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Abstract—We address a complex scheduling problem arising in 

the wood panel industry with the objective of minimizing a quadratic 
function of job tardiness. The proposed solution strategy, which is 
based on an effective genetic algorithm, has been coded and 
implemented within a major Tunisian company, leader in the wood 
panel manufacturing. Preliminary experimental results indicate 
significant decrease of delivery times. 
 

Keywords—Genetic algorithm, heuristic, hybrid flowshop, total 
weighted squared tardiness.  

I. INTRODUCTION 
HE increased competition of markets’ globalization has 
forced manufacturers to reduce their costs and to improve 

their quality. Costs and quality have always been considered 
as critical success factors in the manufacturing industry. For 
each firm, it is crucial to have short lead times and good due 
date performance (i.e. orders have to be delivered as close as 
possible to their due date). The development of flexible 
production systems in Tunisia comes within the scope of the 
new challenges of the Tunisian industrial enterprises 
competitiveness. These systems allow a reduction of costs, as 
well as a high mastery of quality. However, scheduling these 
sophisticated workshops constitutes a very complicated task. 

In this paper, we present an adaptive scheduling policy for a 
major Tunisian company leader in the wood panel 
manufacturing: STRAMICA. In order to keep its place in the 
forefront of the competition at the national level and crack 
new foreign markets, STRAMICA has made huge investments 
in the purchase of several semi-automated and digital 
controlled machines. These very sophisticated machines can 
process various types of operations, which offers large 
flexibility to the workshop and thus considerably complicates 
the scheduler’s task. 

The paper is organized as follows. In Section II, the 
production system is described and formulated. Section III is 
devoted to the presentation of the proposed genetic algorithm. 
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Finally, the experimental performance of our algorithm is 
analyzed in Section IV. 

II. THE PRODUCTION SYSTEM 
The production system consists of a set of 17 machines 

partitioned into ten successive stages. Each of the first two 
stages is composed of a set of three unrelated parallel 
machines; the third stage contains four unrelated parallel 
machines, while each of the remaining seven stages contains a 
single machine. Each machine requires a sequence-
independent setup time before starting the processing of an 
operation, and is subject to unavailability periods which are 
known in advance. 

A detailed description of the operations that are performed 
by each stage is provided in the following: 
• Cross-cutting: the wood panels are cut into specified 

width and height. 
• Edge-banding: a decorative wood or plastic-made strip is 

fixed by collage in order to protect the narrow face of the 
panel. 

• Routing: the panels are manufactured according to a 
programmed model. 

• Routing/edge-banding: the edge-banding and routing 
operations are simultaneously performed on a 
sophisticated machine. 

• PVC coating: a PVC ribbon is fixed by collage in order to 
cover the non-decorated face of the panel. 

• Overmoulding: the narrow faces of the panel are 
decorated with synthetic resin. 

• Wrapping: the finished articles are wrapped with plastic 
ribbon. 

• Edge-routing: the narrow faces of the panel are 
manufactured with different shapes. 

• Pressing: a decorative laminate is fixed by collage in 
order to cover the panel faces. 

• Postforming: it permits to adapt the decorative laminate 
according to the shape of the narrow face of the panel. 

Fig. 1 depicts the production system as well as the main job 
routings. 

An order consists in a set of products, each of which has to 
perform one or more operations in the workshop. Operations 
have to be performed according to a specified unidirectional 
order. Nevertheless, products can cross the same stage more 
than once. For instance, after being manufactured and covered 
with PVC, a product may have to be manufactured again in 
order to make special shapes (such as the lock place). Also, it 
is worth noting that, for technical reasons, some of the 

Anis Gharbi, Mohamed Haouari, Talel Ladhari, Mohamed Ali Rakrouki 

An Effective Genetic Algorithm for a Complex 
Real-World Scheduling Problem 

T



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

2000

 

 

products have to be processed together on some stages. For 
instance, different products may require the same type of 
wood and have therefore to be cut from the same panel. 

A transfer time is necessary to transport the products 
between two consecutive stages. There are huge buffers 
between all stages, so that no blocking of machines occurs. 
Each operation is processed on at most one machine at one 
time. All the processing times are constant and known in 
advance. 

Each order is characterized by a due date which is promised 
to the customer. Violating this date induces important costs, 
bad reputation and eventually loss of some customers. The 
company is therefore concerned with finding "good" 
schedules that minimize the tardiness of client orders. 
However, all orders do not have the same priority. For 
instance, some orders are dedicated to be exported so that if 
they are not ready at time, they will be definitively lost and an 
important cost will be incurred to the company. A weight is 
therefore associated with each order in order to indicate its 
importance.  

 

 

Fig. 1 The production system 
 

The problem is formulated as a Hybrid Flow Shop (HFS) 
scheduling problem with additional complicating factors 
(recirculation, time lags, setup times), where the objective is 
to minimize the sum of weighted squared tardiness of jobs. 
The choice of the squared tardiness in the objective function is 
motivated by the fact that a quadratic objective function is 
more appropriate when large deviations from the due dates are 
highly undesirable (low priority orders may be particularly 
subject to excessive delays). Moreover, the managers prefer 
that two orders which have equal weights are both delivered 
one day after their respective due dates, rather than a tardiness 
of two days for only one of them. 

III. THE PROPOSED GENETIC ALGORITHM 
Several investigations on various real-life scheduling 

problems show that GAs constitute a promising approach [1]-
[3], [5], [6]. In the proposed GA, each chromosome is 
composed of M genes, where M denotes the total number of 
machines in the workshop. Each gene represents a sequence of 
operations to be performed on the corresponding machine (see 
Fig. 2). 

The initial population is composed of 50 solutions 
generated by assigning a randomly chosen job to the smallest 
processing time machine.  

The parents are selected using the tournament selection 
procedure. It consists in randomly picking 3 chromosomes 
from the population and choosing the one that has the best 
fitness. It is worth noting that a chromosome can be chosen 
more than once. We have implemented the 1−point crossover 
operator with a crossover rate of 0.9. The cutting point is 
chosen randomly between two genes that belong to two 
consecutive stages and the genes on the sides of the cutting 
point are exchanged between the parent chromosomes. 

A particular feature of our GA is the implementation of five 
heuristics, as mutation operators, for every gene in the 
chromosome. They consist in sorting the operations: in the 
increasing order of their due date (H1), in the increasing order 
of their weighted due date (H2), using an NEH-based 
procedure [4] (H3), by swapping each two consecutive 
operations if it improves the solution (H4), and by using the 
best solution provided by H1, H2 and H4 (H5). A high mutation 
rate of 0.7 is used, except for H3 where it is equal to 0.04.  

 

 

Fig. 2 Solution representation 
 

It is worth noting that the feasibility of an offspring must be 
checked after using mutation operator. When infeasibility 
happens, the offspring is corrected by moving through the 
chromosome structure, gene by gene, removing and 
reinserting operations whenever necessary to satisfy 
feasibility. The Steady-State population replacement model is 
adopted with a replacement rate of 50%. It breeds and 
replaces only few individuals at a time in a population, never 
replacing the whole population in one generation, which 
allows children to compete directly with parents. The 
maximum number of generations is set to 20. It is worth 
noting that all the GA parameters have been fixed after an 
extensive experimental analysis. 

In the sequel, the following notations will be adopted: 
• MAXGEN: the maximum number of generations, that is, 

the number of times the population is assessed and bred 
until the algorithm gives up. 

• POPSIZE: the size of the population. 
• Initialize(POPSIZE): produces a set of POPSIZE initial 

individuals. 
• AssessFitness(chi): assigns a fitness to the individual chi, 

which reflects its performance at solving the problem. 
• Select(P): selects individuals from the population P based 

on their fitness, and copies them. 
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• Crossover(ch1, ch2) and Mutate(chi): modify the copies to 
produce new candidate solutions which are added to the 
population. 

• SelectForRemoval(P): selects a single individual, that has 
a poor fitness, for elimination from the population. 

• I: the number of individuals replaced in one generation 
(I<|P|). 

 
Pseudo-code of the genetic algorithm: 

1. Population P ← Initialize(POPSIZE) 
2. Individual best ← nil 
3. For each individual chi ∈ P { 
4. AssignFitness(chi) 
5. If best = nil or fitness(chi) is better than fitness(best) then
6.  best ← chi 
7. } 
8. Repeat MAXGEN times { 
9. Repeat I times { 
10.  Individual offspring1 ← Select(P) 
11.  Individual offspring2 ← Select(P) 
12.  Crossover(offspring1, offspring2) 
13.  Mutate(offspring1) 
14.  Mutate(offspring2) 
15.  AssignFitness(offspring1) 
16.  AssignFitness(offspring2)
17.  If fitness(offspring1) is better than fitness(best) then { 
18.   best ← offspring1 
19.   Individual s ← SelectForRemoval(P) 
20.   P ←P \ {s} 
21.   P ← P ∪ {offspring1} 
22.  } 
23.  If fitness(offspring2) is better than fitness(best) then { 
24.   best ← offspring2 
25.   Individual s ← SelectForRemoval(P) 
26.   P ←P \ {s} 
27.   P ← P ∪ {offspring2} 
28.  } 
29. } 
30. } 
31. Return best 

IV. PRELIMINARY EXPERIMENTAL RESULTS 
We compared five variants of the proposed GA. In each 

variant GAi (i = 1,...,5) the heuristic Hi has been adopted as a 
mutation operator. Our algorithms were coded in C++ and 
compiled with Microsoft Visual C++ 6.0 compiler. The 
computational experiments were carried out on an Athlon XP 
1.5 GHz PC with 256 MB RAM. 

In order to assess the performance of the proposed 
algorithms, we carried out two series of numerical 
experiments: the first one is based on randomly generated 
instances and the second one is based on real-world instances. 

For the second set of instances, the solutions provided by our 
algorithms were compared to those obtained by the scheduling 
method currently used in the workshop. 

A. Performance on Randomly Generated Instances 
For random tests, the generation parameters have been 

chosen in order to correspond to the company’s instances. The 
number of orders N has been taken equal to 10, 20, 30, and 50 
orders. For each problem size, 30 instances were randomly 
generated. The processing times, the setup times, and the 
transfer times, are drawn from the discrete uniform 
distribution on [5,1000], [5,30], and [5,15], respectively (in 
minutes). The release dates and due dates, are respectively 
drawn from the discrete uniform distribution on [0,3] and 
[0,7] (in days). The order weights are uniformly distributed on 
{1, 5, 20}. 

Table I summarizes the results of the experiments on the 
random tests. For each of the proposed GAs, we computed the 
following performance measures:  
• The average gap (Avg.gap), where the gap is defined by 

100(best initial solution - GA solution)/best initial 
solution  

• The maximal gap (Max.gap) 
• The average CPU time (Avg.time) in seconds 
• The maximum CPU time (Max.time) in seconds 

 
TABLE I 

PERFORMANCE OF GAS ON RANDOMLY GENERATED INSTANCES 
N  GA1 GA2 GA3 GA4 GA5 

10 

Avg.gap 26.63 17.88 45.88 34.25 37.35 
Max.gap 96.94 77.28 98.20 95.91 96.98 
Avg.time 2.23 2.22 7.57 2.26 3.71 
Max.time 3.77 3.94 18.69 4.03 10.11 

20 

Avg.gap 33.49 38.15 59.25 39.00 40.51 
Max.gap 100 83.61 90.08 98.93 100 
Avg.time 4.18 4.31 36.16 4.54 6.73 
Max.time 4.92 5.59 51.17 5.81 12.88 

30 

Avg.gap 21.12 42.93 50.22 27.39 37.23 
Max.gap 99.80 81.28 94.72 87.74 84.30 
Avg.time 6.69 6.54 115.76 7.41 10.48 
Max.time 7.95 8.19 154.38 9.94 18.41 

50 

Avg.gap 23.35 42.60 49.32 15.18 24.64 
Max.gap 89.74 80.75 84.69 82.45 59.41 
Avg.time 11.89 12.41 974.43 14.92 20.23 
Max.time 14.23 15.97 1637.17 17.42 38.22 

 
Table I provides strong evidence that the proposed 

algorithms can improve significantly the initial best solution 
in particular for the medium-sized instances (N=20, 30). 
Furthermore, we observe that our algorithms can solve large 
instances in relatively moderate CPU time. For instance GA1, 
can solve all of the 50-job instances within a mean CPU time 
less than 12 seconds. Moreover, Table I reveals that, for the 
four variants GA1, GA2, GA4 and GA5, all the 30 instances 
with 50 jobs were solved within a maximum CPU time close 
to 38 seconds. It is worth noting that even the slowest variant 
GA₃  have a (relatively) modest performance. Indeed, the 
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average time is less than 2 minutes for N ≤ 30. However, 
GA₃  always provides, on average, the best solutions. On the 
other hand, GA1 and GA5 are able to provide, for some 
instances, solutions which are better than all those provided by 
the three other algorithms. For instance, Table I shows that for 
some instances with N=20, the gap reaches 100% (i.e. all the 
jobs complete processing before their due dates). 

B. Performance on Real-World Instances 
The performance of our GAs is compared to that of the 

scheduling method which is currently used by the company, 
referred hereafter to as the Currently Scheduling Method 
(CSM). The experiments were carried on 5 real instances 
collected from the company during a period of 15 days. The 
number of orders is taken equal to 10, 15, 20, 25, and 30. The 
results of this comparison are summarized in Table II. For 
each problem size we provide the increase rate (IR) of the 
objective value of CSM with respect to that of our best 
obtained value. More formally, IR is defined by 

 
IR = 100(CSM – best GA)/best GA 

 

Also, the CPU time (in seconds) of each of the proposed 
GAs is provided. At this point, it is worth noting that we did 
not report the CPU time of CSM since it is performed in a 
manual fashion. 

Table II shows that for all the real-world instances, our 
algorithms provide substantially better results than those 
obtained by the scheduling method which is currently used in 
the workshop. Indeed, the solutions of CSM are on average 
58.08% worse than our proposed ones. Moreover, for the 
largest sized instance (N=30), CSM provides a solution which 
is 87.48% worse than that provided by GA3. 

It is worth noting that all of the 5 instances are solved 
within a maximum CPU time close to 2 minutes. Moreover, 
except GA3, the other proposed algorithms require no more 
than few seconds (29.64 seconds for N=30). We observe that 
GA3, GA4, and GA5 provide, for all instances, better results 
than GA1 and GA2 but require much more CPU time. 

 
 
 

 
TABLE II 

COMPARISON OF THE PROPOSED GAS WITH THE COMPANY’S PROCEDURE 
N  GA1 GA2 GA3 GA4 GA5 CSM IR 

10 
∑wjTj

2 75595 73600 73869 73280 73584 117343 60.12 
Time 2.33 2.33 8.06 3.08 6.56   

15 
∑wjTj

2 120686 107961 98749 100555 97979 152317 55.45 
Time 3.11 3.08 20.19 4.5 9.34   

20 
∑wjTj

2 303271 255369 255864 251180 178768 267211 49.47 
Time 4.7 4.68 38.11 7.75 15.47   

25 
∑wjTj

2 534212 395707 342959 406154 366658 472948 37.90 
Time 6.44 6.14 51.03 12.63 24.58   

30 
∑wjTj

2 669008 546943 436653 544099 531808 818671 87.48 
Time 7.58 7.55 124.11 16.89 29.64   

       Avg. 58.08 
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