Minimization problems for generalized reflexive and generalized anti-reflexive matrices

Yongxin Yuan

Abstract

Let $R \in \mathbf{C}^{m \times m}$ and $S \in \mathbf{C}^{n \times n}$ be nontrivial unitary involutions, i.e., $R^{\mathrm{H}}=R=R^{-1} \neq \pm I_{m}$ and $S^{\mathrm{H}}=S=$ $S^{-1} \neq \pm I_{n} . A \in \mathbf{C}^{m \times n}$ is said to be a generalized reflexive (anti-reflexive) matrix if $R A S=A(R A S=-A)$. Let ρ be the set of $m \times n$ generalized reflexive (anti-reflexive) matrices. Given $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$ and $W \in \mathbf{C}^{n \times q}$, we characterize the matrices A in ρ that minimize $\|A X-Z\|^{2}+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}$, and, given an arbitrary $\tilde{A} \in \mathbf{C}^{m \times n}$, we find a unique matrix among the minimizers of $\|A X-Z\|^{2}+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}$ in ρ that minimizes $\|A-\tilde{A}\|$. We also obtain sufficient and necessary conditions for existence of $A \in \rho$ such that $A X=Z, Y^{\mathrm{H}} A=W^{\mathrm{H}}$, and characterize the set of all such matrices A if the conditions are satisfied. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

Keywords-approximation, generalized reflexive matrix, generalized anti-reflexive matrix, inverse eigenvalue problem.

I. Introduction

IN this paper we shall adopt the following notation. $\mathbf{C}^{m \times n}$ denotes the set of all $m \times n$ complex matrices, $\mathbf{U C}^{n \times n}$ denotes the set of all unitary matrices in $\mathbf{C}^{n \times n} . A^{\mathrm{H}}, A^{+}$and $\|A\|$ stand for the conjugate transpose, the Moore-Penrose generalized inverse and the Frobenius norm of a complex matrix A, respectively. For $A, B \in \mathbf{C}^{m \times n}$, an inner product in $\mathbf{C}^{m \times n}$ is defined by $\langle A, B\rangle=\operatorname{trace}\left(B^{\mathrm{H}} A\right)$, then $\mathbf{C}^{m \times n}$ is a Hilbert space. The matrix norm $\|\cdot\|$ induced by the inner product is the Frobenius norm. I_{n} represents the identity matrix of order n. For $A=\left(a_{i j}\right), B=\left(b_{i j}\right) \in \mathbf{C}^{m \times n}, A * B$ represents the Hadamard product of the matrices A and B, i.e., $A * B=\left(a_{i j} b_{i j}\right) \in \mathbf{C}^{m \times n}$.

Throughout this paper $R \in \mathbf{C}^{m \times m}$ and $S \in \mathbf{C}^{n \times n}$ are nontrivial unitary involutions, i.e., $R^{\mathrm{H}}=R=R^{-1} \neq \pm I_{m}$ and $S^{\mathrm{H}}=S=S^{-1} \neq \pm I_{n}$. We say that $A \in \mathbf{C}^{m \times n}$ is a generalized reflexive (anti-reflexive) matrix (see [9]) if $R A S=A(R A S=-A)$. If $m=n, R=S$, then the generalized reflexive (anti-reflexive) matrices reduce to the reflexive (anti-reflexive) matrices (see, e.g., [8]). Let $J_{n}=$ $\left(j_{i, k}\right)$ represent the exchange matrix of order n defined by $j_{i, k}=\delta_{i, n-k+1}$ for $1 \leq i, k \leq n$, where $\delta_{i, k}$ is the Kronecker delta, i.e., J_{n} is a matrix with ones on the secondary diagonal and zeros elsewhere. By taking $m=n, R=S=J_{n}$, then the generalized reflexive (anti-reflexive) matrices reduce to the centrosymmetric (centroskew) matrices (see [25]) which play an important role in many areas [10, 13, 14]. Therefore, centrosymmetric (centroskew) matrices, whose special properties

[^0]have been under extensive study $[1,2,7,15,19,20,26]$, are the special cases of generalized reflexive (anti-reflexive) matrices. Chen [9] discussed applications that give rise to the generalized reflexive (anti-reflexive) matrices and considered least squares problems involving them.

In the following ρ is either the set of $m \times n$ generalized reflexive matrices or the set of $m \times n$ generalized anti-reflexive matrices. We consider the following problems.
Problem I. Given $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$ and $W \in \mathbf{C}^{n \times q}$, find
$\sigma(X, Z, Y, W)=\min _{A \in \rho}\left(\|A X-Z\|^{2}+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right)^{1 / 2}$, and characterize the set

$$
\begin{aligned}
\rho(X, Z, Y, W) & =\left\{A \in \rho \mid\left(\|A X-Z\|^{2}\right.\right. \\
& \left.\left.+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right)^{1 / 2}=\sigma(X, Z, Y, W)\right\} .
\end{aligned}
$$

Problem II. Given $\tilde{A} \in \mathbf{C}^{m \times n}$, find

$$
\sigma(X, Z, Y, W ; \tilde{A})=\min _{A \in \rho(X, Z, Y, W)}\|A-\tilde{A}\|
$$

and find $\hat{A} \in \rho(X, Z, Y, W)$ such that

$$
\|\hat{A}-\tilde{A}\|=\sigma(X, Z, Y, W ; \tilde{A})
$$

If $m=n, \Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right), \Omega=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{q}\right)$, $X=\left[x_{1}, \cdots, x_{p}\right], Y=\left[y_{1}, \cdots, y_{q}\right]$, where $x_{i} \in \mathbf{C}^{n}(i=$ $1, \cdots, p), y_{j} \in \mathbf{C}^{n}(j=1, \cdots, q), Z=X \Lambda, W^{\mathrm{H}}=\Omega Y^{\mathrm{H}}$, then the set $\rho(X, Z, Y, W)$ in Problem I is determined by partial left and right eigenpairs $\left(\omega_{j}, y_{j}\right)(j=1, \cdots, q)$ and $\left(\lambda_{i}, x_{i}\right)(i=1, \cdots, p)$, and Problem I is a left and right inverse eigenproblem for generalized reflexive (anti-reflexive) matrices. The left and right inverse eigenproblem is a special inverse eigenvalue problem, indeed, the recursive inverse eigenvalue problem (see [17]). Problem II is an optimal approximation problem under spectral constraint.

There are many publications (see, e.g., $[5,6,11,12,16,24$, 29] and their references) concerning minimization problems for matrices. Recently, Bai and Chan [4] considered inverse eigenproblems related to centrosymmetric and centroskew matrices, where $m=n, R=S=J_{n}$, and $Y=0, W=0$. Zhou et al. [28] discussed the minimization problems for centrosymmetric matrices, where $m=n, R=S=J_{n}, Y=0$ and $W=0$. Peng and Hu [18] studied the existence of $n \times n$ reflexive and anti-reflexive matrices X such that $A X=B$, where A and B are given in $\mathbf{C}^{m \times n}$, and the nearest matrix to a given matrix. Trench [21] considered the minimization problems for hermitian, hermitian reflexive and hermitian antireflexive matrices, where $m=n, Y=0$ and $W=0$. In
[22] and [23], Trench has studied inverse eigenproblems for generalized symmetric or skew symmetric matrices and the minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, respectively.

In this paper we obtain explicit formulas for $\sigma(X, Z, Y, W)$, $\sigma(X, Z, Y, W ; \tilde{A})$, all matrices in $\rho(X, Z,, Y, W)$, and the solution of Problem II. As a byproduct of our results on Problem I we obtain necessary and sufficient conditions on X, Z, Y and W for existence of $A \in \rho$ such that $A X=Z$ and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$, and an explicit formula for all such A. These results are applied to solve a class of left and right inverse eigenproblems for generalized reflexive (anti-reflexive) matrices.

If $m=n, R=S, Y=0$ and $W=0$, our results apply to reflexive and anti-reflexive matrices, which are discussed in [18, 27]. In particular, if $m=n, R=S=J_{n}, Y=0$ and $W=0$, our results apply to centrosymmetric and centroskew matrices, which are considered in [4, 28].

II. Preliminary Considerations

If λ is an eigenvalue of $E \in \mathbf{C}^{m \times m}$, let $V_{E}(\lambda)$ denote the eigenspace of E corresponding to the eigenvalue λ. A vector $z \in \mathbf{C}^{m}$ is said to be R-symmetric (R-skew symmetric) if $R z=z(R z=-z)$; thus, $V_{R}(1)$ and $V_{R}(-1)$ are the subspaces of $\mathbf{C}^{m \times m}$ consisting respectively of R-symmetric and R-skew symmetric vectors. Let $r=\operatorname{dim}\left[V_{R}(1)\right], s=$ $\operatorname{dim}\left[V_{R}(-1)\right]$. Since a unitary involution is diagonalizable and $R \neq \pm I_{m}$, then $r, s \geq 1$, and $r+s=m$. Let $\left\{p_{1}, \cdots, p_{r}\right\}$ and $\left\{q_{1}, \cdots, q_{s}\right\}$ be the orthonormal bases for $V_{R}(1)$ and $V_{R}(-1)$, respectively, and define

$$
P=\left[p_{1}, \cdots, p_{r}\right] \in \mathbf{C}^{m \times r}, Q=\left[q_{1}, \cdots, q_{s}\right] \in \mathbf{C}^{m \times s}
$$

then $[P, Q]$ is a unitary matrix and R has the following spectral decomposition

$$
R=[P, Q]\left[\begin{array}{cc}
I_{r} & 0 \tag{1}\\
0 & -I_{s}
\end{array}\right]\left[\begin{array}{c}
P^{\mathrm{H}} \\
Q^{\mathrm{H}}
\end{array}\right]
$$

In particular, if $R=J_{2 k}$, then $r=s=k$, we can take

$$
P=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{k} \\
J_{k}
\end{array}\right], Q=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{k} \\
-J_{k}
\end{array}\right]
$$

If $R=J_{2 k+1}$, then $r=k+1, s=k$, we can take

$$
P=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I_{k} & 0 \\
0 & \sqrt{2} \\
J_{k} & 0
\end{array}\right], Q=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{k} \\
0 \\
-J_{k}
\end{array}\right]
$$

Similarly, there are positive integers k and l such that $k+l=$ n, and the matrices $U \in \mathbf{C}^{n \times k}$ and $V \in \mathbf{C}^{n \times l}$ whose column vectors form the orthonormal bases for the eigenspaces $V_{S}(1)$ and $V_{S}(-1)$, respectively. Thus, $[U, V]$ is a unitary matrix and S has the spectral decomposition:

$$
S=[U, V]\left[\begin{array}{cc}
I_{k} & 0 \tag{2}\\
0 & -I_{l}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

In the following P, Q, U, V are always defined by (1) and (2).
(1) and (2) yield the following characterizations of $m \times n$ generalized reflexive or generalized anti-reflexive matrices.

Lemma 1: (a) $A \in \mathbf{C}^{m \times n}$ is a generalized reflexive matrix if and only if there exist $A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}$ such that

$$
A=[P, Q]\left[\begin{array}{cc}
A_{P U} & 0 \tag{3}\\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

(b) $A \in \mathbf{C}^{m \times n}$ is a generalized anti-reflexive matrix if and only if there exist $A_{P V} \in \mathbf{C}^{r \times l}, A_{Q U} \in \mathbf{C}^{s \times k}$ such that

$$
A=[P, Q]\left[\begin{array}{cc}
0 & A_{P V} \tag{4}\\
A_{Q U} & 0
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

Proof. (a) If $A \in \mathbf{C}^{m \times n}$ is a generalized reflexive matrix, then it follows from $R A S=A$, (1) and (2) that $P^{\mathrm{H}} A V=$ $0, Q^{\mathrm{H}} A U=0$. Let $A_{P U}=P^{\mathrm{H}} A U, A_{Q V}=Q^{\mathrm{H}} A V$, then $A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}$, and

$$
\begin{aligned}
A=R A S= & {[P, Q]\left[\begin{array}{cc}
I_{r} & 0 \\
0 & -I_{s}
\end{array}\right]\left[\begin{array}{l}
P^{\mathrm{H}} \\
Q^{\mathrm{H}}
\end{array}\right] } \\
& A[U, V]\left[\begin{array}{cc}
I_{k} & 0 \\
0 & -I_{l}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] \\
= & {[P, Q]\left[\begin{array}{cc}
A_{P U} & 0 \\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] . }
\end{aligned}
$$

The verification of the converse is straightforward. Similarly, (b) is may proved.

In order to solve Problem I, we will need the following lemma.

Lemma 2: Let $\tilde{X} \in \mathbf{C}^{m \times p}, \tilde{W} \in \mathbf{C}^{m \times t}, \tilde{Y} \in \mathbf{C}^{n \times t}, \tilde{Z} \in$ $\mathbf{C}^{n \times p}$, and the singular value decompositions(SVDs) of the matrices \tilde{X} and \tilde{Y} be, respectively

$$
\tilde{X}=\tilde{U}\left[\begin{array}{cc}
\Delta & 0 \tag{5}\\
0 & 0
\end{array}\right] \tilde{V}^{\mathrm{H}}, \quad \tilde{Y}=\tilde{P}\left[\begin{array}{ll}
\Gamma & 0 \\
0 & 0
\end{array}\right] \tilde{Q}^{\mathrm{H}}
$$

where $\tilde{U}=\left[\tilde{U}_{1}, \tilde{U}_{2}\right] \in \mathbf{U C}^{m \times m}, \tilde{V}=\left[\tilde{V}_{1}, \tilde{V}_{2}\right] \in$ $\mathbf{U C}{ }^{p \times p}, \tilde{P}=\left[\tilde{P}_{1}, \tilde{P}_{2}\right] \in \mathbf{U C}^{n \times n}, \tilde{Q}=\left[\tilde{Q}_{1}, \tilde{Q}_{2}\right] \in$ $\mathbf{U C}^{t \times t}, \Delta=\operatorname{diag}\left\{\delta_{1}, \cdots, \delta_{e}\right\}>0, \Gamma=\operatorname{diag}\left\{\gamma_{1}, \cdots, \gamma_{f}\right\}>$ $0, e=\operatorname{rank}(\tilde{X}), f=\operatorname{rank}(\tilde{Y}), \tilde{U}_{1} \in \mathbf{C}^{m \times e}, \tilde{V}_{1} \in \mathbf{C}^{p \times e}, \tilde{P}_{1} \in$ $\mathbf{C}^{n \times f}, \tilde{Q}_{1} \in \mathbf{C}^{t \times f}$, and let

$$
\begin{aligned}
\Phi_{1} & =\left[\varphi_{i j}\right] \in \mathbf{C}^{f \times e} \\
\varphi_{i j} & =\frac{1}{\left(\gamma_{i}^{2}+\delta_{j}^{2}\right)^{1 / 2}}, 1 \leq i \leq f, 1 \leq j \leq e
\end{aligned}
$$

then

$$
\begin{align*}
& \min _{B \in \mathbf{C}^{n \times m}}\left(\|B \tilde{X}-\tilde{Z}\|^{2}+\left\|\tilde{Y}^{\mathrm{H}} B-\tilde{W}^{\mathrm{H}}\right\|^{2}\right) \\
& =\left\|\tilde{Z} \tilde{V}_{2}\right\|^{2}+\left\|\tilde{W} \tilde{Q}_{2}\right\|^{2} \tag{6}\\
& +\left\|\Phi_{1} *\left(\Gamma \tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}-\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1} \Delta\right)\right\|^{2}
\end{align*}
$$

and $B \in \mathbf{C}^{n \times m}$ attains this minimum if and only if

$$
B=\tilde{P}\left[\begin{array}{cc}
\Phi * B_{11} & \Gamma^{-1} \tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{2} \tag{7}\\
\tilde{P}_{2}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1} \Delta^{-1} & B_{22}
\end{array}\right] \tilde{U}^{\mathrm{H}}
$$

where $B_{11}=\tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1} \Delta+\Gamma \tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1}, \Phi=\Phi_{1} * \Phi_{1}, B_{22} \in$ $\mathbf{C}^{(n-f) \times(m-e)}$ is an arbitrary matrix. Moreover, the equations $B \tilde{X}=\tilde{Z}$ and $\tilde{Y}^{\mathrm{H}} B=\tilde{W}^{\mathrm{H}}$ have a common solution if and only if

$$
\begin{equation*}
\tilde{Z} \tilde{X}^{+} \tilde{X}=\tilde{Z}, \tilde{W} \tilde{Y}^{+} \tilde{Y}=\tilde{W}, \tilde{Y}^{\mathrm{H}} \tilde{Z}=\tilde{W}^{\mathrm{H}} \tilde{X} \tag{8}
\end{equation*}
$$

in which case a general solution of the equations

$$
B \tilde{X}=\tilde{Z}, \quad \tilde{Y}^{\mathrm{H}} B=\tilde{W}^{\mathrm{H}}
$$

can be expressed as

$$
\begin{equation*}
B=\tilde{Z} \tilde{X}^{+}+\left(\tilde{W} \tilde{Y}^{+}\right)^{\mathrm{H}}\left(I_{m}-\tilde{X} \tilde{X}^{+}\right)+\tilde{P}_{2} B_{22} \tilde{U}_{2}^{\mathrm{H}} \tag{9}
\end{equation*}
$$

where $B_{22} \in \mathbf{C}^{(n-f) \times(m-e)}$ is an arbitrary matrix.
Proof. From (5), we have

$$
\begin{aligned}
& \|B \tilde{X}-\tilde{Z}\|^{2}+\left\|\tilde{Y}^{\mathrm{H}} B-\tilde{W}^{\mathrm{H}}\right\|^{2} \\
= & \left\|B \tilde{U}\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right] \tilde{V}^{\mathrm{H}}-\tilde{Z}\right\|^{2} \\
& +\left\|\tilde{Q}\left[\begin{array}{cc}
\Gamma & 0 \\
0 & 0
\end{array}\right] \tilde{P}^{\mathrm{H}} B-\tilde{W}^{\mathrm{H}}\right\|^{2} \\
= & \left\|\tilde{P}^{\mathrm{H}} B \tilde{U}\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right]-\tilde{P}^{\mathrm{H}} \tilde{Z} \tilde{V}\right\|^{2} \\
& +\|\left[\begin{array}{cc}
\Gamma & 0 \\
0 & 0
\end{array}\right] \tilde{P}^{\mathrm{H}} B \tilde{U}-\tilde{Q^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U} \|^{2} .}
\end{aligned}
$$

Let

$$
\tilde{P}^{\mathrm{H}} B \tilde{U}=\left[\begin{array}{ll}
B_{11} & B_{12} \tag{10}\\
B_{21} & B_{22}
\end{array}\right],
$$

where $B_{11} \in \mathbf{C}^{f \times e}$, then

$$
\begin{align*}
& \|B \tilde{X}-\tilde{Z}\|^{2}+\left\|\tilde{Y}^{\mathrm{H}} B-\tilde{W}^{\mathrm{H}}\right\|^{2} \\
& =\left\|B_{11} \Delta-\tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}\right\|^{2}+\left\|B_{21} \Delta-\tilde{P}_{2}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}\right\|^{2} \tag{11}\\
& +\left\|\tilde{Z} \tilde{V}_{2}\right\|^{2}+\left\|\Gamma B_{11}-\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1}\right\|^{2} \\
& +\left\|\Gamma B_{12}-\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{2}\right\|^{2}+\left\|\tilde{Q}_{2}^{\mathrm{H}} \tilde{W}^{\mathrm{H}}\right\|^{2} .
\end{align*}
$$

Thus, $\|B \tilde{X}-\tilde{Z}\|^{2}+\left\|\tilde{Y}^{\mathrm{H}} B-\tilde{W}^{\mathrm{H}}\right\|^{2}=$ min if and only if

$$
\left\|B_{21} \Delta-\tilde{P}_{2}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}\right\|=\min ,\left\|\Gamma B_{12}-\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{2}\right\|=\min
$$

and
$g\left(B_{11}\right):=\left\|B_{11} \Delta-\tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}\right\|^{2}+\left\|\Gamma B_{11}-\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1}\right\|^{2}=\min$.
Clearly, (12) implies that

$$
\begin{equation*}
B_{21}=\tilde{P}_{2}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1} \Delta^{-1}, \quad B_{12}=\Gamma^{-1} \tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{2} \tag{13}
\end{equation*}
$$

Let $B_{11}=\left[b_{i j}\right], \tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}=\left[z_{i j}\right], \tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1}=\left[w_{i j}\right] \in \mathbf{C}^{f \times e}$, then

$$
\begin{equation*}
g\left(B_{11}\right)=\sum_{i=1}^{f} \sum_{j=1}^{e}\left(\left|b_{i j} \delta_{j}-z_{i j}\right|^{2}+\left|\gamma_{i} b_{i j}-w_{i j}\right|^{2}\right) . \tag{15}
\end{equation*}
$$

Now we minimize the quantities
$q_{i j}=\left|b_{i j} \delta_{j}-z_{i j}\right|^{2}+\left|\gamma_{i} b_{i j}-w_{i j}\right|^{2}, \quad 1 \leq i \leq f, 1 \leq j \leq e$.
It is easy to obtain the minimizers

$$
\begin{equation*}
b_{i j}=\frac{z_{i j} \delta_{j}+\gamma_{i} w_{i j}}{\gamma_{i}^{2}+\delta_{j}^{2}}, \quad 1 \leq i \leq f, 1 \leq j \leq e \tag{16}
\end{equation*}
$$

and the minima

$$
\begin{equation*}
q_{i j}=\frac{\left|\gamma_{i} z_{i j}-w_{i j} \delta_{j}\right|^{2}}{\gamma_{i}^{2}+\delta_{j}^{2}}, \quad 1 \leq i \leq f, 1 \leq j \leq e \tag{17}
\end{equation*}
$$

(17), (14) and (11) imply (6). Substituting (14) and (16) into (10) yields (7).

It follows from (6) that $B \tilde{X}=\tilde{Z}$ and $\tilde{Y}^{\mathrm{H}} B=\tilde{W}^{\mathrm{H}}$ have a common solution if and only if

$$
\tilde{Z} \tilde{V}_{2}=0, \tilde{W} \tilde{Q}_{2}=0, \Gamma \tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1}=\tilde{Q}_{1}^{\mathrm{H}} \tilde{W}^{\mathrm{H}} \tilde{U}_{1} \Delta
$$

which implies (8). In this case, $B_{11}=\tilde{P}_{1}^{\mathrm{H}} \tilde{Z} \tilde{V}_{1} \Delta^{-1}$. Substituting the representation of B_{11} and (14) into (10) yields (9).

III. Minimization Problem for Generalized Reflexive Matrices

In this section ρ denotes the set of $m \times n$ generalized reflexive matrices.

For the given matrices $X \in \mathbf{C}^{n \times p}$, and $Y \in \mathbf{C}^{m \times q}$, let the SVDs of matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ be, respectively

$$
\begin{align*}
U^{\mathrm{H}} X & =F_{1}\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & 0
\end{array}\right] G_{1}^{\mathrm{H}}, P^{\mathrm{H}} Y=F_{2}\left[\begin{array}{cc}
\Sigma_{2} & 0 \\
0 & 0
\end{array}\right] G_{2}^{\mathrm{H}}, \\
V^{\mathrm{H}} X & =F_{3}\left[\begin{array}{cc}
\Sigma_{3} & 0 \\
0 & 0
\end{array}\right] G_{3}^{\mathrm{H}}, Q^{\mathrm{H}} Y=F_{4}\left[\begin{array}{cc}
\Sigma_{4} & 0 \\
0 & 0
\end{array}\right] G_{4}^{\mathrm{H},} \tag{18}
\end{align*}
$$

where all matrices $F_{i}=\left[F_{i 1}, F_{i 2}\right], G_{i}=\left[G_{i 1}, G_{i 2}\right](i=$ $1,2,3,4)$ are unitary matrices and partitions are compatible with the size of $\Sigma_{i}=\operatorname{diag}\left(\alpha_{1}^{(i)}, \ldots, \alpha_{t_{i}}^{(i)}\right)>0(i=1,2,3,4)$, $t_{1}=\operatorname{rank}\left(U^{\mathrm{H}} X\right), t_{2}=\operatorname{rank}\left(P^{\mathrm{H}} Y\right), t_{3}=\operatorname{rank}\left(V^{\mathrm{H}} X\right)$, $t_{4}=\operatorname{rank}\left(Q^{\mathrm{H}} Y\right)$.

Theorem 1: Let $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$, $W \in \mathbf{C}^{n \times q}$, and ρ denote the set of $m \times n$ generalized reflexive matrices. Suppose that the SVDs of the matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then

$$
\begin{align*}
& \sigma(X, Z, Y, W)=\min _{A \in \rho}\left(\|A X-Z\|^{2}\right. \\
& \left.+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right)^{1 / 2} \\
= & \left(\left\|P^{\mathrm{H}} Z G_{12}\right\|^{2}+\left\|U^{\mathrm{H}} W G_{22}\right\|^{2}\right. \\
+ & \left\|\Phi_{1} *\left(\Sigma_{2} F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11}-G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{11} \Sigma_{1}\right)\right\|^{2} \\
+ & \left\|Q^{\mathrm{H}} Z G_{32}\right\|^{2}+\left\|V^{\mathrm{H}} W G_{42}\right\|^{2} \\
+ & \left.\left\|\Phi_{2} *\left(\Sigma_{4} F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31}-G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{31} \Sigma_{3}\right)\right\|^{2}\right)^{1 / 2}, \tag{20}
\end{align*}
$$

where

$$
\begin{gathered}
\Phi_{1}=\left[\varphi_{i j}^{(1)}\right] \in \mathbf{C}^{t_{2} \times t_{1}}, \varphi_{i j}^{(1)}=\frac{1}{\left(\left(\alpha_{i}^{(2)}\right)^{2}+\left(\alpha_{j}^{(1)}\right)^{2}\right)^{1 / 2}}, \\
1 \leq i \leq t_{2}, 1 \leq j \leq t_{1}, \\
\Phi_{2}=\left[\varphi_{i j}^{(2)}\right] \in \mathbf{C}^{t_{4} \times t_{3}}, \varphi_{i j}^{(2)}=\frac{1}{\left(\left(\alpha_{i}^{(4)}\right)^{2}+\left(\alpha_{j}^{(3)}\right)^{2}\right)^{1 / 2}}, \\
1 \leq i \leq t_{4}, 1 \leq j \leq t_{3},
\end{gathered}
$$

and $A \in \rho$ attains this minimum if and only if

$$
A=A_{0}+[P, Q]\left[\begin{array}{cc}
F_{22} M F_{12}^{\mathrm{H}} & 0 \tag{21}\\
0 & F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

with arbitrary $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(k-t_{1}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(l-t_{3}\right)}$ and

$$
A_{0}=[P, Q]\left[\begin{array}{cc}
A_{P U}^{(0)} & 0 \tag{22}\\
0 & A_{Q V}^{(0)}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

$$
A_{P U}^{(0)}=F_{2}\left[\begin{array}{cc}
K_{1} * L_{11} & \Sigma_{2}^{-1} G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{12} \\
F_{22}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11} \Sigma_{1}^{-1} & 0
\end{array}\right] F_{1}^{\mathrm{H}},
$$

$$
A_{Q V}^{(0)}=F_{4}\left[\begin{array}{cc}
K_{2} * J_{11} & \Sigma_{4}^{-1} G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{32} \tag{24}\\
F_{42}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31} \Sigma_{3}^{-1} & 0
\end{array}\right] F_{3}^{\mathrm{H}},
$$

where

$$
\begin{aligned}
L_{11} & =F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11} \Sigma_{1}+\Sigma_{2} G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{11}, \\
J_{11} & =F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31} \Sigma_{3}+\Sigma_{4} G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{31},
\end{aligned}
$$

$K_{1}=\Phi_{1} * \Phi_{1}, K_{2}=\Phi_{2} * \Phi_{2}$. Moreover, the equations $A X=$ Z and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$ have a common solution $A \in \rho$ if and only if

$$
\begin{gathered}
P^{\mathrm{H}} Z\left(U^{\mathrm{H}} X\right)^{+} U^{\mathrm{H}} X=P^{\mathrm{H}} Z, \\
U^{\mathrm{H}} W\left(P^{\mathrm{H}} Y\right)^{+} P^{\mathrm{H}} Y=U^{\mathrm{H}} W, \\
Y^{\mathrm{H}} P P^{\mathrm{H}} Z=W^{\mathrm{H}} U U^{\mathrm{H}} X
\end{gathered}
$$

and

$$
\begin{gathered}
Q^{\mathrm{H}} Z\left(V^{\mathrm{H}} X\right)^{+} V^{\mathrm{H}} X=Q^{\mathrm{H}} Z, \\
V^{\mathrm{H}} W\left(Q^{\mathrm{H}} Y\right)^{+} Q^{\mathrm{H}} Y=V^{\mathrm{H}} W, \\
Y^{\mathrm{H}} Q Q^{\mathrm{H}} Z=W^{\mathrm{H}} V V^{\mathrm{H}} X,
\end{gathered}
$$

in which case a general solution of the equations $A X=Z$ and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$ can be expressed as

$$
\begin{aligned}
& A=[P, Q] \\
& {\left[\begin{array}{cc}
A_{P U}^{(0)}+F_{22} M F_{12}^{\mathrm{H}} & 0 \\
0 & A_{Q V}^{(0)}+F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right],}
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{P U}^{(0)}=P^{\mathrm{H}} Z\left(U^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} P\right)^{+} W^{\mathrm{H}} U F_{12} F_{12}^{\mathrm{H}}, \\
& A_{Q V}^{(0)}=Q^{\mathrm{H}} Z\left(V^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} Q\right)^{+} W^{\mathrm{H}} V F_{32} F_{32}^{\mathrm{H}},
\end{aligned}
$$

and $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(k-t_{1}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(l-t_{3}\right)}$ are arbitrary matrices.
Proof. If $A \in \rho$, it follows from Lemma 1 that there exist $A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}$ satisfying

$$
A=[P, Q]\left[\begin{array}{cc}
A_{P U} & 0 \tag{25}\\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] .
$$

Therefore,

$$
\begin{align*}
& \min _{A \in \rho}\left(\|A X-Z\|^{2}+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right) \\
= & \min _{A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}} \\
& \left(\left\|[P, Q]\left[\begin{array}{cc}
A_{P U} & 0 \\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] X-Z\right\|^{2}\right. \\
& \left.+\left\|Y^{\mathrm{H}}[P, Q]\left[\begin{array}{cc}
A_{P U} & 0 \\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]-W^{\mathrm{H}}\right\|^{2}\right) \\
= & \min _{A_{P U} \in \mathbf{C}^{r \times k}\left(\left\|A_{P U}\left(U^{\mathrm{H}} X\right)-P^{\mathrm{H}} Z\right\|^{2}\right.} \\
& \left.+\left\|\left(P^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{P U}-\left(U^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) \\
& +\min _{A_{A V} \in \mathbf{C}^{s \times l}\left(\left\|A_{Q V}\left(V^{\mathrm{H}} X\right)-Q^{\mathrm{H}} Z\right\|^{2}\right.} \\
& \left.+\left\|\left(Q^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{Q V}-\left(V^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) . \tag{26}
\end{align*}
$$

It follows from Lemma 2 that

$$
\begin{aligned}
& \min _{A_{P U} \in \mathbf{C r x k}}\left(\left\|A_{P U}\left(U^{\mathrm{H}} X\right)-P^{\mathrm{H}} Z\right\|^{2}\right. \\
& \left.+\left\|\left(P^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{P U}-\left(U^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) \\
& =\left\|P^{\mathrm{H}} Z G_{12}\right\|^{2}+\left\|U^{\mathrm{H}} W G_{22}\right\|^{2} \\
& +\left\|\Phi_{1} *\left(\Sigma_{2} F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11}-G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{11} \Sigma_{1}\right)\right\|^{2}, \\
& \min _{A Q V \in \mathbf{C}^{* \times l}}\left(\left\|A_{Q V}\left(V^{\mathrm{H}} X\right)-Q^{\mathrm{H}} Z\right\|^{2}\right. \\
& \left.+\left\|\left(Q^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{Q V}-\left(V^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) \\
& =\left\|Q^{\mathrm{H}} Z G_{32}\right\|^{2}+\left\|V^{\mathrm{H}} W G_{42}\right\|^{2} \\
& +\left\|\Phi_{2} *\left(\Sigma_{4} F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31}-G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{31} \Sigma_{3}\right)\right\|^{2},
\end{aligned}
$$

and $A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}$ attain the minima if and only if

$$
\begin{align*}
& A_{P U}=F_{2}\left[\begin{array}{cc}
K_{1} * A_{P U}^{(11)} & \Sigma_{2}^{-1} G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{12} \\
F_{22}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11} \Sigma_{1}^{-1} & M
\end{array}\right] F_{1}^{\mathrm{H}}, \tag{29}\\
& A_{Q V}=F_{4}\left[\begin{array}{cc}
K_{2} * A_{Q V}^{(11)} & \Sigma_{4}^{-1} G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{32} \\
F_{42}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31} \Sigma_{3}^{-1} & N
\end{array}\right] \tag{30}
\end{align*}
$$

where $A_{P U}^{(11)}=F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{11} \Sigma_{1}+\Sigma_{2} G_{21}^{\mathrm{H}} W^{\mathrm{H}} U F_{11}, A_{Q V}^{(11)}=$ $F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{31} \Sigma_{3}+\Sigma_{4} G_{41}^{\mathrm{H}} W^{\mathrm{H}} V F_{31}, M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(k-t_{1}\right)}$, $N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(l-t_{3}\right)}$ are arbitrary matrices. (26), (27) and (28) imply (20). Substituting (29) and (30) into (25) yields (21).

It follows from Lemma 1 that the equations $A X=Z$ and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$ have a common solution $A \in \rho$ if and only if $A_{P U}\left(U^{\mathrm{H}} X\right)=P^{\mathrm{H}} Z$ and $\left(P^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{P U}=\left(U^{\mathrm{H}} W\right)^{\mathrm{H}}$, $A_{Q V}\left(V^{\mathrm{H}} X\right)=Q^{\mathrm{H}} Z$ and $\left(Q^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{Q V}=\left(V^{\mathrm{H}} W\right)^{\mathrm{H}}$ have common solutions $A_{P U} \in \mathbf{C}^{r \times k}, A_{Q V} \in \mathbf{C}^{s \times l}$, respectively. Applying Lemma 2, it is easy to obtain the second part of the conclusions.
Let $r_{1}=r-t_{2}, k_{1}=k-t_{1}, s_{1}=s-t_{4}$ and $l_{1}=l-t_{3}$. From Theorem 1 we have

$$
\begin{align*}
& \rho(X, Z, Y, W)= \\
& \left\{\begin{array}{cc}
\left.A=A_{0}+[P, Q]\left[\begin{array}{cc}
F_{22} M F_{12}^{\mathrm{H}} & 0 \\
0 & F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] \right\rvert\, \\
\left.M \in \mathbf{C}^{r_{1} \times k_{1}}, N \in \mathbf{C}^{s_{1} \times l_{1}}\right\} .
\end{array}\right.
\end{align*}
$$

It is easy to verify that $\rho(X, Z, Y, W)$ is a closed convex set in Hilbert space $\mathbf{C}^{m \times n}$. Therefore, for given matrix $\tilde{A} \in \mathbf{C}^{m \times n}$, it follows from the best approximation theorem (see Aubin[3]) that there exists a unique solution \hat{A} in $\rho(X, Z, Y, W)$ such that $\|\hat{A}-\tilde{A}\|=\sigma(X, Z, Y, W ; \tilde{A})$.

We shall focus our attention on seeking the unique solution of Problem II. For any matrix $A \in \rho(X, Z, Y, W)$, we have

$$
\begin{align*}
& \|A-\tilde{A}\|^{2}= \\
& \|[P, Q]\left[\begin{array}{cc}
A_{P U}^{(0)}+F_{22} M F_{12}^{\mathrm{H}} & 0 \\
0 & A_{Q V}^{(0)}+F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right] \\
& {\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]-\tilde{A} \|^{2}} \\
& =\|\left[\begin{array}{cc}
A_{P U}^{(0)}+F_{22} M F_{12}^{\mathrm{H}} & 0 \\
0 & A_{Q V}^{(0)}+F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right] \\
& -\left[\begin{array}{c}
P^{\mathrm{H}} \\
Q^{\mathrm{H}}
\end{array}\right] \tilde{A}[U, V] \|^{2} \\
& =\left\|F_{22} M F_{12}^{\mathrm{H}}-\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right)\right\|^{2} \\
& +\left\|F_{42} N F_{32}^{\mathrm{H}}-\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right)\right\|^{2} \\
& +\left\|Q^{\mathrm{H}} \tilde{A} U\right\|^{2}+\left\|P^{\mathrm{H}} \tilde{A} V\right\|^{2} \\
& =\left\|M-F_{22}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right) F_{12}\right\|^{2} \\
& +\left\|N-F_{42}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right) F_{32}\right\|^{2} \\
& +\left\|F_{21}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right)\right\|^{2} \\
& +\left\|F_{22}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right) F_{11}\right\|^{2}+\left\|Q^{\mathrm{H}} \tilde{A} U\right\|^{2} \\
& +\left\|F_{42}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right) F_{31}\right\|^{2}+\left\|P^{\mathrm{H}} \tilde{A} V\right\|^{2} \tag{32}\\
& +\left\|F_{41}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right)\right\|^{2} .
\end{align*}
$$

Note that $F_{22}^{\mathrm{H}} A_{P U}^{(0)} F_{12}=0, F_{42}^{\mathrm{H}} A_{Q V}^{(0)} F_{32}=0$. It follows from (32) that $\|A-\tilde{A}\|=\min$ if and only if

$$
M=F_{22}^{\mathrm{H}} P^{\mathrm{H}} \tilde{A} U F_{12}, \quad N=F_{42}^{\mathrm{H}} Q^{\mathrm{H}} \tilde{A} V F_{32}
$$

By now, we have proved the following result.
Theorem 2: Let $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$, $W \in \mathbf{C}^{n \times q}, \tilde{A} \in \mathbf{C}^{m \times n}$ and ρ denote the set of $m \times n$ generalized reflexive matrices. Suppose that the SVDs of the matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then Problem II has a unique solution \hat{A} in $\rho(X, Z, Y, W)$. Moreover, \hat{A} can be expressed as

$$
\hat{A}=A_{0}+[P, Q]\left[\begin{array}{cc}
\hat{A}_{11} & 0 \tag{33}\\
0 & \hat{A}_{22}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

and the associated minimum $\sigma(X, Z, Y, W ; \tilde{A})$ is

$$
\begin{align*}
& \sigma(X, Z, Y, W ; \tilde{A})=\left(\left\|F_{21}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right)\right\|^{2}\right. \\
& +\left\|F_{22}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} U-A_{P U}^{(0)}\right) F_{11}\right\|^{2} \\
& +\left\|F_{41}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right)\right\|^{2}+\left\|F_{42}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} V-A_{Q V}^{(0)}\right) F_{31}\right\|^{2} \\
& \left.+\left\|P^{\mathrm{H}} \tilde{A} V\right\|^{2}+\left\|Q^{\mathrm{H}} \tilde{A} U\right\|^{2}\right)^{1 / 2}, \tag{34}
\end{align*}
$$

where

$$
\begin{aligned}
\hat{A}_{11} & =F_{22} F_{22}^{\mathrm{H}} P^{\mathrm{H}} \tilde{A} U F_{12} F_{12}^{\mathrm{H}} \\
\hat{A}_{22} & =F_{42} F_{42}^{\mathrm{H}} Q^{\mathrm{H}} \tilde{A} V F_{32} F_{32}^{\mathrm{H}}
\end{aligned}
$$

Now, we apply Theorem 1 and Theorem 2 to solve the left and right inverse eigenproblem for generalized reflexive matrices and its optimal approximation, i.e., given partial left and right eigenpairs (eigenvalues and corresponding eigenvectors) $\left(\omega_{\tilde{A}}, y_{i}\right)(i=1, \cdots, q),\left(\lambda_{j}, x_{j}\right)(j=1, \cdots, p)$ and a matrix $\tilde{A} \in \mathbf{C}^{n \times n}$, find an $n \times n$ generalized reflexive matrix A such that

$$
\begin{equation*}
A x_{j}=\lambda_{j} x_{j}(j=1, \cdots, p), y_{i}^{\mathrm{H}} A=\omega_{i} y_{i}^{\mathrm{H}} \quad(i=1, \cdots, q) \tag{35}
\end{equation*}
$$

and a matrix $\hat{A} \in \rho(X, \Lambda, Y, \Omega)$ such that

$$
\begin{equation*}
\|\tilde{A}-\hat{A}\|=\min _{A \in \rho(X, \Lambda, Y, \Omega)}\|\tilde{A}-A\| \tag{36}
\end{equation*}
$$

where $\rho(X, \Lambda, Y, \Omega)=\left\{A \in \rho \mid A X=X \Lambda, Y^{\mathrm{H}} A=\Omega Y^{\mathrm{H}}\right\}$, ρ denotes the set of $n \times n$ generalized reflexive matrices, $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right), \Omega=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{q}\right), X=\left[x_{1}, \cdots, x_{p}\right]$, $Y=\left[y_{1}, \cdots, y_{q}\right]$.

From Theorem 1 and Theorem 2, we obtain the following corollary.

Corollary 3: Let $X \in \mathbf{C}^{n \times p}, Y \in \mathbf{C}^{n \times q}, \tilde{A} \in \mathbf{C}^{n \times n}, \Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right), \Omega=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{q}\right)$ and $\rho(X, \Lambda, Y, \Omega)=$ $\left\{A \in \rho \mid A X=X \Lambda, Y^{\mathrm{H}} A=\Omega Y^{\mathrm{H}}\right\}$, where ρ denotes the set of $n \times n$ generalized reflexive matrices. Suppose that the SVDs of the matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then the set $\rho(X, \Lambda, Y, \Omega)$ is nonempty if and only if

$$
\begin{gathered}
P^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+} U^{\mathrm{H}} X=P^{\mathrm{H}} X \Lambda \\
U^{\mathrm{H}} Y \Omega^{\mathrm{H}}\left(P^{\mathrm{H}} Y\right)^{+} P^{\mathrm{H}} Y=U^{\mathrm{H}} Y \Omega^{\mathrm{H}} \\
Y^{\mathrm{H}} P P^{\mathrm{H}} X \Lambda=\Omega Y^{\mathrm{H}} U U^{\mathrm{H}} X
\end{gathered}
$$

and

$$
Q^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+} V^{\mathrm{H}} X=Q^{\mathrm{H}} X \Lambda
$$

$$
\begin{gathered}
V^{\mathrm{H}} Y \Omega^{\mathrm{H}}\left(Q^{\mathrm{H}} Y\right)^{+} Q^{\mathrm{H}} Y=V^{\mathrm{H}} Y \Omega^{\mathrm{H}} \\
Y^{\mathrm{H}} Q Q^{\mathrm{H}} X \Lambda=\Omega Y^{\mathrm{H}} V V^{\mathrm{H}} X
\end{gathered}
$$

in which case, the set $\rho(X, \Lambda, Y, \Omega)$ can be expressed as

$$
\begin{aligned}
& \rho(X, \Lambda, Y, \Omega)=\{A=[P, Q] \\
& \left.\left[\begin{array}{cc}
A_{P U}^{(0)}+F_{22} M F_{12}^{\mathrm{H}} & 0 \\
0 & A_{Q V}^{(0)}+F_{42} N F_{32}^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{P U}^{(0)}=P^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} P\right)^{+} \Omega Y^{\mathrm{H}} U F_{12} F_{12}^{\mathrm{H}} \\
& A_{Q V}^{(0)}=Q^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} Q\right)^{+} \Omega Y^{\mathrm{H}} V F_{32} F_{32}^{\mathrm{H}}
\end{aligned}
$$

and $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(k-t_{1}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(l-t_{3}\right)}$ are arbitrary matrices, and there is a unique matrix $\hat{A} \in \rho(X, \Lambda, Y, \Omega)$ such that $\|\tilde{A}-\hat{A}\|=\min _{A \in \rho(X, \Lambda, Y, \Omega)}\|\tilde{A}-A\|$. Moreover, \hat{A} can be expressed as

$$
\hat{A}=[P, Q]\left[\begin{array}{cc}
A_{P U}^{(0)}+\hat{A}_{11} & 0 \\
0 & A_{Q V}^{(0)}+\hat{A}_{22}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right],
$$

where

$$
\begin{aligned}
& \hat{A}_{11}=F_{22} F_{22}^{\mathrm{H}} P^{\mathrm{H}} \tilde{A} U F_{12} F_{12}^{\mathrm{H}} \\
& \hat{A}_{22}=F_{42} F_{42}^{\mathrm{H}} Q^{\mathrm{H}} \tilde{A} V F_{32} F_{32}^{\mathrm{H}}
\end{aligned}
$$

If $m=n, R=S, Y=0$, then $P=U, Q=V$. From Corollary 3, we obtain the following corollary related to the inverse eigenvalue problem for reflexive matrices and its optimal approximation. For more details, see [27].

Corollary 4: Let $X \in \mathbf{C}^{n \times p}, \tilde{A} \in \mathbf{C}^{n \times n}, \Lambda \quad=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right)$, and $\rho(X, \Lambda)=\{A \in \rho \mid A X=X \Lambda\}$, where ρ denotes the set of $n \times n$ reflexive matrices. Suppose that the SVDs of the matrices $U^{\mathrm{H}} X, V^{\mathrm{H}} X$ are given by (18) and (19), $t_{1}=\operatorname{rank}\left(U^{\mathrm{H}} X\right), t_{3}=\operatorname{rank}\left(V^{\mathrm{H}} X\right)$, then the set $\rho(X, \Lambda)$ is nonempty if and only if

$$
\begin{aligned}
& U^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+} U^{\mathrm{H}} X=U^{\mathrm{H}} X \Lambda, \\
& V^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+} V^{\mathrm{H}} X=V^{\mathrm{H}} X \Lambda,
\end{aligned}
$$

in which case, the set $\rho(X, \Lambda)$ can be expressed as

$$
\begin{aligned}
& \rho(X, \Lambda)=\{A=[U, V] \\
& \left.\left[\begin{array}{cc}
A_{U}^{(0)}+M F_{12}^{\mathrm{H}} & 0 \\
0 & A_{V}^{(0)}+N F_{32}^{\mathrm{H}}
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]\right\},
\end{aligned}
$$

where

$$
A_{U}^{(0)}=U^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+}, A_{V}^{(0)}=V^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+},
$$

and $M \in \mathbf{C}^{r \times\left(r-t_{1}\right)}, N \in \mathbf{C}^{(n-r) \times\left(n-r-t_{3}\right)}$ are arbitrary matrices, and there is a unique matrix $\hat{A} \in \rho(X, \Lambda)$ such that $\|\tilde{A}-\hat{A}\|=\min _{A \in \rho(X, \Lambda)}\|\tilde{A}-A\|$. Moreover, \hat{A} can be expressed as

$$
\hat{A}=[U, V]\left[\begin{array}{cc}
A_{U}^{(0)}+\hat{A}_{1} & 0 \\
0 & A_{V}^{(0)}+\hat{A}_{2}
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] .
$$

where $\hat{A}_{1}=U^{\mathrm{H}} \tilde{A} U F_{12} F_{12}^{\mathrm{H}}, \hat{A}_{2}=V^{\mathrm{H}} \tilde{A} V F_{32} F_{32}^{\mathrm{H}}$.

IV. Minimization Problem for Generalized Anti-Reflexive Matrices

In this section ρ denotes the set of $m \times n$ generalized antireflexive matrices.

For the given matrices $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$ and $W \in \mathbf{C}^{n \times q}$, if $A \in \rho$, it follows from Lemma 1 that

$$
\begin{align*}
& \min _{A \in \rho}\left(\|A X-Z\|^{2}+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right) \\
= & \min _{A_{P V} \in \mathbf{C}^{r \times l}, A_{Q U} \in \mathbf{C}^{s \times k}} \\
& \left(\left\|[P, Q]\left[\begin{array}{cc}
0 & A_{P V} \\
A_{Q U} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] X-Z\right\|^{2}\right. \\
& \left.+\left\|Y^{\mathrm{H}}[P, Q]\left[\begin{array}{cc}
0 & A_{P V} \\
A_{Q U} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]-W^{\mathrm{H}}\right\|^{2}\right) \\
= & \min _{A_{P V} \in \mathbf{C}^{r \times 2}\left(\left\|A_{P V}\left(V^{\mathrm{H}} X\right)-\left(P^{\mathrm{H}} Z\right)\right\|^{2}\right.} \\
& \left.+\left\|\left(P^{\mathrm{H}} Y\right)^{\mathrm{H}} A_{P V}-\left(V^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) \\
& +\min _{A_{Q U} \in \mathbf{C}^{s \times k}\left(\left\|A_{Q U}\left(U^{\mathrm{H}} X\right)-\left(Q^{\mathrm{H}} Z\right)\right\|^{2}\right.} \\
& \left.+\left\|\left(Q^{\mathrm{H} Y} Y\right)^{\mathrm{H}} A_{Q U}-\left(U^{\mathrm{H}} W\right)^{\mathrm{H}}\right\|^{2}\right) . \tag{37}
\end{align*}
$$

Applying Lemma 2 to (37), we obtain the following theorem.
Theorem 5: Let $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}$ and $W \in \mathbf{C}^{n \times q}, \rho$ be the set of $m \times n$ generalized anti-reflexive matrices. Suppose that the SVDs of matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then

$$
\begin{aligned}
& \sigma(X, Z, Y, W)=\min _{A \in \rho}\left(\|A X-Z\|^{2}\right. \\
& \left.+\left\|Y^{\mathrm{H}} A-W^{\mathrm{H}}\right\|^{2}\right)^{1 / 2} \\
= & \left(\left\|P^{\mathrm{H}} Z G_{32}\right\|^{2}+\left\|V^{\mathrm{H}} W G_{22}\right\|^{2}\right. \\
& +\left\|\Psi_{1} *\left(\Sigma_{2} F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{31}-G_{21}^{\mathrm{H}} W^{\mathrm{H}} V F_{31} \Sigma_{3}\right)\right\|^{2} \\
& +\left\|Q^{\mathrm{H}} Z G_{12}\right\|^{2}+\left\|U^{\mathrm{H}} W G_{42}\right\|^{2} \\
& \left.+\left\|\Psi_{2} *\left(\Sigma_{4} F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{11}-G_{41}^{\mathrm{H}} W^{\mathrm{H}} U F_{11} \Sigma_{1}\right)\right\|^{2}\right)^{1 / 2},
\end{aligned}
$$

where

$$
\begin{aligned}
& \Psi_{1}=\left[\psi_{i j}^{(1)}\right] \in \mathbf{C}^{t_{2} \times t_{3}}, \psi_{i j}^{(1)}=\frac{1}{\left(\left(\alpha_{i}^{(2)}\right)^{2}+\left(\alpha_{j}^{(3)}\right)^{2}\right)^{1 / 2}}, \\
& 1 \leq i \leq t_{2}, 1 \leq j \leq t_{3} ; \\
& \Psi_{2}=\left[\psi_{i j}^{(2)}\right] \in \mathbf{C}^{t_{4} \times t_{1}}, \psi_{i j}^{(2)}=\frac{1}{\left(\left(\alpha_{i}^{(4)}\right)^{2}+\left(\alpha_{j}^{(1)}\right)^{2}\right)^{1 / 2}}, \\
& 1 \leq i \leq t_{4}, 1 \leq j \leq t_{1},
\end{aligned}
$$

and $A \in \rho$ attains this minimum if and only if

$$
A=A_{0}+[P, Q]\left[\begin{array}{cc}
0 & F_{22} M F_{32}^{\mathrm{H}} \tag{38}\\
F_{42} N F_{12}^{\mathrm{H}} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]
$$

with arbitrary $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(l-t_{3}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(k-t_{1}\right)}$ and

$$
A_{0}=[P, Q]\left[\begin{array}{cc}
0 & A_{P V}^{(0)} \\
A_{Q U}^{(0)} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right],
$$

$$
A_{P V}^{(0)}=F_{2}\left[\begin{array}{cc}
K_{3} * C_{11} & \Sigma_{2}^{-1} G_{21}^{\mathrm{H}} W^{\mathrm{H}} V F_{32} \\
F_{22}^{\mathrm{H}} P^{\mathrm{H}} Z G_{31} \Sigma_{3}^{-1} & 0
\end{array}\right] F_{3}^{\mathrm{H}},
$$

$$
A_{Q U}^{(0)}=F_{4}\left[\begin{array}{cc}
K_{4} * D_{11} & \Sigma_{4}^{-1} G_{41}^{\mathrm{H}} W^{\mathrm{H}} U F_{12} \tag{40}\\
F_{42}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{11} \Sigma_{1}^{-1} & 0
\end{array}\right] F_{1}^{\mathrm{H}},
$$

where

$$
\begin{aligned}
& C_{11}=F_{21}^{\mathrm{H}} P^{\mathrm{H}} Z G_{31} \Sigma_{3}+\Sigma_{2} G_{21}^{\mathrm{H}} W^{\mathrm{H}} V F_{31}, \\
& D_{11}=F_{41}^{\mathrm{H}} Q^{\mathrm{H}} Z G_{11} \Sigma_{1}+\Sigma_{4} G_{41}^{\mathrm{H}} W^{\mathrm{H}} U F_{11},
\end{aligned}
$$

$K_{3}=\Psi_{1} * \Psi_{1}, K_{4}=\Psi_{2} * \Psi_{2}$. Moreover, the equations $A X=$ Z and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$ have a common solution $A \in \rho$ if and only if

$$
\begin{gathered}
P^{\mathrm{H}} Z\left(V^{\mathrm{H}} X\right)^{+} V^{\mathrm{H}} X=P^{\mathrm{H}} Z, \\
V^{\mathrm{H}} W\left(P^{\mathrm{H}} Y\right)^{+} P^{\mathrm{H}} Y=V^{\mathrm{H}} W, \\
Y^{\mathrm{H}} P P^{\mathrm{H}} Z=W^{\mathrm{H}} V V^{\mathrm{H}} X,
\end{gathered}
$$

and

$$
\begin{gathered}
Q^{\mathrm{H}} Z\left(U^{\mathrm{H}} X\right)^{+} U^{\mathrm{H}} X=Q^{\mathrm{H}} Z, \\
U^{\mathrm{H}} W\left(Q^{\mathrm{H}} Y\right)^{+} Q^{\mathrm{H}} Y=U^{\mathrm{H}} W, \\
Y^{\mathrm{H}} Q Q^{\mathrm{H}} Z=W^{\mathrm{H}} U U^{\mathrm{H}} X,
\end{gathered}
$$

in which case a general solution of the equations $A X=Z$ and $Y^{\mathrm{H}} A=W^{\mathrm{H}}$ can be expressed as

$$
\begin{aligned}
& A=[P, Q] \\
& {\left[\begin{array}{cc}
0 & A_{P V}^{(0)}+F_{22} M F_{32}^{\mathrm{H}} \\
A_{Q U}^{(0)}+F_{42} N F_{12}^{\mathrm{H}} & 0
\end{array}\right]\left[\begin{array}{l}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]}
\end{aligned}
$$

with arbitrary $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(l-t_{3}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(k-t_{1}\right)}$ and

$$
\begin{aligned}
& A_{P V}^{(0)}=P^{\mathrm{H}} Z\left(V^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} P\right)^{+} W^{\mathrm{H}} V F_{32} F_{32}^{\mathrm{H}}, \\
& A_{Q U}^{(0)}=Q^{\mathrm{H}} Z\left(U^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} Q\right)^{+} W^{\mathrm{H}} U F_{12} F_{12}^{\mathrm{H}} .
\end{aligned}
$$

Let $r_{1}=r-t_{2}, k_{1}=k-t_{1}, s_{1}=s-t_{4}$ and $l_{1}=l-t_{3}$. From Theorem 5 we know

$$
\begin{align*}
& \rho(X, Z, Y, W)= \\
& \left\{\begin{array}{cc}
0 & F_{22} M F_{32}^{\mathrm{H}} \\
\left.A=A_{0}+[P, Q]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right] \right\rvert\, \\
\left.M \in C^{r_{1} \times l_{1}}, N \in C^{s_{1} \times k_{1}}\right\},
\end{array}\right. \tag{41}
\end{align*}
$$

Similar to Theorem 2, we have the following result.
Theorem 6: Let $X \in \mathbf{C}^{n \times p}, Z \in \mathbf{C}^{m \times p}, Y \in \mathbf{C}^{m \times q}, W \in$ $\mathbf{C}^{n \times q}, \tilde{A} \in \mathbf{C}^{m \times n}$, and let ρ be the set of $m \times n$ generalized anti-reflexive matrices. Suppose that the SVDs of matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then Problem II has a unique solution \hat{A} in $\rho(X, Z, Y, W)$. Moreover, \hat{A} can be expressed as

$$
\hat{A}=A_{0}+[P, Q]\left[\begin{array}{cc}
0 & \hat{A}_{12} \\
\hat{A}_{21} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right],
$$

where

$$
\begin{aligned}
& \hat{A}_{12}=F_{22} F_{22}^{\mathrm{H}} P^{\mathrm{H}} \tilde{A} V F_{32} F_{32}^{\mathrm{H}}, \\
& \hat{A}_{21}=F_{42} F_{42}^{\mathrm{H}} Q^{\mathrm{H}} \tilde{A} U F_{12} F_{12}^{\mathrm{H}} .
\end{aligned}
$$

In this case, the associated minimum $\sigma(X, Z, Y, W ; \tilde{A})$ is

$$
\begin{aligned}
& \sigma(X, Z, Y, W ; \tilde{A})=\left(\left\|F_{21}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} V-A_{P V}^{(0)}\right)\right\|^{2}\right. \\
& +\left\|F_{22}^{\mathrm{H}}\left(P^{\mathrm{H}} \tilde{A} V-A_{P V}^{(0)}\right) F_{31}\right\|^{2} \\
& +\left\|F_{41}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} U-A_{Q U}^{(0)}\right)\right\|^{2} \\
& +\left\|F_{42}^{\mathrm{H}}\left(Q^{\mathrm{H}} \tilde{A} U-A_{Q U}^{(0)}\right) F_{11}\right\|^{2} \\
& \left.+\left\|P^{\mathrm{H}} \tilde{A} U\right\|^{2}+\left\|Q^{\mathrm{H}} \tilde{A} V\right\|^{2}\right)^{1 / 2} .
\end{aligned}
$$

From Theorem 5 and Theorem 6, we get the following result related to the left and right inverse eigenproblem for generalized anti-reflexive matrices and its optimal approximation.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934
Vol:7, No:5, 2013

Corollary 7: Let $X \in \mathbf{C}^{n \times p}, Y \in \mathbf{C}^{n \times q}, \tilde{A} \in \mathbf{C}^{n \times n}, \Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{p}\right), \Omega=\operatorname{diag}\left(\omega_{1}, \cdots, \omega_{q}\right)$ and $\rho(X, \Lambda, Y, \Omega)=$ $\left\{A \in \rho \mid A X=X \Lambda, Y^{\mathrm{H}} A=\Omega Y^{\mathrm{H}}\right\}$, where ρ denotes the set of $n \times n$ generalized anti-reflexive matrices. Suppose that the SVDs of the matrices $U^{\mathrm{H}} X, P^{\mathrm{H}} Y, V^{\mathrm{H}} X$ and $Q^{\mathrm{H}} Y$ are given by (18) and (19), then the set $\rho(X, \Lambda, Y, \Omega)$ is nonempty if and only if

$$
\begin{gathered}
P^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+} V^{\mathrm{H}} X=P^{\mathrm{H}} X \Lambda, \\
V^{\mathrm{H}} Y \Omega^{\mathrm{H}}\left(P^{\mathrm{H}} Y\right)^{+} P^{\mathrm{H}} Y=V^{H} Y \Omega^{\mathrm{H}}, \\
Y^{\mathrm{H}} P P^{\mathrm{H}} X \Lambda=\Omega Y^{\mathrm{H}} V V^{\mathrm{H}} X,
\end{gathered}
$$

and

$$
\begin{gathered}
Q^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+} U^{\mathrm{H}} X=Q^{\mathrm{H}} X \Lambda, \\
U^{\mathrm{H}} Y \Omega^{\mathrm{H}}\left(Q^{\mathrm{H}} Y\right)^{+} Q^{\mathrm{H}} Y=U^{\mathrm{H}} Y \Omega^{\mathrm{H}}, \\
Y^{\mathrm{H}} Q Q^{\mathrm{H}} X \Lambda=\Omega Y^{\mathrm{H}} U U^{\mathrm{H}} X,
\end{gathered}
$$

in which case, the set $\rho(X, \Lambda, Y, \Omega)$ can be expressed as

$$
\begin{aligned}
& \rho(X, \Lambda, Y, \Omega)=\{A=[P, Q] \\
& \left.\left[\begin{array}{cc}
0 & A_{P V}^{(0)}+F_{22} M F_{32}^{\mathrm{H}} \\
A_{Q U}^{(0)}+F_{42} N F_{12}^{\mathrm{H}} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right]\right\},
\end{aligned}
$$

where $M \in \mathbf{C}^{\left(r-t_{2}\right) \times\left(l-t_{3}\right)}, N \in \mathbf{C}^{\left(s-t_{4}\right) \times\left(k-t_{1}\right)}$ are arbitrary matrices and

$$
\begin{aligned}
& A_{P V}^{(0)}=P^{\mathrm{H}} X \Lambda\left(V^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} P\right)^{+} \Omega Y^{\mathrm{H}} V F_{32} F_{32}^{\mathrm{H}}, \\
& A_{Q U}^{(0)}=Q^{\mathrm{H}} X \Lambda\left(U^{\mathrm{H}} X\right)^{+}+\left(Y^{\mathrm{H}} Q\right)^{+} \Omega Y^{\mathrm{H}} U F_{12} F_{12}^{\mathrm{H}},
\end{aligned}
$$

and there exists a unique matrix $\hat{A} \in \rho(X, \Lambda, Y, \Omega)$ such that $\|\tilde{A}-\hat{A}\|=\min _{A \in \rho(X, \Lambda, Y, \Omega)}\|\tilde{A}-A\|$. Moreover, \hat{A} can be expressed as

$$
\hat{A}=[P, Q]\left[\begin{array}{cc}
0 & A_{P V}^{(0)}+\hat{A}_{12} \\
A_{Q U}^{(0)}+\hat{A}_{21} & 0
\end{array}\right]\left[\begin{array}{c}
U^{\mathrm{H}} \\
V^{\mathrm{H}}
\end{array}\right],
$$

where

$$
\begin{aligned}
& \hat{A}_{12}=F_{22} F_{22}^{\mathrm{H}} P^{\mathrm{H}} \tilde{A} V F_{32} F_{32}^{\mathrm{H}}, \\
& \hat{A}_{21}=F_{42} F_{42}^{\mathrm{H}} Q^{\mathrm{H}} \tilde{A} U F_{12} F_{12}^{\mathrm{H}} .
\end{aligned}
$$

In addition, if $m=n, R=S, Y=0$, similar to Corollary 4, we can obtain the result related to the inverse eigenvalue problem for anti-reflexive matrices and its optimal approximation from Corollary 7.

References

[1] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl., 7 (1973): 151-162.
[2] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics, 15(1973), pp. 405-407.
[3] J. P. Aubin, Applied Functional Analysis, John Weiley, New York, 1979
[4] Z. -J. Bai, R. H. Chan, Inverse eigenproblem for centrosymmetric and centroskew matrices and their approximation, Theoretical Computer Science, 315 (2004): 309-318.
[5] A. W. Bojanczyk, A. Lutoborski, The procrustes problem for orthogonal stiefel matrices, SIAM J. Sci. Comput., 21 (1999): 1291-1304.
[6] A. W. Bojanczyk, A. Lutoborski, The procrustes problem for orthogonal Kronecker products, SIAM J. Sci. Comput., 25 (2003): 148-163.
[7] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl., 13 (1976): 275-288.
[8] H. C. Chen, The SAS domain decomposition method for structura analysis, CSRD Tech. report 754, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1988.
[9] H. C. Chen, Generalized reflexive matrices: special properties and applications, SIAM J. Matrix Anal. Appl., 19 (1998): 140-153.
[10] W. Chen, X. Wang, T. Zhong, The structure of weighting coefficient matrices of harmonic differential quadrature and its application, Comm. Numer. Methods Eng., 12 (1996): 455-460.
[11] M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998): 1-39.
[12] M. T. Chu, G. H. Golub, Inverse Eigenvalue Problems, Theory, Algorithms and Applications, Oxford University Press, 2005.
[13] L. Datta, S. Morgera, On the reducibility of centrosymmetric matricesapplications in engineering problems, Ciruits Systems Signal Process, 8 (1989): 71-96
[14] J. Delmas, On adaptive EVD asymtotic distribution of centro-symmetric covariance matrices, IEEE Trans. Signal Process., 47 (1999): 14021406.
[15] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics, 12 (1970): 925-928.
[16] N. J. Higham, The symmetric procrustes peoblem, BIT, 28 (1988): 133143.
[17] A. Marina, H. Daniel, M. Volker, C. Hans, The recursive inverse eigenvalue problem, SIAM J. Matrix Anal. Appl., 22 (2000): 392-412.
[18] Z.-Y. Peng, X.-Y. Hu, The reflexive and anti-reflexive solutions of the matrix equation $A X=B$, Linear Algebra Appl., 375 (2003): 147-155
[19] W. C. Pye, T. L. Boullino, and T. A. Atchison, The pseudoinverse of a centrosymmetric matrix, Linear Algebra Appl., 6 (1973): 201-204.
[20] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skewcentrosymmetric matrices, SIAM J. Matrix Anal., 23 (2002): 885-895
[21] W. F. Trench, Hermitian R-symmetri, and hermitian R-skew symmetric procrustes problems, Linear Algebra Appl., 387 (2004): 83-98.
[22] W. F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry, Linear Algebra Appl., 380 (2004): 199-211
23] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S) skew symmetric matrices, Linear Algebra Appl., 389 (2004): 23-31.
[24] N. T. Trendafilov, R. A. Lippert, The multimode procrustes problem, Linear Algebra Appl., 349 (2002): 245-264.
[25] J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, Amer. Math. Monthly, 92 (1985): 711-717.
[26] M. Yasuda, Spectral characterizations for Hermitian centrosymmetric K-matrices and Hermitian skew-centrosymmetric K-matrices, SIAM J Matrix Anal., 25 (2003): 601-605.
[27] F.-Z. Zhou, The solvability conditions for the inverse eigenvalue problems of reflexive matrices, J. Comput. Applied Math., 188 (2006): 180 189
[28] F.-Z. Zhou, L. Zhang, X.-Y. Hu, Least-squares solution for inverse problems of centrosymmetric matrices, Comput. Math. Appl., 45 (2003) 1581-1589.
[29] S. Q. Zhou, H. Dai, The Algebraic Inverse Eigenvalue Problem, Henan Science and Technology Press, Zhengzhou, 1991 (in Chinese).

[^0]: Yongxin Yuan: School of Mathematics and Physics, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China. e-mail: yuanyx_703@163.com

