methods. In both of them we call the collection that contains

the specified algorithm. To store the total length of the tour we

declare a variable of type double and we loop over the

elements in that collection. During the loop and for each pair

of these elements we check whether they form an edge on the

Graph class, using is Edge () method .If so calculate the sum

of the weight of these edges using getEdgeWeight () method.

public double getdistanceNearst(String p) {

 LinkedList s=theNearestNeighbourAlgorithm(p);

 double d=0;

 int index=0;

 String n="";

 while (index<s.size()-1){

 Vertex vx =(Vertex)s.get(index);

 Vertex w =(Vertex)s.get(index+1);

 if (isEdge(vx,w)){

 d+=getEdgeWeight(vx,w);

 index++;

 }

 }

 return d;

 }

public double getdistanceSpanning(String p)

 {

 LinkedList s=dfs(p);

 double distance=0;

 int index=0;

 while (index<s.size()-1)

 {

 Vertex vx =(Vertex)s.get(index);

 Vertex w =(Vertex)s.get(index+1);

 if (isEdge(vx,w)){

 distance+=getEdgeWeight(vx,w);

index++;

 }

 }

 return distance;

 }

13.Comparison Method

Finally this method is used to make a comparison on the

performance of our two algorithms, in terms of the total length

of the tour and the time elapsed.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1538

 public String comparison (String p)

 {

 String com="";

 double distance1=0;

 double distance2=0;

 distance1=getdistanceNearst(p);

 distance2=getdistance(p);

 if (distance1<distance2)

com="The Nearest Neighbour is better than Minmum

Spanning Tree by Factor: "+(distance2-distance1);

 else if(distance1>distance2)

com="Minmum Spanning Tree is better than Nearest

Neighbourby Factor: "+(distance1-distance2);

 else com="They are Equal";

 return com;

 }

B. User Interface

The main part for implementing any application is to

implement its Human – computer Interface efficiently. A GUI,

that is simple and convenient to use, results in an efficient and

user – friendly application. The class TSP contains all feature

of GUI, which builds the front end for the user to interact with

this application. Use the following swing components:

1- Panels: these are swing objects and they are used in our

system to frame the various other swing objects together.

2- Labels: these are used to describe various functions in the

system.

3- Command Buttons: these buttons are not toggled on and

off, but instead act as “push” buttons. When user presses

the enter key, or click on a button that has the focus an

event is fired that can be caught by an action listener

associated with the button this listener performs the action

associated with the command.

4- JTextArea is used as display area to show the result of

queries.

5- ComboBoxes: a combo box is a special text field with a

drop down list .the text field displays the currently

selected from the list. This list appears when the user

clicks the down arrow displayed in the text field.

C. Testing

This section deals with testing the system and the stages

involved in performing the test. There are two main stages in

testing this system, Unit Testing and Integration Testing.

1. Unit Testing

This stage is concerned with testing the individual

components (classes or methods) of system in isolation. Most

of the problems that we faced, was in the Graph class .In terms

of what is the appropriate data structure that can be used to

represent edges in the form of adjacency list; which is usually

represented by LinkedList object and how can we map each

vertex to its LinkedList. We tried several data structure such

as ArrayList, Vector and others. And finally we came up with

the HashMap data structure for speed.

2. Integration Testing

This stage tests the complete application. It is done by

applying the application on three test graphs (in our case) that

represent the instance of the TSP of size; 5-city, 10-city, and

29-city. The programmer is sure that the system will perform

as expected and the required functionality is there. The users

are now given the chance to test the application as the

following:

Fig. 11 Choosing the problem size

This is the first screen the user will see .It allow the user to

choose what problem size would he like to implement and

apply the two algorithms upon them. Comobox Model does

this task. Then a list of the city in the tour will be displayed on

the screen using JtextAera.

Fig. 12 The selecting of the start city in the tour

The first component in this screen is to select the start city

in tour. Now you ready to perform any of two algorithms by

clicking in the specific button for each algorithm. In the both

case the tour solved by the algorithm will be displayed.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1539

Fig. 13 The tour solved by Nearest Neighbor Algorithm

Fig. 14 The tour solved by Minimum Spanning Tree

Fig. 15 The comparison of the performance for the Nearest Neighbor

Algorithm and Minimum Spanning Tree

This screen displays the comparison of the performance for

the both algorithms, in terms of the total length of the tour,

and the time elapsed.

D. Results

As we mentioned in the last section we applied the

application on three graphs that making a TSP tour instance

size of 5-city, 10 –city, and 29 –city. Table I, II, III show

results of the performance of the two algorithms:

1.Problem size: 5 – city

TABLE I

COMPARISON OF TSP ALGORITHM

Start point
Nearest neighbor algorithm Minimum spanning tree

Tour length Time/second Tour length Time/second

New York 6189.0 0 6189.0 0

Los Angeles 6196.0 0 6196.0 0

Seattle 6100.0 0 6100.0 0

Chicago 6100.0 0 6100.0 0

Boston 6196.0 0 6196.0 0

Results show that in all of the cases the performance of the

Nearest Neighbor Algorithm and Minimum Spanning Tree are

equally in terms of the total length of the tour and the time.

2.Problem size: 10- city:

TABLE II

COMPARISON OF TSP ALGORITHM

Start point
Nearest neighbor algorithm Minimum spanning tree

Tour length Time Tour length Time/second

Dublin 2610.0 0 2858.0 0.01

Cork 2577.0 0 2653.0 0.01

Galway 2805.0 0 2858.0 0.01

Limerick 2570.0 0 2653.0 0.01

Bray 2471.0 0 2606.0 0.01

Drogheda 2610.0 0 2482.0 0.01

Dundalk 2709.0 0 2808.0 0.01

Strabane 2683.0 0 2540.0 0.01

Westport 2723.0 0 2531.0 0.01

killarney 3267.0 0 2531.0 0.011

The results table show that the “Minimum Spanning Tree”

approach is worse than “Nearest Neighbour Algorithm” both

in time elapsed and in the total length of the tour, except for

four cities; Drogheda, Strabane, Westport, killarney.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:10, 2013

1540

3.Problem size: 29- city

TABLE III

COMPARISON OF TSP ALGORITHM

Start point

Nearest neighbor
algorithm

Minimum spanning tree

Tour

length
Time/second

Tour

length
Time/second

Alaska 2218.0 0 2396.0 0.09

Alabama 2338.0 0 2512.0 0.09

Arkansas 2382.0 0 2509.0 0.1

Arizona 2281.0 0 2527.0 0.08

California 2460.0 0 2594.0 0.09

Colorado 2224.0 0 2594.0 0.09

Connecticut 2431.0 0 2451.0 0.09

Delaware 2200.0 0 2380.0 0.09

Florida 2379.0 0 2600.0 0.09

Georgia 2367.0 0 2507.0 0.09

Hawaii 2353.0 0 2519.0 0.09

Iowa 2468.0 0 2595.0 0.09

Idaho 2305.0 0 2507.0 0.09

Illinois 2266.0 0 2352.0 0.09

Indiana 2306.0 0 2519.0 0.1

Kansas 2139.0 0 2536.0 0.09

Kentucky 2266.0 0 2352.0 0.09

Louisiana 2355.0 0 2441.0 0.09

Massachusetts 2375.0 0 2530.0 0.09

Maryland 2300.0 0 2507.0 0.09

Maine 2367.0 0 2512.0 0.09

Michigan 2313.0 0 2399.0 0.09

Missouri 2534.0 0 2396.0 0.09

Mississippi 2348.0 0 2451.0 0.081

Montana 2454.0 0 2551.0 0.09

Nebraska 2553.0 0 2334.0 0.1

Nevada 2392.0 0 2557.0 0.1

Texas 2382.0 0 2509.0 0.1

Results show that in most of the cases the performance of

the Nearest Neighbor Algorithm is better than and Minimum

Spanning Tree ,both in the total length of the tour and the time

elapsed, except for three cities; Minnesota, Missouri,

Nebraska.

VIII. CONCLUSIONS

This paper implements two heuristic algorithms, namely the

Nearest Neighbor Algorithm and Minimum spanning Tree for

solving the traveling salesman problem. We have compared

the performance of these algorithms. Results show that for

small size of cities, the two algorithms are performing equally.

With the increase in the number of the cities, the performance

of Nearest Neighbor Algorithm seems to be better than

Minimum spanning Tree in calculating the length of the tour.

But the time complexity of Nearest Neighbor Algorithm is

always lower than Minimum spanning Tree.

REFERENCES

[1] E. L Lawler, J. K. Lenstra, A. H. G.Rinnooy Kan, and D.B.Shmoys,
editors. “The Traveling Salesman Problem”, Wiley, 1985

[2] http://en.wikipedia.org/wiki/Traveling_salesman_problem

[3] Keld Helsgaun ,”An Effective Implementation of the Lin-Kernighan
Traveling Salesman Heuristic”, Department of Computer Science,

Roskilde University,DK-4000 Roskilde, Denmark

[4] Asia – Pasific Journal of Operational Research 18(2001) 77-87,Sim Kim
LAU and Li-Yen SHUE, “solving traveling salesman problems with an

intelligent search approach” .

Fatma A. Karkory received her M.Sc. in Computing Science from Griffith

College Dublin, in 2004 and Bachelor in Computing Science from University

of sabha in 1993. She is a lecturer at the Higher Institute of Refrigeration and

Air Conditioning Sokna, Libya, and Lecturer collaborator in the Higher

Institute of Comprehensive professions Aljufra at Sokna,libya .

Ali A. Abudalmola received his M.Sc. in Computing Science From Griffith

College Dublin in 2004 and high diploma from the higher centre for general

professions in Musrata in 1996 he is a lecturer at the Higher Institute of

Comprehensive professions Aljufra at Sokna, Libya, and Lecturer

collaborator at the Higher Institute of Refrigeration and Air Conditioning

Sokna, Libya.

