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Minimization problems for generalized reflexive and
generalized anti-reflexive matrices

Yongxin Yuan

Abstract—Let R € C™*™ and S € C™*" be nontrivial unitary
involutions, i.e., RY = R = R™! # +I,, and SH = g5 =
S™! £ 41I,. A € C™ ™ is said to be a generalized reflexive
(anti-reflexive) matrix if RAS = A (RAS = —A). Let p be the
set of m x n generalized reflexive (anti-reflexive) matrices. Given
XeCv? Ze C™*P Y € C™*%and W € C"*?, we character-
ize the matrices A in p that minimize [|AX — Z||* + ([YEA-WH)2,
and, given an arbitrary A € C™*", we find a unique matrix
among the minimizers of |AX — Z|* + lYHA — WH)? in p
that minimizes ||[A — A||. We also obtain sufficient and necessary
conditions for existence of A € p such that AX = Z,Y¥A = WH,
and characterize the set of all such matrices A if the conditions
are satisfied. These results are applied to solve a class of left and
right inverse eigenproblems for generalized reflexive (anti-reflexive)
matrices.

Keywords—approximation, generalized reflexive matrix, general-
ized anti-reflexive matrix, inverse eigenvalue problem.

[. INTRODUCTION

N this paper we shall adopt the following notation. C™*"™

denotes the set of all m x n complex matrices, UC"*"
denotes the set of all unitary matrices in C**". AH, A+ and
||A|l stand for the conjugate transpose, the Moore-Penrose
generalized inverse and the Frobenius norm of a complex
matrix A, respectively. For A, B € C™*", an inner product
in C™*" is defined by (A, B) = trace(B™A), then C™*"
is a Hilbert space. The matrix norm || - || induced by the
inner product is the Frobenius norm. I,, represents the identity
matrix of order n. For A = (a;;), B = (b;;) € C™*", A% B
represents the Hadamard product of the matrices A and B,
ie, AxB = (aijbij) e Ccmxn,

Throughout this paper R € C™*™ and S € C"*" are
nontrivial unitary involutions, i.e., Rf = R = R~ # +1I,,
and S = § = S§7! # £I,. We say that A € C™*"
is a generalized reflexive (anti-reflexive) matrix (see [9]) if
RAS = A (RAS = —A). If m = n,R = S, then the
generalized reflexive (anti-reflexive) matrices reduce to the
reflexive (anti-reflexive) matrices (see, e.g., [8]). Let J, =
(Ji,i) represent the exchange matrix of order n defined by
Jik = 0im—i+1 for 1 <,k < mn, where ; 5, is the Kronecker
delta, i.e., .J,, is a matrix with ones on the secondary diagonal
and zeros elsewhere. By taking m = n, R = S = J,, then
the generalized reflexive (anti-reflexive) matrices reduce to the
centrosymmetric (centroskew) matrices (see [25]) which play
an important role in many areas [10, 13, 14]. Therefore, cen-
trosymmetric (centroskew) matrices, whose special properties
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have been under extensive study [1, 2, 7, 15, 19, 20, 26],
are the special cases of generalized reflexive (anti-reflexive)
matrices. Chen [9] discussed applications that give rise to the
generalized reflexive (anti-reflexive) matrices and considered
least squares problems involving them.

In the following p is either the set of m X n generalized
reflexive matrices or the set of m X n generalized anti-reflexive
matrices. We consider the following problems.

Problem I. Given X € C"*P, Z ¢ C™*P.Y € C™*? and
W e C™*4, find

o(X,Z,Y,W) = minae, (| AX — Z||* + [y A - WH|%)1/2,
and characterize the set

p(X,Z,Y,W) = {Aep|(|AX - Z|?
+ YRA-WHHY2 = 0(X,2,Y,W)}.

Problem II. Given A € C™*", find
o(X,Z,Y,W;A) = minac,x zv.w)llA— A,
and find A € p(X, Z,Y, W) such that
|A = Al =o(X,2,Y,W; A).

If m = n,A = diag(A1,---,)p),Q = diag(w1,---,wy),
X = [z1,--,2p, Y = [y1,--,Yq), Where z; € C"(i =
17"'7p)’ Yj € C"(.] = 1,"',61), Z = XA7WH = QYH,
then the set p(X,Z,Y, W) in Problem I is determined by
partial left and right eigenpairs (w;,y;)(j = 1,---,¢) and
(Ai,x;)(i =1,---,p), and Problem [ is a left and right inverse
eigenproblem for generalized reflexive (anti-reflexive) matri-
ces. The left and right inverse eigenproblem is a special inverse
eigenvalue problem, indeed, the recursive inverse eigenvalue
problem (see [17]). Problem II is an optimal approximation
problem under spectral constraint.

There are many publications (see, e.g., [5, 6, 11, 12, 16, 24,
29] and their references) concerning minimization problems
for matrices. Recently, Bai and Chan [4] considered inverse
eigenproblems related to centrosymmetric and centroskew
matrices, where m =n,R =5 = J,,and Y = 0, W = 0.
Zhou et al. [28] discussed the minimization problems for
centrosymmetric matrices, where m =n, R=5=J,,Y =0
and W = 0. Peng and Hu [18] studied the existence of n X n
reflexive and anti-reflexive matrices X such that AX = B,
where A and B are given in C"*", and the nearest matrix
to a given matrix. Trench [21] considered the minimization
problems for hermitian, hermitian reflexive and hermitian anti-
reflexive matrices, where m = n,Y = 0 and W = 0. In

896



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:7, No:5, 2013

[22] and [23], Trench has studied inverse eigenproblems for
generalized symmetric or skew symmetric matrices and the
minimization problems for (R, S)-symmetric and (R, S)-skew
symmetric matrices, respectively.

In this paper we obtain explicit formulas for o(X, Z,Y, W),
o(X,Z,Y,W;A), all matrices in p(X,Z,,Y,W), and the
solution of Problem II. As a byproduct of our results on
Problem I we obtain necessary and sufficient conditions on
X,Z,Y and W for existence of A € p such that AX = Z
and YHA = WH, and an explicit formula for all such A.
These results are applied to solve a class of left and right
inverse eigenproblems for generalized reflexive (anti-reflexive)
matrices.

Ifm=nR=25Y =0and W = 0, our results apply
to reflexive and anti-reflexive matrices, which are discussed in
[18, 27]. In particular, if m = n,R = S = J,,Y = 0 and
W =0, our results apply to centrosymmetric and centroskew
matrices, which are considered in [4, 28].

II. PRELIMINARY CONSIDERATIONS

If X\ is an eigenvalue of £ € C™*™ let Vg(\) denote
the eigenspace of E corresponding to the eigenvalue A\. A
vector z € C™ is said to be R-symmetric (R-skew symmetric)
if Rz = z (Rz = —z); thus, Vg(1) and Vgr(—1) are the
subspaces of C™*™ consisting respectively of R-symmetric
and R-skew symmetric vectors. Let r = dim[Vy(1)],s =
dim[Vg(—1)]. Since a unitary involution is diagonalizable and
R +# +1,,,thenr,s > 1, and r+s = m. Let {p1,---,p,} and
{q1," -, qs} be the orthonormal bases for Vz(1) and Vg(—1),
respectively, and define

P= [ph"'apr] € mer7Q = [qh'"

then [P, Q] is a unitary matrix and R has the following spectral
decomposition

R:[P,Q]H‘ _OIHSH (1)

In particular, if R = Jo, then r = s = k, we can take

P=— I )
ﬂ{Jk]’Q ﬁ{*Jk]
If R= Jogy1, then r =k + 1,5 =k, we can take

RE LI
V2 Jg 0 V2 —Jx

Similarly, there are positive integers k and [ such that k+1 =
n, and the matrices U € C"** and V € C"*! whose column
vectors form the orthonormal bases for the eigenspaces V(1)
and Vg(—1), respectively. Thus, [U, V] is a unitary matrix and
S has the spectral decomposition:

S:[U,V]H“ _OIZH‘ZH. @

In the following P, Q, U,V are always defined by (1) and (2).
(1) and (2) yield the following characterizations of m x n
generalized reflexive or generalized anti-reflexive matrices.

7qs} E (;1’UL><S7

Lemma 1: (a) A € C™*" is a generalized reflexive matrix
if and only if there exist Apy € C™*F, Agv € C**! such
that

H
A:[P,Q]{AgU Agv} “ﬁH} 3)

(b) A € C™*™ is a generalized anti-reflexive matrix if and
only if there exist Apy € C™<¢, Agu € C#** such that

erval b ][]

Proof. (a) If A € C™*" is a generalized reflexive matrix,
then it follows from RAS = A, (1) and (2) that PHAV =
0,QRAU = 0. Let Apy = PHAU, Agy = QUAV, then
APU S CTXk, AQV S CSXl, and

18]
[ ][]

4)

A=RAS = [P,Q

0 - vH
3 [ Apy O UH

The verification of the converse is straightforward. Similarly,
(b) is may proved.

In order to solve Problem I, we will need the following
lemma.

Lemma 2: Let X € C™*? W € C™*t Y ¢ C"*t, 7 ¢
C"*P_ and the singular value decompositions(SVDs) of the
matrices X and Y be, respectively

X:Uﬁ g}vH Y:fDH S}QH, )
where UN = [U},Ug} S Ucmxm,? = [}71,‘:/2} S
UCP*? P = [P,P] € UC™"Q = [Q1,Q2 €
UC™ A = diag{6y,---,0.} > 0,T" = diag{y1,"--,7s} >
0,e = rank(X), f = rank(Y),U; € C™%¢,V; € CP*¢ P,
Cf Qe C/ | and let

d; = [pij] € CI*e,

1 _ .
<i<f,1<j<e,

then
mingegon (|BX — Z|2 + 718 — Wi|?2)
=12Vl + W Qa2 (©)
@1 x (PP ZVy = QYWHTLA)|?,
and B € C"*™ attains this minimum if and only if
d x Byy r_lélilWHﬁQ UH
PHEZV AT By ’
where Byy = PHZVIA + TQUYWHU,, & = &1 # &1, By €
C(=F)x(m=e) s an arbitrary matrix. Moreover, the equations

BX = Z and YEB = WY have a common solution if and
only if

B=P (7

ZXtX =Z,wyty =w,yHZ =wHX, (8
in which case a general solution of the equations

BX =2, YiB=w"
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can be expressed as
B=ZX"+ (WY, — XXT)+ P,BpULY,  (9)
where Bay € C(n=/)x(m=e) g an arbitrary matrix.
Proof. From (5), we have
|BX - 2>+ |95 - WH?

-Ir - 2
+‘Q[o }PHB—WH
2

Let B B
PHBU = oz 10
{ Ba1 Baa {19)
where By € Cf*¢, then
IBX — Z||* +||YHB — WH|2
= ||BuA = PPZVi[]? + || BaA — P ZVA|1? an

+ZVa|? + |TByy — QFWHT |
+(TB1z — QY WHU |12 + [|QFWH]|12.
Thus, ||[BX — Z||? + |Y"B — WH||2 = min if and only if
| Bo1 A — PR ZVi|| = min, |T By — QY WHT, || = min (12)
and
9(311) = ||B11A—151HZ‘~/1H2+HF311—Q{IV~VH01H2 = min.
(13)
Clearly, (12) implies that
Boy = PIZViA™Y,  Byy =T 1QYWHIL. 14)
Let By = [bu],PlHZIN/I = [Zij]y Q{IWHﬁl = [wu] S Cf><e7
then

f e
9(Bi1) = > > (big0; — 25 + Pvibiy —wig*). - (19)

i=1 j=1
Now we minimize the quantities

qij = |bij0; — zij)® + iy —wii?, 1<i<f,1<j<e.

It is easy to obtain the minimizers
205 + Yiwi;

1<i<f,1<5< 16

and the minima
G = yizij — wi;o;?
/ V7 + 07
(17), (14) and (11) imply (6). Substituting (14) and (16) into
(10) yields (7). R R R R
It follows from (6) that BX = Z and YHB = WH have a
common solution if and only if
ZVo =0, WQ, =0, TPIZV, = QUWHT, A,
which implies (8). In this case, B1; = PlHZ\;'lA_I. Substi-
tuting the representation of B1; and (14) into (10) yields (9).

, 1<i<fl<j<e (7

III. MINIMIZATION PROBLEM FOR GENERALIZED
REFLEXIVE MATRICES

In this section p denotes the set of m X n generalized
reflexive matrices.

For the given matrices X € C"*P, and ¥ € C™*9,
let the SVDs of matrices UPX, PHY, VEX and QUY be,
respectively

UHX:Fl{Zl O]G{I, PHY:FQ[Ez O]Ggl,

0 0 0 0
(18)

S 0 e 0
VHX:Fg{ > O]G}f, QHY:F4{ o O}GE,
(19)

where all matrices F; = [Fj1, Fio],G; = [Gi1,Gi(i =
1,2,3,4) are unitary matrices and partitions are compatible
with the size of ¥; = diag(a!”, - ~,a§:)) >0(i =1,2,3,4),
t; = rank(U"X), to = rank(PRY), t3 = rank(VIX),
ty = rank(QUY).

Theorem 1: Let X € C"*P. Z € C™*P Y € C™Xq,
W € C"*4, and p denote the set of m X mn generalized
reflexive matrices. Suppose that the SVDs of the matrices
URX, PRY, VEX and QUY are given by (18) and (19), then

o(X,Z,Y,W) = minge,(||AX — Z|2
+||YHA _ WH||2)1/2
= (|PRZG12|? + |[URW G2
+ || @1 x (S FEPYZGy — GEWHRUF; 3)|12
+  |Q"ZGs|? + |[VHEW Gaa|?
+ || P * (SUFRQYZG3 — GLWHV EF3 23)|12)Y2,

(20)
where
_ 1D toxt: (1) _ 1
Oy = o] € G050 = ()24 (aD)zy/2
1<i<ty,1<j5<Ht,
— 1,2 (2 _
2 = lpiy’] € O 0 = s
1<i<ty, 1 <)<t
and A € p attains this minimum if and only if
_ Fp MFf 0 Ut
A= AO + [Pa Q] [ 0 F42NF3% VH (21)

with arbitrary M € Cr—t2)x(h=t1) ' N ¢ Cls—ta)x(=ts) and

Ao =[P, Q)] P o) [ H } ) (22)
0 A9 ||V

0 _ Ky %Ly SOIGEWHUF, | u

Apy = 1y { FRPRZGy 3! 0 o
(23)

(0) KQ * J11 EZIG}ElWHVF32 H

Aqv =Fa { FRQUZG3 55! 0 B
(24)

where

Ly = FAPYZ2G 1%, + 2GR WHUFyy,

Jin = FRQYZG3 53 + LG WHV Ry,
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= &1 x Py, Ky = Oy Dy. Moreover, the equations AX =
Z and YHA = W have a common solution A € p if and
only if
Rzt x)tuix = piz,
vtiw (Pt Py = Uutw,
vippiz = wHyuUtx
and
QU z(VHEX)TVHEX = QM7
Tw("Y) Q" = viw,
YHQQ"Z = wHvViX,

in which case a general solution of the equations AX = Z
and YHA = WH can be expressed as
=[P.Q)
AQ) 4+ Py MFR 0 [ UH ]
0 A+ FeNFS | L V]

AY) = PR ZUTX)* + (YEP) " WHU Ry, FlS,

where

0
A, =

and M € CUr—t2)x(k—t1) N e Cl—ta)x(=1s) are arbitrary
matrices.

Proof. If A € p, it follows from Lemma 1 that there exist
Apy € Cxk, Agv € C**! satisfying

H
=[P.Q) { Arw Agv } { U } 25)

QU ZVEX)T + (YRQ)"WHV Fyp i

Therefore,

minac, ([|AX — Z||* + [[Y A — WH|?)

= mlnApuGC"Xk,AQv€CSX”

Apy 0 Ut
A 0 ut
H PU _wH
svrmar| A 0] D |-
= minAPUechk(HAPU(UHX) — PHZ||2
+HI(PHY) T Apy — (UMW)H]?)

+minAQV€CS><Z (HAQ\/(VHX) —
HI(@QUY) Agy — (VEW)T?).

2

)

Q"Zz|?

(26)
It follows from Lemma 2 that
minAPUecrxk(HApU(UHX) - PHZH2
= [|PHZGho|? + HUHWG22H2
+H¢’1 * (22F21P ZG11 —G W U2 )” s
minAcﬁ,echz(HAQv(VHX) — QHZH2
@) agy — (viw)i2) )

= |Q"ZGs|? + |[VIW G|
+”<I)2 * (E4F4}{QHZG31 — G?1WHVF3123)||2,

and Apy € Cr<k, Agv € C5*! attain the minima if and
only if

Ky« ALY SIGRWHU R
A F 1 12 FH
o { FHAPH ZGUZ ! M L
(29)
(11) —1,~H 157H
AQV _ F4 HK%* AQV . 24 G41W VF32 F??,
FRQUYZG41 %5 N

where ALY = FEPRZG), S, + SGRWHUFyy, Agy -
FRQUZG31%s + S,GRWHVEs, M € Clr—ta)x(k=t)
N e Cs=ta)x(=t3) are arbitrary matrices. (26), (27) and (28)
imply (20). Substituting (29) and (30) into (25) yields (21).

It follows from Lemma 1 that the equations AX = Z
and YH2A = WH have a common solution A € p if and
only if Apy(URX) = PUZ and (PEY)HApy = (UHW)H,
Aqv(VEX) = QUZ and (QUY)HAqy = (VEW)H have
common solutions Apy € CT*k, Agv € C*!, respectively.
Applying Lemma 2, it is easy to obtain the second part of the
conclusions.

Let r; :7'—t27k1 = k—thsl =s—tgand l; =1 — t3.
From Theorem 1 we have
p(X7 Z’ Y7 W) =
B FpoMFL 0 Ut
M e Crxki N e Coixhiy,
3D

It is easy to verify that p(X, Z,Y, W) is a closed convex set in
Hilbert space C™*™. Therefore, for given matrix A e cmxn
it follows from the best approximation theorem (see Aubin[3])
that there exists a unique solution A in (X, Z,Y,W) such
that |4 — A|| = o(X, Z,Y,W; A).

‘We shall focus our attention on seeking the unique solution
of Problem II. For any matrix A € p(X, Z,Y, W), we have

|A— A|* =
Py | AP+ FM ;
’ 0 A + FiaNF3
vi
v |-
I AR + P F 0
0 A} + FiyNFL
PH 7 - 2
- [ QH :| A[U> V]
= | P2 MFY, = (PHAU — Ay
HIFuNF - (QUAV — AD))|?

HIQUAU |2 + | PHAV |2

= ||M — F}}(PHAU — AS%)FW

HIN — FE(QHAV — AD),) Py |2

| FL(PRAU — AS%)H?

+||F22<PHAU A%)Fw + QA2
+||FiL(QRA )F31H2 + HPHAVHQ
+||F41(QHAV A(O))\P-

(32)
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Note that FgA;UFm =0 FgA( ) F39 = 0. It follows from
(32) that ||A — A|| = min if and only if

M =FRPRAUF,, N =FlQMAVF;,.

By now, we have proved the following result.

Theorem 2: Let X € C"*P 7 € C™*P Y € C™*q,
W e C"*4, A e C™ " and p denote the set of m xn general-
ized reflexive matrices. Suppose that the SVDs of the matrices
UBX,PRY, VEX and QUY are given by (18) and (19),
then Problem II has a unique solution A in (X, Z,Y,W).
Moreover, A can be expressed as
Ay 0 } { vt

A:Ao—i—[P,Q]{O e VH} 33)

and the associated minimum o(X, Z, Y, W; A) is

o(X,2,Y,W; A) = (| FRL (PP AU — AD))|1?
HIFB(PRAU — AR Fua |
HIFB(QYAV — AD) |12 + |FB(QYAV — AY)
HIPRAV + QU AU 2,

)F31H2

(34)
where R R
Ay = By FRPRAUF L FL,

Ay = Fip FiQUAV Py Fi).

Now, we apply Theorem 1 and Theorem 2 to solve the left and
right inverse eigenproblem for generalized reflexive matrices
and its optimal approximation, i.e., given partial left and
right eigenpairs (eigenvalues and corresponding eigenvectors)
(E‘]ia y?)(l =1 7Q)’ ()‘ja 1])(] =1, 7p) and a matrix
A € C™"*" find an n X n generalized reflexive matrix A such
that

(35
and a matrix A € p(X,A,Y, Q) such that
|A— A= _ min A=Al (36)
Aep(X,A,Y,0)

where p(X,A,Y,Q) = {4 € p|AX = XA, YHA=QVH},
p denotes the set of n x n generalized reflexive matrices, A =

diag(A1, -+, Ap), Q@ = diag(wy, -+ ,wq), X = [z1, -+, 2p),
Y = [yh---,yq].

From Theorem 1 and Theorem 2, we obtain the following
corollary.

Corollary 3: Let X € C™™P Y € C"*4 A € C"*" A\ =
diag()\lv ] Ap)7 Q= diag(wh e :wq) and p(Xa A7 Y7 Q) =
{A€p|AX = XA, YHA =QYH}, where p denotes the set
of n xn generalized reflexive matrices. Suppose that the SVDs
of the matrices UM X, PRY, VHX and QMY are given by (18)
and (19), then the set p(X,A,Y, Q) is nonempty if and only
if

PEXAUTX)TURX = PHXA,
Uty i (PHy)t pHY = Uty o)
YHPPUXA = QvHUUMX

and
QUXA(VEX)TVHX = QU XA,

VYR Q') T QMY = vy Q|
YHEQQUXA = QvyHVvVEX,
in which case, the set p(X, A, Y, Q) can be expressed as

p(X,A,Y,Q) ={A=[P,Q]
[ 1}

A0 4 Py MFH 0
+ (YRP)TQYHUF), FE,

0 A, + FioNF
where
Agg;] = PUXA(UPX)T

QV =QUXA(VEX)T + (YRQ) QY HV 3y FL

and M € CUr—t2)x(k=t)) N ¢ Cls=t)x(=ts) are arbitrary
matrices, and there is a unique matrix A € p(X, A, Y, ) such
that || A — A|| = minep(x,A,v,0) |A — Al|. Moreover, A can

be expressed as
A9 4+ Ay 0 { UH ]
VH )

:PaQ N
PRI A9, 4 g

where y
Ay = Foo FEPR AU F» FH,

Ay = Fio FQUAV Py ).

Ifm=nR=S5Y =0, then P =U,QQ = V. From
Corollary 3, we obtain the following corollary related to
the inverse eigenvalue problem for reflexive matrices and its
optimal approximation. For more details, see [27].

Corollary 4: Let X € CvP A e CVA =
diag(A1,- -, Ap), and p(X,A) = {A € p|AX = XA}, where
p denotes the set of n x n reflexive matrices. Suppose that the
SVDs of the matrices UP X, VHX are given by (18) and (19),
t; = rank(UMX), t3 = rank(VEX), then the set p(X, A) is
nonempty if and only if

USXAURX)TURX = UM XA,
VEXAWVEX)TVEX = VHEXA,

in which case, the set p(X, A) can be expressed as

p(X,A) ={A=[U,V]
)

0
A + MF 0"
0 Ay’ + NF3
=VHEXA(VEX)T,

where
AY = UMXAUTX)*, A

and M € C™(r—t) N ¢ Cr=mx(n=r=t3) are arbitrary
matrices, and there is a unique matrix A € p(X,A) such
that ||[A — A| = minge,(x,a) |A — Al. Moreover, A can
be expressed as

- AV 1+ A 0 Ut
A=[Uv]| U oo Ve |-
0 AY + Ay
where A, = UNAUFoFl5, Ay = VAV Fay FiL.
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IV. MINIMIZATION PROBLEM FOR GENERALIZED
ANTI-REFLEXIVE MATRICES
In this section p denotes the set of m x n generalized anti-
reflexive matrices.
For the given matrices X € C"*P Z € C™*P Y € C™*4
and W € C"*1, if A € p, it follows from Lemma 1 that

minge,(|[AX = Z|7 + YA - WH|?)
mlnAPVecrxl,AQUecsxk

( [P,Q}{AZU Arv Hgﬁ ]X—z
N

2

A H
YH[P, Q] { AZU gv ] { gH ] —wH

= ming,, et ([|[Apy (VIX) — (P1Z)|?
+HI(PHY) ARy — (VEW)H|?)
+rﬂinAQU€Cs><k(H14QU(UYH‘X') - (QHZ)H2
+H(QUY) T Agu — (UHW)H|1?).

)

(37
Applying Lemma 2 to (37), we obtain the following theorem.
Theorem 5: Let X € C"*P 7 € C™*P Y € C™*4
and W € C"*9, p be the set of m X n generalized
anti-reflexive matrices. Suppose that the SVDs of matrices
URX, PRY, VEX and QUY are given by (18) and (19), then
o(X,Z,Y,W) = minge,(||AX — Z|?
—l—HYHA _ WHHQ)I/Z
= (|PHZG3|? + |[VHWGaa|?
+[| Uy % (Do FR PRZGs1 — GYWHV Fy,53)[12
HQUZG1o|* + UMW G ?
+|Ws * (S4FRQUZG1 — GRWHUF L E)) (%)Y,

where
— [ohD axty (1) _ 1
Vi =[] € C 80y =
1<i<ty, 1<) <ts;
N AC) taxty ,(2) _ 1
¥y = WU JeCH 171/;1.3. - ((024))2+(a§1))2)1/27
1<i<ty,1<j5<Ht,
and A € p attains this minimum if and only if

0 Fyy MFR } { UH

with arbitrary M € C(r—t2)x(=ts) N ¢ Cls—ta)x(k—t1) apd

0 AR, |[uH
A — P7 PV ,
o=1pl| 4o 0| Y

© _ K3 xChpy YOG WHV Fsy ] h
Apv =13 { FRPUZG3 55" 0 Ess
(39)

0) _ K4 *Dn ZzlGEIWHUFu H
AQU - F4 |: FngHZGnEfl 0 Fl 5
(40)

where
C11 = FEPRZG3 %5 + 2GR WHV Fyy
Dy = FAQUZG 1%, + 4G WHU Fyy,

K3 =UxUq, K4 = Uyx Wy, Moreover, the equations AX =
Z and YHA = W have a common solution A € p if and
only if

PHZVEX)TVHEX = pPHZ,

VAW (PEY) T PHY = VW,
yippHz = whyvHXx,

and
QU z(UEX)TURX = @Yz,

Ut QY)Y = UMW,
YHQQYZ = wHUuUtx,

in which case a general solution of the equations AX = Z
and YHA = WH can be expressed as

A=[P,Q]
0 A9+ FyyMFR
AD) + FiaNF} 0

UH
]
with arbitrary M € CUr—t2)x(=ts) N ¢ Cls—ta)x(k=t) anqd

AW = PRZ(VIX)T 4+ (YEP) YWV Fyy FI,
AS) = QUZ(UHX)* + (YHQ) WHU R, FlL.

LCtTl :T’—tg,k’l = /{i—tl,Sl =5—14 and ll :l—tg.
From Theorem 5 we know

(X, Z,) Y, W) =
H H
{A:AOHRQ] F42](\)7F1Hz F221\6[F32 ] { gH } |

M e Crxhi N e sk}

(41)

Similar to Theorem 2, we have the following result.

Theorem 6: Let X € C™"*P 7 € C™*P Y € C™*1 W €
C"*4, A e C™ ™ and let p be the set of m x n generalized
anti-reflexive matrices. Suppose that the SVDs of matrices
URX, PRY, VHX and QYUY are given by (18) and (19),
then Problem II has a unique solution A in p(X, Z, Y, W).
Moreover, A can be expressed as

0 Ap ][ U"

A:A0+[P7Q]{Azl 0 HVH}

where A ~
Ay = Foo FEPR AV P FiL

Ay = FpFQUAUF L P,
In this case, the associated minimum o(X, Z,Y, W; A) is

o(X, Z,Y.W; A) = (| Ef{ (PPAV — ARy)2
HIFB(PIAV — Ay ) Fin
HIFH QAU — Agy)|?
HIFB(QTAU — AQ)) Fun)?
+H|PRAU|? + [QTAV|1?)1/2.
From Theorem 5 and Theorem 6, we get the following result

related to the left and right inverse eigenproblem for general-
ized anti-reflexive matrices and its optimal approximation.
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Corollary 7: Let X € C"*P)Y € C"*4, A € C"*" A\ =
diag(A1,- -+, Ap), Q = diag(wi, -+, wg) and p(X,A,Y, Q) =
{Aep ’AX = XA, YHA =QYH}, where p denotes the set
of n x n generalized anti-reflexive matrices. Suppose that the
SVDs of the matrices UM X, PHY, VHX and QMY are given
by (18) and (19), then the set p(X,A,Y,Q) is nonempty if
and only if

PEXA(VEX)TVHX = PHXA,
vy Qi (PHY) PRy = vHY QI
yHEppHXA = vV IVEHY,

and
QUEXAURX)TURX = QUXA,

Uty QR (QBy)tQty = vty ot
YHQQYXA = QvHUUtX,
in which case, the set p(X, A, Y, Q) can be expressed as

p(X, A Y, Q) ={A=[P,Q]
0 AN+ Py MFS { Ut }
AD) + FiaNFJ 0 Vi

where M € CUr—t2)x(=ts) N ¢ Cls—ta)x(k=t1) are arbitrary
matrices and

AD = PEXAVEX) + (YEP) QY RV Py FlL,

ADL = QUXAURX) + (YHQ)r QYU R FI,
and there exists a unique matrixfi € p(X, A, Y, Q) such that
A= Al = minge,x.a,v,0) [|A — All. Moreover, A can be
expressed as
. (0) A H
A=1[PQ] (o)o ey |:UH:|
Agu + Az 0 %4

where . 3
Ay = Fou FEPR AV P FiL

Agy = Fio FREQRAU o F.

In addition, if m =n, R = S5,Y = 0, similar to Corollary 4,
we can obtain the result related to the inverse eigenvalue prob-
lem for anti-reflexive matrices and its optimal approximation
from Corollary 7.
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