
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

1999

Abstract—We address a complex scheduling problem arising in

the wood panel industry with the objective of minimizing a quadratic
function of job tardiness. The proposed solution strategy, which is
based on an effective genetic algorithm, has been coded and
implemented within a major Tunisian company, leader in the wood
panel manufacturing. Preliminary experimental results indicate
significant decrease of delivery times.

Keywords—Genetic algorithm, heuristic, hybrid flowshop, total
weighted squared tardiness.

I. INTRODUCTION
HE increased competition of markets’ globalization has
forced manufacturers to reduce their costs and to improve

their quality. Costs and quality have always been considered
as critical success factors in the manufacturing industry. For
each firm, it is crucial to have short lead times and good due
date performance (i.e. orders have to be delivered as close as
possible to their due date). The development of flexible
production systems in Tunisia comes within the scope of the
new challenges of the Tunisian industrial enterprises
competitiveness. These systems allow a reduction of costs, as
well as a high mastery of quality. However, scheduling these
sophisticated workshops constitutes a very complicated task.

In this paper, we present an adaptive scheduling policy for a
major Tunisian company leader in the wood panel
manufacturing: STRAMICA. In order to keep its place in the
forefront of the competition at the national level and crack
new foreign markets, STRAMICA has made huge investments
in the purchase of several semi-automated and digital
controlled machines. These very sophisticated machines can
process various types of operations, which offers large
flexibility to the workshop and thus considerably complicates
the scheduler’s task.

The paper is organized as follows. In Section II, the
production system is described and formulated. Section III is
devoted to the presentation of the proposed genetic algorithm.

Anis Gharbi is with Industrial Engineering Department, College of

Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi
Arabia (phone: 0096614676829; fax: 0096614678657; e-mail: a.gharbi@
ksu.edu.sa).

Mohamed Haouari is with Department of Mechanical and Industrial
Engineering, College of Engineering, Qatar University, Qatar (e-mail:
mh6368@yahoo.com).

Talel Ladhari is with ESSEC, University of Tunis, Tunisia (e-mail:
talel_ladhari2004@yahoo.fr).

Mohamed Ali Rakrouki is with Computer Science Department, College of
Community, Taibah University, P.O. Box 344, Al-Madinah, Saudi Arabia (e-
mail: rakroukidali@yahoo.fr).

Finally, the experimental performance of our algorithm is
analyzed in Section IV.

II. THE PRODUCTION SYSTEM
The production system consists of a set of 17 machines

partitioned into ten successive stages. Each of the first two
stages is composed of a set of three unrelated parallel
machines; the third stage contains four unrelated parallel
machines, while each of the remaining seven stages contains a
single machine. Each machine requires a sequence-
independent setup time before starting the processing of an
operation, and is subject to unavailability periods which are
known in advance.

A detailed description of the operations that are performed
by each stage is provided in the following:
• Cross-cutting: the wood panels are cut into specified

width and height.
• Edge-banding: a decorative wood or plastic-made strip is

fixed by collage in order to protect the narrow face of the
panel.

• Routing: the panels are manufactured according to a
programmed model.

• Routing/edge-banding: the edge-banding and routing
operations are simultaneously performed on a
sophisticated machine.

• PVC coating: a PVC ribbon is fixed by collage in order to
cover the non-decorated face of the panel.

• Overmoulding: the narrow faces of the panel are
decorated with synthetic resin.

• Wrapping: the finished articles are wrapped with plastic
ribbon.

• Edge-routing: the narrow faces of the panel are
manufactured with different shapes.

• Pressing: a decorative laminate is fixed by collage in
order to cover the panel faces.

• Postforming: it permits to adapt the decorative laminate
according to the shape of the narrow face of the panel.

Fig. 1 depicts the production system as well as the main job
routings.

An order consists in a set of products, each of which has to
perform one or more operations in the workshop. Operations
have to be performed according to a specified unidirectional
order. Nevertheless, products can cross the same stage more
than once. For instance, after being manufactured and covered
with PVC, a product may have to be manufactured again in
order to make special shapes (such as the lock place). Also, it
is worth noting that, for technical reasons, some of the

Anis Gharbi, Mohamed Haouari, Talel Ladhari, Mohamed Ali Rakrouki

An Effective Genetic Algorithm for a Complex
Real-World Scheduling Problem

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

2000

products have to be processed together on some stages. For
instance, different products may require the same type of
wood and have therefore to be cut from the same panel.

A transfer time is necessary to transport the products
between two consecutive stages. There are huge buffers
between all stages, so that no blocking of machines occurs.
Each operation is processed on at most one machine at one
time. All the processing times are constant and known in
advance.

Each order is characterized by a due date which is promised
to the customer. Violating this date induces important costs,
bad reputation and eventually loss of some customers. The
company is therefore concerned with finding "good"
schedules that minimize the tardiness of client orders.
However, all orders do not have the same priority. For
instance, some orders are dedicated to be exported so that if
they are not ready at time, they will be definitively lost and an
important cost will be incurred to the company. A weight is
therefore associated with each order in order to indicate its
importance.

Fig. 1 The production system

The problem is formulated as a Hybrid Flow Shop (HFS)
scheduling problem with additional complicating factors
(recirculation, time lags, setup times), where the objective is
to minimize the sum of weighted squared tardiness of jobs.
The choice of the squared tardiness in the objective function is
motivated by the fact that a quadratic objective function is
more appropriate when large deviations from the due dates are
highly undesirable (low priority orders may be particularly
subject to excessive delays). Moreover, the managers prefer
that two orders which have equal weights are both delivered
one day after their respective due dates, rather than a tardiness
of two days for only one of them.

III. THE PROPOSED GENETIC ALGORITHM
Several investigations on various real-life scheduling

problems show that GAs constitute a promising approach [1]-
[3], [5], [6]. In the proposed GA, each chromosome is
composed of M genes, where M denotes the total number of
machines in the workshop. Each gene represents a sequence of
operations to be performed on the corresponding machine (see
Fig. 2).

The initial population is composed of 50 solutions
generated by assigning a randomly chosen job to the smallest
processing time machine.

The parents are selected using the tournament selection
procedure. It consists in randomly picking 3 chromosomes
from the population and choosing the one that has the best
fitness. It is worth noting that a chromosome can be chosen
more than once. We have implemented the 1−point crossover
operator with a crossover rate of 0.9. The cutting point is
chosen randomly between two genes that belong to two
consecutive stages and the genes on the sides of the cutting
point are exchanged between the parent chromosomes.

A particular feature of our GA is the implementation of five
heuristics, as mutation operators, for every gene in the
chromosome. They consist in sorting the operations: in the
increasing order of their due date (H1), in the increasing order
of their weighted due date (H2), using an NEH-based
procedure [4] (H3), by swapping each two consecutive
operations if it improves the solution (H4), and by using the
best solution provided by H1, H2 and H4 (H5). A high mutation
rate of 0.7 is used, except for H3 where it is equal to 0.04.

Fig. 2 Solution representation

It is worth noting that the feasibility of an offspring must be
checked after using mutation operator. When infeasibility
happens, the offspring is corrected by moving through the
chromosome structure, gene by gene, removing and
reinserting operations whenever necessary to satisfy
feasibility. The Steady-State population replacement model is
adopted with a replacement rate of 50%. It breeds and
replaces only few individuals at a time in a population, never
replacing the whole population in one generation, which
allows children to compete directly with parents. The
maximum number of generations is set to 20. It is worth
noting that all the GA parameters have been fixed after an
extensive experimental analysis.

In the sequel, the following notations will be adopted:
• MAXGEN: the maximum number of generations, that is,

the number of times the population is assessed and bred
until the algorithm gives up.

• POPSIZE: the size of the population.
• Initialize(POPSIZE): produces a set of POPSIZE initial

individuals.
• AssessFitness(chi): assigns a fitness to the individual chi,

which reflects its performance at solving the problem.
• Select(P): selects individuals from the population P based

on their fitness, and copies them.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

2001

• Crossover(ch1, ch2) and Mutate(chi): modify the copies to
produce new candidate solutions which are added to the
population.

• SelectForRemoval(P): selects a single individual, that has
a poor fitness, for elimination from the population.

• I: the number of individuals replaced in one generation
(I<|P|).

Pseudo-code of the genetic algorithm:

1. Population P ← Initialize(POPSIZE)
2. Individual best ← nil
3. For each individual chi ∈ P {
4. AssignFitness(chi)
5. If best = nil or fitness(chi) is better than fitness(best) then
6. best ← chi
7. }
8. Repeat MAXGEN times {
9. Repeat I times {
10. Individual offspring1 ← Select(P)
11. Individual offspring2 ← Select(P)
12. Crossover(offspring1, offspring2)
13. Mutate(offspring1)
14. Mutate(offspring2)
15. AssignFitness(offspring1)
16. AssignFitness(offspring2)
17. If fitness(offspring1) is better than fitness(best) then {
18. best ← offspring1
19. Individual s ← SelectForRemoval(P)
20. P ←P \ {s}
21. P ← P ∪ {offspring1}
22. }
23. If fitness(offspring2) is better than fitness(best) then {
24. best ← offspring2
25. Individual s ← SelectForRemoval(P)
26. P ←P \ {s}
27. P ← P ∪ {offspring2}
28. }
29. }
30. }
31. Return best

IV. PRELIMINARY EXPERIMENTAL RESULTS
We compared five variants of the proposed GA. In each

variant GAi (i = 1,...,5) the heuristic Hi has been adopted as a
mutation operator. Our algorithms were coded in C++ and
compiled with Microsoft Visual C++ 6.0 compiler. The
computational experiments were carried out on an Athlon XP
1.5 GHz PC with 256 MB RAM.

In order to assess the performance of the proposed
algorithms, we carried out two series of numerical
experiments: the first one is based on randomly generated
instances and the second one is based on real-world instances.

For the second set of instances, the solutions provided by our
algorithms were compared to those obtained by the scheduling
method currently used in the workshop.

A. Performance on Randomly Generated Instances
For random tests, the generation parameters have been

chosen in order to correspond to the company’s instances. The
number of orders N has been taken equal to 10, 20, 30, and 50
orders. For each problem size, 30 instances were randomly
generated. The processing times, the setup times, and the
transfer times, are drawn from the discrete uniform
distribution on [5,1000], [5,30], and [5,15], respectively (in
minutes). The release dates and due dates, are respectively
drawn from the discrete uniform distribution on [0,3] and
[0,7] (in days). The order weights are uniformly distributed on
{1, 5, 20}.

Table I summarizes the results of the experiments on the
random tests. For each of the proposed GAs, we computed the
following performance measures:
• The average gap (Avg.gap), where the gap is defined by

100(best initial solution - GA solution)/best initial
solution

• The maximal gap (Max.gap)
• The average CPU time (Avg.time) in seconds
• The maximum CPU time (Max.time) in seconds

TABLE I

PERFORMANCE OF GAS ON RANDOMLY GENERATED INSTANCES
N GA1 GA2 GA3 GA4 GA5

10

Avg.gap 26.63 17.88 45.88 34.25 37.35
Max.gap 96.94 77.28 98.20 95.91 96.98
Avg.time 2.23 2.22 7.57 2.26 3.71
Max.time 3.77 3.94 18.69 4.03 10.11

20

Avg.gap 33.49 38.15 59.25 39.00 40.51
Max.gap 100 83.61 90.08 98.93 100
Avg.time 4.18 4.31 36.16 4.54 6.73
Max.time 4.92 5.59 51.17 5.81 12.88

30

Avg.gap 21.12 42.93 50.22 27.39 37.23
Max.gap 99.80 81.28 94.72 87.74 84.30
Avg.time 6.69 6.54 115.76 7.41 10.48
Max.time 7.95 8.19 154.38 9.94 18.41

50

Avg.gap 23.35 42.60 49.32 15.18 24.64
Max.gap 89.74 80.75 84.69 82.45 59.41
Avg.time 11.89 12.41 974.43 14.92 20.23
Max.time 14.23 15.97 1637.17 17.42 38.22

Table I provides strong evidence that the proposed

algorithms can improve significantly the initial best solution
in particular for the medium-sized instances (N=20, 30).
Furthermore, we observe that our algorithms can solve large
instances in relatively moderate CPU time. For instance GA1,
can solve all of the 50-job instances within a mean CPU time
less than 12 seconds. Moreover, Table I reveals that, for the
four variants GA1, GA2, GA4 and GA5, all the 30 instances
with 50 jobs were solved within a maximum CPU time close
to 38 seconds. It is worth noting that even the slowest variant
GA₃ have a (relatively) modest performance. Indeed, the

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:10, 2013

2002

average time is less than 2 minutes for N ≤ 30. However,
GA₃ always provides, on average, the best solutions. On the
other hand, GA1 and GA5 are able to provide, for some
instances, solutions which are better than all those provided by
the three other algorithms. For instance, Table I shows that for
some instances with N=20, the gap reaches 100% (i.e. all the
jobs complete processing before their due dates).

B. Performance on Real-World Instances
The performance of our GAs is compared to that of the

scheduling method which is currently used by the company,
referred hereafter to as the Currently Scheduling Method
(CSM). The experiments were carried on 5 real instances
collected from the company during a period of 15 days. The
number of orders is taken equal to 10, 15, 20, 25, and 30. The
results of this comparison are summarized in Table II. For
each problem size we provide the increase rate (IR) of the
objective value of CSM with respect to that of our best
obtained value. More formally, IR is defined by

IR = 100(CSM – best GA)/best GA

Also, the CPU time (in seconds) of each of the proposed
GAs is provided. At this point, it is worth noting that we did
not report the CPU time of CSM since it is performed in a
manual fashion.

Table II shows that for all the real-world instances, our
algorithms provide substantially better results than those
obtained by the scheduling method which is currently used in
the workshop. Indeed, the solutions of CSM are on average
58.08% worse than our proposed ones. Moreover, for the
largest sized instance (N=30), CSM provides a solution which
is 87.48% worse than that provided by GA3.

It is worth noting that all of the 5 instances are solved
within a maximum CPU time close to 2 minutes. Moreover,
except GA3, the other proposed algorithms require no more
than few seconds (29.64 seconds for N=30). We observe that
GA3, GA4, and GA5 provide, for all instances, better results
than GA1 and GA2 but require much more CPU time.

TABLE II

COMPARISON OF THE PROPOSED GAS WITH THE COMPANY’S PROCEDURE
N GA1 GA2 GA3 GA4 GA5 CSM IR

10
∑wjTj

2 75595 73600 73869 73280 73584 117343 60.12
Time 2.33 2.33 8.06 3.08 6.56

15
∑wjTj

2 120686 107961 98749 100555 97979 152317 55.45
Time 3.11 3.08 20.19 4.5 9.34

20
∑wjTj

2 303271 255369 255864 251180 178768 267211 49.47
Time 4.7 4.68 38.11 7.75 15.47

25
∑wjTj

2 534212 395707 342959 406154 366658 472948 37.90
Time 6.44 6.14 51.03 12.63 24.58

30
∑wjTj

2 669008 546943 436653 544099 531808 818671 87.48
Time 7.58 7.55 124.11 16.89 29.64

 Avg. 58.08

REFERENCES
[1] S. Bertel, and J.C. Billaut, “A genetic algorithm for an industrial

multiprocessor flow shop scheduling problem with recirculation”,
European Journal of Operational Research, vol. 159, p. 651–662, 2004.

[2] J. W. Chung, S. M. Oh, and I. C Choi, “A hybrid genetic algorithm for
train sequencing in the Korean railway”, OMEGA The International
Journal of Management Science, vol. 37, p. 555–565, 2009.

[3] E. Hart, P. Ross, and J.A.D. Nelson, “Scheduling chicken catching - an
investigation into the success of a genetic algorithm on a real-world
scheduling problem”, Annals of Operations Research, vol. 92, p. 363–
380, 1999.

[4] M. Nawaz, E. E. Enscore, and I. Ham, “A heuristic algorithm for the
Flow shop problem”, European Journal of Operational Research, vol. 91,
p. 160–175, 1983.

[5] P.C. Pendharkar, and J.A. Roger, “Nonlinear programming and genetic
search application for production scheduling in coal mines”, Annals of
Operations Research, vol. 95, p. 251–267, 2000.

[6] Rochat, Y., “A genetic approach for solving a scheduling problem in a
robotized analytical system”, Journal of Heuristics, vol. 4, p. 245–261,
1998.

