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Abstract—This paper is mainly concerned with a kind of coupled
map lattices (CMLs). New definitions of dense δ-chaos and dense
chaos (which is a special case of dense δ-chaos with δ = 0) in
discrete spatiotemporal systems are given and sufficient conditions for
these systems to be densely chaotic or densely δ-chaotic are derived.
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I. INTRODUCTION

CHAOTIC properties of a dynamical system is ardently
discussed since the introduction of the term chaos in

1975 by Li and Yorke[1]. Let I be a closed interval on real
line. If a dynamical system (I, f) has a uncountable set S ⊂ I
in which (x, y) is a Li-Yorke pair for ∀x, y ∈ S : x �= y
(the definition of Li-Yorke pairs will be seen follow), then
(I, f) is said to be chaotic in the sense of Li-Yorke. While, the
definition of chaos in the sense of Li-Yorke is inconveniently
in engineering applications. In 1989, R. L. Devaney[2] stated
a definition of chaos, known as Devaney chaos today. A map
f is said to be chaotic in the sense of Devaney on I if f is
transitive on I , the set of periodic points of f is dense in I
and f has sensitive dependence on initial conditions. Then, in
1992, Banks[3] proved that if f : (X, d) → (X, d) is transitive
and has dense periodic points then f has sensitive dependence
on initial conditions (where X is a compact metric space with
no isolated point). This causes that Devaney’s chaoticity is
preserved under topological conjugation on generally infinite
metric space. And then, in 1992, Lubomir Snoha[4] say that
f is densely chaotic if the set of Li-Yorke pairs is dense in
I × I . In 2005, the definition of densely δ-chaotic is given by
Schweizer and Smital[5]. That is, f is densely δ-chaotic if the
set of Li-Yorke pairs modulus δ is dense in I × I .

The coupled map lattices(CMLs) as spatiotemporal chaotic
systems were proposed in 1983 by Kaneko[6]. Since it is a
simple model with most essential features of spatiotemporal
chaos, the CMLs have been extensively studied in the fields
of bifurcation and chaos, pattern formation, physical biology
and engineering, crypotography, thermodynamics and chaotic
dynamics. (see, for instance, [7-12] and some references
therein.)

In this paper, we consider the CML of the form
xm+1,n = (1 − ε)f(xm,n)

+ 1
2ε[f(xm,n−1) + f(xm,n+1)], (1)

where f : R → R (R denotes the real numbers) is a function,
m ∈ N0 = {0, 1, 2, · · · }, n ∈ Z = {· · · ,−1, 0, 1, · · · }, and
ε ∈ [0, 1] is a constant.
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Let Nt = {t, t + 1, · · · } with integer t ∈ Z and denote
Ω = {(0, n)|n ∈ Z} = {· · · , (0,−1), (0, 0), (0, 1), · · · }.

For any sequence φ = {φm,n} defined on Ω, it is easy
to construct by induction a double-indexed sequence x =
{xm,n|m = 0, 1, 2, · · · ;n = · · · ,−1, 0, 1, · · · } that equals the
initial condition φ on Ω and satisfies system (1) on N1 × Z.

In fact, from (1), for any n ∈ Z, one can calculate a
sequence x1 = {x1,n}∞n=−∞ = (· · · , x1,−1, x1,0, x1,1, · · · ) by
using the initial condition φ. Then, by induction, for any m ∈
N1, one can calculate a sequence xm = {xm,n}∞n=−∞, so as
to obtain x = {xm,n|m = 0, 1, 2, · · · ;n = · · · ,−1, 0, 1, · · · }
satisfying system (1), which is said to be a solution of system
(1) with initial condition φ.

In 2003, Chen and Liu[13] initiated the study of chaos in the
sense of Li-Yorke for a certain type of discrete spatiotemporal
systems by using a method similar to the discussion in 1D
discrete systems. Then, in 2005, Chen et al. [14] showed one
kind of close relationship between a 2D discrete system and
an infinite-dimensional discrete system, thus introducing a new
definition of chaos for 2D systems in the sense of Devaney.
And in 2007, a definition about chaos in the sense of Li-
Yorke in discrete spatiotemporal systems is given by Tian
and Chen [15]. Along the same line, this paper introduced
definitions about dense δ-chaos and dense chaos in discrete
spatiotemporal systems. Some sufficient conditions for system
(1) to be densely δ-chaotic or densely chaotic is derived.

II. DENSE δ-CHAOS IN METRIC SPACES

A metric (or distance) on a set X is a function
d : X × X → R

+ = [0,∞)
with the following properties:

(1) d(x, y) ≥ 0 for all x, y ∈ X with d(x, y) = 0 if and
only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X ,

where d(x, y) is called the distance between x and y. The pair
(X, d) is called a metric space.

Definition 2.1 Let (X, d) and (Y, d̂) be two metric spaces,
and h : X → Y be an one-to-one and onto map. If there exist
two positive constants α, β > 0 such that:

αd(x, y) ≤ d̂(x̃, ỹ) ≤ βd(x, y), for all x, y ∈ X ,
where x̃ = h(x) and ỹ = h(y), then the metric space (X, d) is
said to be equivalent to the metric space (Y, d̂) (with respect
to the map h). If X = Y and h(x) = x for all x ∈ X , then d
is said to be equivalent to d̂.

Referring to the definitions of dense chaos and dense δ-
chaos for a real compact interval I in [4,5], definitions of
dense chaos and dense δ-chaos defined on a metric space are
naturally generalized as follows.
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Definition 2.2 Let (X, d) is a metric space. A pair of
points {x, y} ∈ X is said to be a Li-Yorke pair if one has
simultaneously

lim sup
n→∞

d(fn(x), fn(y)) > 0

and lim inf
n→∞ d(fn(x), fn(y)) = 0.

Denote the set of Li-Yorke pairs of f by
LYd(f) = {(x, y) ∈ X × X : lim sup

n→∞
d(fn(x), fn(y)) > 0,

lim inf
n→∞ d(fn(x), fn(y)) = 0}.

And denote the set of Li-Yorke pairs with modulus δ (δ ≥ 0
is a constant) by
LYd(f, δ) = {(x, y) ∈ X × X : lim sup

n→∞
d(fn(x), fn(y)) > δ,

lim inf
n→∞ d(fn(x), fn(y)) = 0}.

Definition 2.3 Let f : X → X be a map on a metric space
(X, d). The map f is said to be densely chaotic if

LYd(f) = X × X

where LYd(f) denotes the closure of the set LYd(f).
Definition 2.4 Let f : X → X be a map on a metric space

(X, d). The map f is said to be densely δ-chaotic if
LYd(f, δ) = X × X .

According the definitions of dense chaos and dense δ-chaos,
one can obtain that dense chaos is a special case of dense δ-
chaos with δ = 0. As one knows, similar to dense chaos, Li-
Yorke chaos is also concerned with Li-Yorke pairs. However,
different from the dense chaoticity which examines whether
Li-Yorke pairs distribute in every conner of the whole space,
Li-Yorke’s chaoticity tests that there exists an uncountable
subset S of X or not, this subset contains no periodic point
and {(x, y) : ∀x, y ∈ S, x �= y} is a Li-Yorke pair.

Theorem 2.1 Assume that I ∈ R, f : I → I is a function,
d1, d2 are two metrics in I , and d1 is equivalent to d2. Then f
is densely chaotic on (I, d1) if and only if f is densely chaotic
on (I, d2).

Proof: Necessity. Since d1 is equivalent to d2, there exist
two constants α, β > 0 such that

αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y), for any x, y ∈ I .
Let (a, b) ∈ I × I is a Li-Yorke pair of f in (I, d1), i.e.

lim sup
k→∞

d1(fk(a), fk(b)) > 0

and lim inf
k→∞

d1(fk(a), fk(b)) = 0.

Denote r = lim sup
k→∞

d1(fk(a), fk(b)) > 0, then

αr = α lim sup
k→∞

d1(fk(a), fk(b))

≤ lim sup
k→∞

d2(fk(a), fk(b))

≤ β lim sup
k→∞

d1(fk(a), fk(b))

= βr.
Thus lim sup

k→∞
d2(fk(a), fk(b)) > 0.

Similarly, we have
lim inf
k→∞

d2(fk(a), fk(b)) = 0.

So, (a, b) is a Li-Yorke pair of f in (I, d2).
And because f is densely chaotic on (I, d1), i.e.

LYd1(f) = I × I ,
then

LYd2(f) = I × I .
That is to say, f is densely chaotic on (I, d2).

By the similar argument, the sufficiency is follows imme-
diately.

Remark For some constants δ > 0, if f is densely δ-
chaotic on (I, d1), f may be not densely δ-chaotic on (I, d2)
even though d1 is equivalent to d2. In fact f is densely αδ-
chaotic on (I, d2) (where α is a positive constant).

III. A NEW DEFINITION OF DENSE CHAOS IN
SPATIOTEMPORAL SYSTEMS

In this section, new definitions of dense chaos and dense
δ-chaos in discrete spatiotemporal systems are introduced.

Let R
∞
∞ be a set of (bi-directional) 1D real sequences, i.e.,

R
∞
∞ = {{an}∞n=−∞}

= {(· · · , a−1, a0, a1, · · · ) : an ∈ R, n ∈ Z}.
Obviously, several different metrics can be defined on R

∞
∞.

For example, for two sequences
x1 = {x1,n}∞n=−∞ ∈ R

∞
∞,

x2 = {x2,n}∞n=−∞ ∈ R
∞
∞,

one may defines
d1(x1, x2) =

∑∞
n=−∞

|x1,n−x2,n|
2|n| ; (2)

d2(x1, x2) = sup{|x1,n−x2,n| : n ∈ Z}; (3)
d3(x1, x2) =

∑∞
n=−∞

1
2|n|

|x1,n−x2,n|
1+|x1,n−x2,n| . (4)

d4(x1, x2) = 0 if x1 = x2 and d4(x1, x2) = 1 if x1 �=
x2; (5)

Then, it is easy to prove that di(i = 1, 2, 3, 4) are metrics
on R

∞
∞. Moreover, di is not equivalent to dj (i �= j, i, j =

1, 2, 3, 4).
let I be a subset of R and denote

I∞∞ = {{an}∞n=−∞}
= {(· · · , a−1, a0, a1, · · · ) : an ∈ I, n ∈ Z}.

It is obvious that (I∞∞ , d) is a metric subspace of (R∞
∞, d).

Let f : I → I be a function and
x = {xm,n : m ∈ N0, n ∈ Z}

be a solution of system (1) with initial condition
φ = {φn = φ0,n}∞n=−∞,

where φn ∈ I for all n ∈ Z.
And denote

xm = {xm,n}∞n=−∞ = (· · · , xm,−1, xm,0, xm,1, · · · )
for all m ∈ {0, 1, 2, · · · }.

Let
xm+1 = {xm+1,n}∞n=−∞

= (· · · , xm+1,−1, xm+1,0, xm+1,1, · · · )
= F (xm),

where x0 = φ = {x0,n = φ0,n}∞n=−∞ and
xm+1,n = (1 − ε)f(xm,n) + 1

2ε[f(xm,n−1) + f(xm,n+1)],
m ∈ N0, n ∈ Z.

Then, one can see that system (1) is equivalent to a system
in the form of

xm+1 = F (xm), xm ∈ I∞∞ ⊆ R
∞
∞, m = 0, 1, 2, · · · . (6)

The map F of system (6) is said to be induced by system
(1). And (f, F ) is a pair of maps associated with the two
systems (1) and (6).

Obviously, a double-indexed sequence {xm,n : m ∈
N0, n ∈ Z} is a solution of system (1) if and only if
the sequence {xm}∞m=0 is a solution of system (6), where
xm = {xm,n}∞n=−∞,m ∈ N0.
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Definition 3.1 Let (I∞∞ , d) is a metric space. For any (x, y)
in I∞∞ × I∞∞ , ∀ε > 0, a point (x1, y1) in I∞∞ × I∞∞ is said to
be in ε-neighborhood of (x, y), if

d(x, x1) < ε and d(y, y1) < ε.
The ε-neighborhood of (x, y) is denoted by B((x, y), ε).
Definition 3.2 Let I be a subset of R, f : I → I is a

function and F : I∞∞ → I∞∞ is a map on (I∞∞ , d) induced by
system (1). If the map F is chaotic on I∞∞ , i.e., system (6) is
chaotic on (I∞∞ , d), then system (1) is said to be chaotic on
(I∞∞ , d).

In particular, if F is densely chaotic on (I∞∞ , d), then system
(1) is said to be densely chaotic on (I∞∞ , d). If F is densely
δ-chaotic on (I∞∞ , d), then system (1) is said to be densely
δ-chaotic on (I∞∞ , d).

The following conclusion is easy to check.
Theorem 3.1 Assume that I ∈ R, f : I → I is a function.

I∞∞ = {x = (· · · , xm,−1, xm,0, xm,1, · · · ) : xm,n ∈ I, n ∈
Z,m ∈ N0}, F : I∞∞ → I∞∞ is a map induced by system (1)
with the function f . d1, d2 are two metrics in I∞∞ , and d1 is
equivalent to d2. Then F is densely chaotic on (I∞∞ , d1) if and
only if F is densely chaotic on (I∞∞ , d2).

IV. MAIN RESULTS

In this section, we will consider that system (1) is densely
δ-chaotic or not (i.e. F is densely δ-chaotic or not) when f is
densely δ-chaotic.

Theorem 4.1 Assume that I ⊂ R, and define the distance
in I with d(a, b) = |a− b| for any two points a, b ∈ I (where
| · | denotes modulus). f : I → I is a function. Let

Δ∞
∞ = {x = (· · · , xm,−1, xm,0, xm,1, · · · ) : xm,n = a,

a ∈ I, n ∈ Z,m ∈ N0},
F : Δ∞

∞ → Δ∞
∞ is a map induced by system (1) with the

function f . If the function f is densely δ-chaotic (δ ≥ 0 is a
constant), then system (1) is densely δ-chaotic on (Δ∞

∞, d1).
Where d1 is defined by (2).

Proof: If (a, b) ∈ I × I(a �= b) is a Li-Yorke pair with
modulus δ of f , i.e.,

lim sup
n→∞

|fk(a) − fk(b)| > δ

and lim inf
n→∞ |fk(a) − fk(b)| = 0.

In the following, we show that (x∗, y∗) ∈ I∞∞ × I∞∞ is a Li-
Yorke pair with modulus δ of F , where

x∗ = {xn = a}∞n=−∞,
y∗ = {yn = b}∞n=−∞.

In fact,
F (x∗) = {(1 − ε)f(a) + 1

2ε[f(a) + f(a)]}∞n=−∞
= {f(a)}∞n=−∞,

then F k(x∗) = {fk(a)}∞n=−∞. Similarly,
F k(y∗) = {fk(b)}∞n=−∞.

Then
d1(F k(x∗), F k(y∗)) = d1({fk(a)}∞n=−∞, {fk(b)}∞n=−∞)

=
∑∞
n=−∞

|fk(a)−fk(b)|
2|n|

= 3|fk(a) − fk(b)|.
The following results are straightforward.

lim sup
n→∞

d1(F k(x∗), F k(y∗))

= 3 lim sup
n→∞

|fk(a) − fk(b)|
> 3δ > δ;

lim inf
n→∞ d1(F k(x∗), F k(y∗))

= 3 lim inf
n→∞ |fk(a) − fk(b)|

= 0.
Therefore, (x∗, y∗) is a Li-Yorke pair with modulus δ of F .

Now we prove that F is densely δ-chaotic.
For every (x, y) ∈ Δ∞

∞ × Δ∞
∞, denote

x = (· · · , xm,−1, xm,0, xm,1, · · · ),
y = (· · · , yn,−1, yn,0, yn,1, · · · ),

where xm,p = xm,p+1, yn,q = yn,q+1, p, q ∈ Z. Then
(xm,0, yn,0) ∈ I × I .

Since f : I → I is densely δ-chaotic, for any ε > 0, one
has

B((xm,0, yn,0), ε3 ) ∩ LYd(f, δ) �= φ.
Put

(a, b) ∈ B((xm,0, yn,0), ε3 ) ∩ LYd(f, δ),
then

|xm,0 − a| < ε
3 ,

|yn,0 − b| < ε
3 ,

lim sup
n→∞

|fk(a) − fk(b)| > δ,

and lim inf
n→∞ |fk(a) − fk(b)| = 0.

From the above discussion, we know that (x∗, y∗) is a Li-
Yorke pair with modulus δ of F , where

x∗ = {· · · , a, a, a, · · · },
y∗ = {· · · , b, b, b, · · · }.

And
d1(x, x∗) =

∑∞
p=−∞

|xm,p−a|
2|p| = 3|xm,0 − a| < ε,

d1(y, y∗) =
∑∞
q=−∞

|yn,q−b|
2|q| = 3|yn,0 − b| < ε.

This implies that
(x∗, y∗) ∈ B((x, y), ε) ∩ LYd1(F, δ),

i.e.,
LYd1(F, δ) = Δ∞

∞ × Δ∞
∞.

We thus conclude that system (1) is densely δ-chaotic on
(Δ∞

∞, d1).
In particular, if δ = 0, it means that Theorem 4.1 is right

for dense chaos. This conclusion is described in Theorem 4.2.
Theorem 4.2 Assume that I ⊂ R, and define the distance

in I as d(a, b) = |a−b| for any two points a, b ∈ I . f : I → I
is a function. Let

Δ∞
∞ = {x = (· · · , xm,−1, xm,0, xm,1, · · · )|xm,n = a,

a ∈ I, n ∈ Z,m ∈ N0},
F : Δ∞

∞ → Δ∞
∞ is a map induced by system (1) with the

function f . If the function f is densely chaotic, then system
(1) is densely chaotic on (Δ∞

∞, d1). Where d1 is defined by
(2).

Now, we change the metric in Δ∞
∞. For example, from d1

to d2 (where d2 is defined by (3)). The following we study
dense chaoticity of system (1) (dense δ-chaoticity is similar).

First, if (a, b) ∈ I × I(a �= b) is a Li-Yorke pair of f ,
then (x∗, y∗) ∈ Δ∞

∞ × Δ∞
∞ is a Li-Yorke pair of F . Where

x∗ = {xn = a}∞n=−∞, y∗ = {yn = b}∞n=−∞.
In fact,

lim sup
k→∞

d2(F k(x∗), F k(y∗))

= lim sup
k→∞

d2({fk(a)}∞n=−∞, {fk(b)}∞n=−∞)

= lim sup
k→∞

sup{|fk(a) − fk(b)| : n = · · · ,−1, 0, 1, · · · }
= lim sup

k→∞
|fk(a) − fk(b)|
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> 0.
lim inf
k→∞

d2(F k(x∗), F k(y∗))

= lim inf
k→∞

sup{|fk(a) − fk(b)| : n = · · · ,−1, 0, 1, · · · }
= lim inf

k→∞
|fk(a) − fk(b)|

= 0.
Then, for every points-pair (x, y) ∈ Δ∞

∞ × Δ∞
∞, denote

x = (· · · , xm,−1, xm,0, xm,1, · · · ),
y = (· · · , yn,−1, yn,0, yn,1, · · · ),

where xm,p = xm,p+1, yn,q = yn,q+1, p, q ∈ Z. Then
(xm,0, yn,0) ∈ I × I .

Since f : I → I is densely chaotic, for any ε > 0, one has
B((xm,0, yn,0), ε) ∩ LYd(f) �= φ.

Put (a, b) ∈ B((xm,0, yn,0), ε) ∩ LYd(f), then
|xm,0 − a| < ε,
|yn,0 − b| < ε,

lim sup
k→∞

|fk(a) − fk(b)| > 0,

and lim inf
k→∞

|fk(a) − fk(b)| = 0.

Clearly, (x∗ = {· · · , a, a, a, · · · }, y∗ = {· · · , b, b, b, · · · }) is a
Li-Yorke pair of F . And

d2(x, x∗) = sup{|xm,p − a| : p = · · · ,−1, 0, 1, · · · }
= |xm,0 − a|
< ε,

d2(y, y∗) = sup{|yn,q − b| : q = · · · ,−1, 0, 1, · · · }
= |yn,0 − b|
< ε.

That is to say,
(x∗, y∗) ∈ B((x, y), ε) ∩ LYd2(F ),

i.e.,
LYd2(F ) = Δ∞

∞ × Δ∞
∞.

Thus system (1) is densely chaotic on (Δ∞
∞, d2).

By the similar argument, system (1) is obvious densely
chaotic on (Δ∞

∞, d3) (where d3 is defined by (4)). Notice that,
d1, d2, d3 are not equivalent to each other. Then, a natural
question is whether system (1) densely chaotic on (Δ∞

∞, d)
with arbitrary metric d? Let us consider the discrete metric
d4 which is defined by (5). Obviously, with this metric, the
system is not chaotic. This means that definitions of metrics
in a space are impact to the consistence between the chaotic
properties of f and the ones of F . Where F is induced by
system (1) with the function f .
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