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I. INTRODUCTION

IT is well known that Brouwer’s fixed point theorem can

not be constructively proved1. Thus, Tychonoff’s fixed

point theorem also can not be constructively proved. Sperner’s

lemma which is used to prove Brouwer’s theorem, however,

can be constructively proved. Some authors have presented a

constructive (or an approximate) version of Brouwer’s theorem

using Sperner’s lemma. See [9] and [10]. Thus, Brouwer’s

fixed point theorem is constructively, in the sense of con-

structive mathematics à la Bishop, proved in its approximate

version2.

Also Dalen[9] states a conjecture that a uniformly continu-

ous function f from a simplex into itself, with property that

each open set contains a point x such that x �= f(x), which

means |x − f(x)| > 0, and also at every point x on the

boundaries of the simplex x �= f(x), has an exact fixed point.

Recently [2] showed that the following theorem is equivalent

to Brouwer’s fan theorem.

Each uniformly continuous function f from a com-

pact metric space X into itself with at most one fixed

point and approximate fixed points has a fixed point.

By reference to the notion of sequentially at most one maxi-
mum in [1] we require a more general and somewhat stronger

condition of sequential local non-constancy for functions, and

in [7] we have shown the following result.

If each uniformly continuous function from a com-

pact metric space into itself is sequentially locally
non-constant, then it has a fixed point,

without the fan theorem. It is a partial answer to Dalen’s

conjecture.
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1[6] provided a constructive proof of Brouwer’s fixed point theorem. But
it is not constructive from the view point of constructive mathematics à la
Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed
point theorem, that is, the intermediate value theorem is non-constructive. See
[3] or [9].

2In [8] we have presented a constructive proof of an approximate version
of Tychonoff’s fixed point theorem.

In the next section we present a constructive proof of

Tychonoff’s fixed point theorem in a locally convex space3.

II. TYCHONOFF’S FIXED POINT THEOREMS FOR

SEQUENTIALLY LOCALLY NON-CONSTANT FUNCTIONS IN A

LOCALLY CONVEX SPACE

In constructive mathematics a nonempty set is called an

inhabited set. A set S is inhabited if there exists an element

of S.

Note that in order to show that S is inhabited, we

cannot just prove that it is impossible for S to be

empty: we must actually construct an element of S
(see page 12 of [4]).

Also in constructive mathematics compactness of a set

means total boundedness with completeness. A set S is finitely
enumerable if there exist a natural number N and a mapping

of the set {1, 2, . . . , N} onto S. An ε-approximation to S is a

subset of S such that for each p ∈ S there exists q in that ε-
approximation with |p−q| < ε(|p−q| is the distance between

p and q). S is totally bounded if for each ε > 0 there exists

a finitely enumerable ε-approximation to S. Completeness of

a set, of course, means that every Cauchy sequence in the set

converges.

A locally convex space consists of a vector space E and

a family (pi)i∈I of seminorms on E. I is an index set, for

example, the set of positive integers. According to [4] we

define, constructively, total boundedness of a set in a locally

convex space as follows;

Definition 1: (Total boundedness of a set in a locally convex
space) Let X be a subset of E, F be a finitely enumerable

subset of I4, and ε > 0. By an ε-approximation to X relative

to F we mean a subset T of X such that for each x ∈ X there

exists y ∈ T with
∑
i∈F pi(x− y) < ε. X is totally bounded

relative to F if for each ε > 0 there exists a finitely enumerable

ε-approximation to X relative to F . It is totally bounded if it

is totally bounded relative to each finitely enumerable subset

of I .

Extending Corollary 2.2.12 of [4] to a locally convex space

we have the following result.

Lemma 1: If X is a totally bounded subset of a locally

convex space, then for each ε > 0 there exist totally bounded

3Formulations of Tychonoff’s fixed point theorem in this paper follow those
in [5].

4A set S is finitely enumerable if there exist a natural number N and a
mapping of the set {1, 2, . . . , N} onto S.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:7, No:5, 2013

893

sets K1, . . . ,Kn, each of diameter less than or equal to ε, such

that X = ∪ni=1Ki.

The diameter of Ki is defined as follows.

sup
x,y∈Ki

∑
i∈F

pi(x− y).

In the appendix we present a proof of this lemma.

Our Tychonoff’s fixed point theorem is stated as follows;

Theorem 1: (Tychonoff’s fixed point theorem for uniformly
continuous and sequentially locally non-constant functions)
Let X be a compact (totally bounded and complete) and

convex subset of a locally convex space E, and g be a

uniformly continuous and sequentially locally non-constant

unction from X to itself. Then, g has a fixed point.

If X is an n-dimensional simplex Δ this lemma is expressed

as follows.

Lemma 2: If Δ is an n-dimensional simplex, for each ε > 0
there exist totally bounded sets H1, . . . , Hn, each of diameter

less than or equal to ε, such that Δ = ∪ni=1Hi.

Uniform continuity of a function in a locally convex space

is expressed as follows;

Definition 2: (Uniform continuity of a function
in a locally convex space) Let X , Y be subsets of a locally

convex space. A function g : X −→ Y is uniformly

continuous in X if for each ε > 0 and each finitely enumerable

subset G of J , which is also an index set, there exist δ > 0
and a finitely enumerable subset F of I such that if x, y ∈ X
and

∑
i∈F pi(x − y) < δ, then

∑
j∈G qj(g(x) − g(y)) < ε,

where (qj)j∈J is a family of seminorms on Y .

In a metric space a seminorm should be replaced by a metric

or a norm in this definition.

Let us consider an n-dimensional simplex Δ, x be a point

in Δ, and consider a uniformly continuous function f from Δ
into itself. Uniform continuity of functions in Δ is expressed

as follows;

For each ε > 0 there exist δ > 0 such that if x, y ∈
Δ and |x− y| < δ, then |f(x)− f(y)| < ε.

According to [9] and [10] f has an approximate fixed point.

It means

For each ε > 0 there exists x ∈ Δ such that |x−f(x)| < ε.

Since ε > 0 is arbitrary,

inf
x∈Δ

|x− f(x)| = 0.

Then,

inf
x∈Hi

|x− f(x)| = 0,

for some Hi such that ∪ni=1Hi = Δ.

If X is a compact and convex subset of a locally con-

vex space, there exists a finitely enumerable ε-approximation

{x0, x1, . . . , xn} to X . Every point in X is within ε for at

least one xj . Consider the following set

Xε =

⎧⎨
⎩

n∑
j=0

αjx
j |

n∑
j=1

αj = 1, αj ≥ 0

⎫⎬
⎭ .

Since X is convex, Xε ⊂ X and they are homeomorphic. Xε

lies in the finite dimensional linear subspace of X spanned by

x0, x1, . . . , xn. There is a natural identification of this space

with an n-dimensional simplex Δ in the Euclidean space with

vertices v0 = (1, 0, 0, . . . , 0), v1 = (0, 1, 0, . . . , 0), . . . , vn =
(0, 0, . . . , 1). Thus, there is a natural identification of X with

Δ, and so a uniformly continuous function g from X into

itself has an approximate fixed point. Therefore,

inf
x∈X

∑
j∈F

pj(x− g(x)) = 0.

Then, by Lemma 1

inf
x∈Ki

∑
j∈F

pj(x− g(x)) = 0,

for some Ki such that ∪ni=1Ki = X .

The notion that f has at most one fixed point in [2] is

defined as follows;

Definition 3: (At most one fixed point) For all x, y ∈ Δ, if

x �= y, then f(x) �= x or f(y) �= y.

By reference to the notion of sequentially at most one
maximum in [1], we define the property of sequential local
non-constancy for f : Δ −→ Δ as follows;

Definition 4: (Sequential local non-constancy of functions)
There exists ε̄ > 0 with the following property. For each

ε > 0 less than or equal to ε̄ there exist totally bounded sets

H1, H2, . . . , Hm, each of diameter less than or equal to ε, such

that Δ = ∪mi=1Hi, and if for all sequences (xn)n≥1, (yn)n≥1

in each Hi, |f(xn)− xn| −→ 0 and |f(yn)− yn| −→ 0, then

|xn − yn| −→ 0.

We define sequential local non-constancy for functions g :
X −→ X in a locally convex space as follows;

Definition 5: (Sequential local non-constancy of functions
in a locally convex space) There exists ε̄ > 0 with the

following property. For each ε > 0 less than or equal to

ε̄ there exist totally bounded sets K1,K2, . . . ,Km, each of

diameter less than or equal to ε, such that X = ∪mi=1Ki,

and if for all sequences (xn)n≥1, (yn)n≥1 in each Ki,∑
i∈F pi(g(xn)−xn) −→ 0 and

∑
i∈F pi(g(yn)−yn) −→ 0,

then
∑
i∈F pi(xn − yn) −→ 0.

Now we show the following lemma.

Lemma 3: Let g be a uniformly continuous function from

X into itself, and assume that infx∈Ki

∑
j∈F pj(g(x)−x) = 0.

If the following property holds:

For each ε > 0 there exists δ > 0 such that if x, y ∈
Ki,

∑
j∈F pj(g(x) − x) < δ and

∑
j∈F pj(g(y) −

y) < δ, then
∑

j∈F pj(x− y) ≤ ε.

Then, there exists a point z ∈ Δ such that g(z) = z, that is,

a fixed point of g.

Proof: Choose a sequence (xn)≥1 in Ki such that∑
i∈F pi(g(xn) − xn) −→ 0. Compute N such that∑
i∈F pi(g(xn)−xn) < δ for all n ≥ N . Then, for m,n ≥ N

we have
∑

i∈F pi(xm − xn) ≤ ε. Since ε > 0 is arbitrary,

(xn)n≥1 is a Cauchy sequence in Ki, and converges to a limit

z ∈ Ki. The continuity of g yields
∑
i∈F pi(g(z) − z) = 0

for each F ⊂ I , that is, g(z) = z.

Let us prove Tychonoff’s fixed point theorem (Theorem 1).

Proof: Assume infx∈Ki

∑
j∈F pj(f(x)−x) = 0. Choose

a sequence (zn)n≥1 in Ki ⊂ Δ such that
∑
i∈F pi(f(zn) −

zn) −→ 0. We prove that the following condition holds.
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For each ε > 0 there exists δ > 0 such that if x, y ∈
Ki,

∑
j∈F pj(f(x) − x) < δ and

∑
j∈F pj(f(y) −

y) < δ, then
∑

j∈F pj(x− y) ≤ ε.

Assume that the set

T = {(x, y) ∈ Ki ×Ki :
∑
j∈F

pj(x− y) ≥ ε}

is nonempty and compact5. Since the mapping (x, y) −→
max(

∑
i∈F pi(f(x) − x),

∑
i∈F pi(f(y) − y)) is uniformly

continuous, we can construct an increasing binary sequence

(λn)n≥1 such that

λn = 0 ⇒

inf
(x,y)∈T

max

(∑
i∈F

pi(f(x)− x),
∑
i∈F

pi(f(y)− y)

)
< 2−n,

λn = 1 ⇒

inf
(xyu)∈T

max

(∑
i∈F

pi(f(x)− x),
∑
i∈F

pi(f(y)− y)

)
> 2−n−1.

It suffices to find n such that λn = 1. In that case, if∑
i∈F pi(f(x) − x) < 2−n−1,

∑
i∈F pi(f(y) − y) < 2−n−1,

we have (x, y) /∈ T and
∑
i∈F pi(x − y) ≤ ε. Assume

λ1 = 0. If λn = 0, choose (xn, yn) ∈ T such that

max(
∑
i∈F pi(f(xn) − xn),

∑
i∈F pi(f(yn) − yn)) < 2−n,

and if λn = 1, set xn = yn = zn. Then,
∑
i∈F pi(f(xn) −

xn) −→ 0 and
∑
i∈F pi(f(yn)−yn) −→ 0, so

∑
i∈F pi(xn−

yn) −→ 0. Computing N such that
∑
i∈F pi(xN − yN ) < ε,

we must have λN = 1. By Lemma 3 f has a fixed point.

We have completed the proof.

APPENDIX

First we show the following lemma which is an extension

of Proposition 2.2.11 of [4] to a locally convex space.

Lemma 4: Let X be a totally bounded subset of a locally

convex space, x0 a point of X , and r a positive number. Then,

there exists a closed, totally bounded subset K of X such that

U(x0, F, r) ⊂ K ⊂ V (x0, F, 8r), where

U(x0, F, r) = {x ∈ X :
∑
i∈F

pi(x− x0) < r},

and

V (x0, F, 8r) = {x ∈ X :
∑
i∈F

pi(x− x0) ≤ 8r}.

F is a finitely enumerable subset of I .

Proof: With G1 = {x0}, construct inductively a sequence

(Gn)n≥1 of finitely enumerable subset of X such that

1)
∑
i∈F pi(x−Gn) < 2−n+1r for each x in U(x0, F, r),

2)
∑
i∈F pi(x−Gn) < 2−n+3r for each x in Gn+1,

where ∑
i∈F

pi(x−Gn) = inf y ∈ Gn
∑
i∈F

pi(x− y).

5See Theorem 2.2.13 of [4].

Assume that G1, . . . , Gn have been constructed and let

{x1, . . . , xN} be a 2−nr-approximation to X . Write

{1, . . . , N} as a union of subsets A and B such that∑
i∈F

pi(xi −Gn) < 2−n+3r if i ∈ A,

∑
i∈F

pi(xi −Gn) > 2−n+2r if i ∈ B.

Then,

Gn+1 = {xi : i ∈ A}
satisfies the condition (2). Let x be a point of U(x0, F, r).
By the induction hypothesis, there exists y in Gn with∑
i∈F pi(x − y) < 2−n+1r. Choosing i in {1, . . . , N} such

that
∑
i∈F pi(x − xi) < 2−nr (Note that {x1, . . . , xN} is a

2−nr-approximation to X), we have∑
i∈F

pi(xi −Gn) ≤
∑
i∈F

pi(xi − y) ≤
∑
i∈F

pi(x− xi) +
∑
i∈F

pi(x− y)

< 2−n+2r.

Thus, i /∈ B, so i ∈ A and xi ∈ Gn+1. Since
∑
i∈F pi(x −

xi) < 2−(n+1)+1r, the set Gn+1 satisfies the condition (1).

Let K be the closure of ∪n≥1Gn in X . From (1)

U(x0, F, r) ⊂ K. On the other hand, given x ∈ K and

a natural number n, we can find m ≥ n and y ∈ Gm
such that

∑
i∈F pi(x − y) < 2−n+4r. By (2), there exist

points ym = y, ym−1 ∈ Gm−1, . . . , yn ∈ Gn such that∑
i∈F pi(yi+1 − yi) < 2−i+3r for n ≤ i ≤ m− 1. Thus,

∑
i∈F

pi(y −Gn) ≤
∑
i∈F

pi(y − yn) ≤
m−1∑
i=n

∑
i∈F

pi(yi+1 − yi)

<
∞∑
i=n

2−i+3r = 2−n+4r, (1)

and ∑
i∈F

pi(x−Gn) ≤
∑
i∈F

pi(x− y) +
∑
i∈F

pi(y −Gn)

< 2−n+4r + 2−n+4r = 2−n+5r.

It follows that ∪ni=1Gi is a finitely enumerable 2−n+5r-

approximation to K. Since n is arbitrary, we conclude that

K is totally bounded.

Taking n = 1 in (1), we see that
∑
i∈F pi(y−x0) < 8r for

each y in ∪n≥1Gn, hence K ⊂ V (x0, F, 8r).
Now the proof of Lemma 1 is as follows.

Proof of Lemma 1: Given ε > 0, construct an ε
16 -

approximation to X , By Lemma 4, for each i in {1, . . . , n}
there exists a closed, totally bounded set Ki such that

U(xi, F,
ε
16 ) ⊂ Ki ⊂ V (xi, F,

ε
2 ). Clearly X = ∪ni=1Ki, and

also
∑
i∈F pi(x − y) ≤ ε for all x, y in Ki, so the diameter

of Ki is smaller than or equal to ε.
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