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Abstract—The paper deals with the minimax design of 

two-channel linear-phase (LP) quadrature mirror filter (QMF) banks 
using infinite impulse response (IIR) digital all-pass filters (DAFs). 
Based on the theory of two-channel QMF banks using two IIR DAFs, 
the design problem is appropriately formulated to result in an 
appropriate Chebyshev approximation for the desired group delay 
responses of the IIR DAFs and the magnitude response of the low-pass 
analysis filter. Through a frequency sampling and iterative 
approximation method, the design problem can be solved by utilizing 
a weighted least squares approach. The resulting two-channel QMF 
banks can possess approximately LP response without magnitude 
distortion. Simulation results are presented for illustration and 
comparison. 
 

Keywords—Chebyshev approximation, Digital All-Pass Filter, 
Quadrature Mirror Filter, Weighted Least Squares.  

I.  INTRODUCTION 
OR many communication and signal processing systems, 
quadrature mirror filter banks have been widely used to 

achieve the goals of subband coding and short-time spectral 
analysis [1]-[4]. Generally, we use a QMF bank to decompose a 
signal into subbands and decimate the subband signals in the 
analysis system by an integer equal to the number of subbands. 
Moreover, two-channel QMF banks are usually used for 
constructing M-channel QMF banks based on a tree structure.  

In the literature, several techniques have been presented for 
designing two-channel QMF banks with IIR analysis filters and 
approximately linear phase (LP) based on the least-squares (L2) 
error criteria [5]-[9]. These IIR QMF banks are designed with 
the LP property imposed on the analysis filters. In contrast, a 
technique has been proposed in [10] for designing an IIR QMF 
bank with arbitrary group delay optimal in the minimax (L∞) 
sense. Recently, the design results for IIR LP QMF banks based 
on real all-pass sections have been reported in [8], [9], [11]. 
The main advantage of using all-pass sections is that the 
designed IIR QMF banks can possess approximately LP 
response without magnitude distortion. 

In this paper, we present a method based on the weighted 
least squares (WLS) algorithm [12] for the minimax design of 
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two-channel LP QMF banks using real IIR digital all-pass 
filters (DAFs). The design problem is formulated by using the 
minimax error criteria on the phase approximation and the 
magnitude response of the low-pass analysis filter to obtain an 
appropriate objective function. The optimization of the 
objective function can be solved by utilizing the well-known 
WLS algorithm of [12] and a linear approximation scheme. The 
WLS solution provides the required increment for updating the 
filter coefficients during the iteration process. Simulation 
results showing the effectiveness of the proposed method are 
also provided. 

II.  PROBLEM FORMULATION 

A. QMF Bank with Linear-Phase Response 
Consider the two-channel filter bank with a system 

architecture shown in Fig. 1. H0(z) and H1(z) designate the 
low-pass and high-pass analysis filters, respectively, and F0(z) 
and F1(z) designate the low-pass and high-pass synthesis 
filters, respectively. Setting the synthesis filters F0(z) = H1(–z) 
and F1(z) =–H0(z) eliminates the aliasing term. As the 
mirror-image symmetry about the frequency ω = π/2 exists 
between H0(z) and H1(z), we have H0(z) = H1(–z). It has been 
shown in [11] that the input-output relationship in the 
Z-transform is given by 
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Let T(ejω) denote the frequency response of the QMF bank. 

Equation (1) reveals that producing a reconstructed signal 
)(ˆ nx that is a delayed replica of x(n) requires 
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where gd is the system delay of the QMF bank. This imposes 
constraints not only that H0(z) should be an ideal low-pass 
analysis filter, but also that its behavior for all ω should satisfy 
the condition given in (2). The designs of QMF banks using 
conventional FIR or IIR structures for H0(z) usually induce 
both magnitude and phase distortions. 

B. Digital All-Pass Based QMF Bank 
Here, we consider the two-channel QMF bank with analysis 

and synthesis structures shown by Figs. 2 and 3, respectively, 
where A1(z2) and A2(z2) are two real IIR DAFs. Hence, we have 
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Substituting (3) into (2) yields the frequency response of the 

QMF bank as follows: 
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Equation (4) reveals that the resulting QMF bank possesses 

perfect magnitude response, i.e., there is no magnitude 
distortion. Moreover, H0(z) and H1(z) satisfy the all-pass 
complementary and power complementary properties. They are 
termed the doubly-complementary (DC) filter pair [13]. 
Therefore, the design problem is to find the real coefficients for 
the IIR DAFs A1(z2) and A2(z2) such that the resulting phase 
response Arg{T(ejω)} of the DC-based QMF bank can 
approximate a desired phase characteristic in the minimax 
sense. The real IIR DAFs A1(z2) and A2(z2) with frequency 
responses are given by 
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respectively. Moreover, without loss of generality, both of the 
coefficients a1(0) and a2(0) can be set to one. Then, the phase 
responses θi(ω), i = 1,2, are given by 
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Substituting (6) into (3) yields 
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In order to guarantee that H0(z) and H1(z) are LP low-pass 

and high-pass filters, respectively, we can impose the following 
conditions on θi(ω), i = 1,2, based on (7) and (8): 
 
Case (i): For N1 = N2 = N: 
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Case (ii): For N1 = N2 + 1: 
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where ωp and ωs are the passband and stopband edge 
frequencies of H0(z), respectively. Equations (9) and (10) 
reveal that the above conditions also satisfy the following 
stability constraints for the real IIR DAFs Ai(z2) [13]: θi(ω) is 
monotonically decreasing and θi(π) = θi(0) – 2Niπ, for i = 1, 2.  
The frequency response of the DC-based QMF bank becomes 
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Equation (11) shows that the QMF bank possesses a LP with 

group delay gd = 2N1 + 2N2 + 1 and without magnitude 
distortion. We formulate the design problem as follows: 
i. From (4) and (11), we have a constraint on the group 

delays of the IIR DAFs A1(z2) and A2(z2) as follows: 
 

GD1(ω) + GD2(ω) +1 = gd,                             (12) 
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for /2],0[ πω ∈ and i = 1, 2. 
ii. The magnitude of the low-pass analysis filter must be 

zero in ] /2,[ ππω ∈ , i.e., 
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The objective function based on the Chebyshev criteria can 

be formulated as follows: 
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where  ||x||∞ denotes the Chebyshev norm of x and a =[a1

T a2
T]T 

with ai= [ai(1), ai(2), …., ai(Ni)]T the filter coefficient vector. 
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α is a preset relative weight between the two error terms. 

III. PROPOSED DESIGN METHOD 
The design method is based on the WLS algorithm of [12] 

for solving the resulting minimization problem of (15). This is 
through a frequency sampling and iterative approximation 
scheme to find the optimal filter coefficients ai(n), n = 1, 2,…, 
Ni, i =1,2, for the real IIR DAFs shown by (5). 

A. Frequency Sampling and Approximation Scheme 
Let Ω1= [ω1=0, ω2, …, ωL=π/2] and Ω2 = [ωL+1 =ωs, ωL+2, …. 

, ωM =π] represent the two dense grids of frequency bands in [0, 
π]. Each of them has grid points uniformly distributed in the 
individual frequency band. The design process of the proposed 
technique is then performed on Ωd = Ω1∪ Ω2 with S = L+M  
grid points. If the number S of grid points is sufficiently large, 
the obtained best approximation solution of the objective 
function based on Ωd will be close to the best solution found 
based on Ω = [0, π/2] ∪ [ωs, π]. This conclusion can be 
justified by the theorem due to Cheney [14, Chapter 3]. Next, 
we utilize a linearization scheme to approximate the related 
errors (15) due to a perturbation in the filter coefficient vector 
in the linear subspace spanned by the gradient matrix 
associated with Aprxi(ak, ω) at the kth iteration. As a result, the 
approximation for minimizing (15) can be formulated as 

finding the increments [ ]TT
2

T
1   kkk aaa δδδ =  with δaik = [δaik(1) 

δaik(2) ….. δaik(Ni)]T of the filter coefficient vectors a at the kth 
iteration such that 
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T ∇ Aprx2(ak, ωl)||∞              (17) 
 

is minimized for dΩ∈lω , where the subscript k denotes the 
kth iteration and the (N1 + N2)×1 gradient vector of Aprxi(ak,ωl) 
is given by 
 

∇ Aprxi(ak,ωl) = [ ψi1(ωl,1) ψi1 (ωl,2) …. ψi1 (ωl,N1)  

ψi2(ω,1)…. ψi2 (ω,N2) ]T,                                   (18) 
 

where ψi1(ωl, j) = )(/),(Aprx 1 ja klki ∂∂ ωa  denotes the jth 
gradient component of Aprxi(ak,ωl) and ψi2(ωl, j) = 

)(/),(Aprx 2 ja klki ∂∂ ωa  the (N1+ j)th gradient component of 
Aprxi(ak,ωl). For details, we rewrite (17) as follows: 
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B. Minimax Design of QMF Using WLS Algorithm 
We reformulate the design problem of minimizing (19) 

based on the WLS criteria as follows: 
 

21
2

222
2

111    Ω∈Ω∈ −+− ll
k

kkMinimize ωω
δ

δαδ daUWdaUW
a

 (20) 

 
where Ui is a S × (N1 + N2) matrix with the (l,n)th entry given by 
Ui(l,n) = ψi1(ωl,n) , 1 ≤ l ≤ S, 1 ≤ n ≤ N1, and Ui(l,n) = ψi2(ωl,n) 
, 1 ≤ l ≤ S, 1 ≤ n ≤ N2, di is a S × 1 column vector with the lth 
entry given by di(l) = – Aprxi(ak, ωl) , 1 ≤ l ≤ S, for i = 1,2. Wi = 
diag{Wi(ω1), Wi(ω2), ….., Wi(ωS)} denotes the S × S diagonal 
matrix containing the required least-squares weighting function 
calculated on the set Ωd = {ω1=0, ω2…., ωS=π} of the S 
frequency grid points for i = 1,2. Clearly, the optimal solution 
for minimizing (20) is given by 
 

δak ={real (U 
1

HW1U1+αU 
2

HW2U2)}-1× 

{real(U 
1

HW1d1+αU 
2

HW2d2)}.                  (21) 
 

The suitable least-squares weighting function Wi(ω), i =1, 2, 
required in (21) for a minimax design can be obtained by using 
the WLS algorithm presented in [12]. 

C.  Iterative Design Procedure 
Step 1.   

<1.1> Determine the design parameters: the orders N1 and 
N2, the relative weight α, pass-band edge frequency ωp  and the 
stop-band edge frequency ωs. 
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<1.2> Compute an initial guess ai0 for the filter coefficient 
vector ai = [ai(1),ai(2), …, ai(Ni)]T, i = 1, 2, as described in [10]. 
Set the iteration number k = 0. 
Step 2. Perform a test for stopping the iteration process:  

<2.1> Compute 
 

Vk= ||Aprx1(ak,ωl)||∞ 1Ω∈lω +α||Aprx2(ak,ωl)||∞ 2Ω∈lω    (22) 
 

<2.2> Terminate the design process and take the coefficient 
vector ak as the designed filter coefficients if |Vk – Vk-1|/|Vk-1| ≦  
ε, where ε is a preset small positive real number. Otherwise, go 
to Step 3 to perform an inner iterative process to find the best 
increment δaik of the filter coefficient vector aik. 
Step 3. Calculate the increment δaik of the filter coefficient 

vector aik = [aik(1),aik(2), …, aik(Ni)]T at the kth iteration 
based on (21) according to the WLS algorithm as 
follows: 

<3.1> Set the initial weighting matrix Wi to the S × S identity 
matrix I and an iteration index p = 0. 

<3.2> Compute the WLS solution δak from (21). 
<3.3> Compute the error functions eik(ω)= iki daU −δ , i = 1, 

2. 
<3.4> If |max{eik(ω)} – max{eik-1(ω)}|/ max{eik-1(ω)} ≦ ηi, 

where each ηi is a preset small positive real number, the WLS 
solution δak is used for obtaining the optimal solutions δaik, 
This ends the inner iterative process. Then, go to Step 4. 
Otherwise, go to <3.5>. 

<3.5> Update the least-squares weighting function Wi(ω) 
according to the systematical approach as described in [12] and 
set the iteration index p = p + 1. Then, go to <3.2>. 
Step 4. Update the filter coefficient vector as follows: 

<4.1> Use the obtained optimal solution δak to find the best 
increment such that 

||Aprx1(ak+βδak,ωl)||∞ 1Ω∈lω  

+α||Aprx2(ak+βδak, ωl)||∞ 2Ω∈lω , ∀ β ≧ 0  
is minimized.  

<4.2> Employ the Nelder and Mead simplex algorithm [15] 
to perform the line search for finding the best value of β. Let the 
best value of β be βk.  

<4.3> We update the filter coefficient vector according to 
a(k+1) = ak + βkδak.  

<4.4> Set k = k + 1 and go to Step 2. 

IV. SIMULATION RESULTS 
The design results of using the proposed method are 

compared with the design results of [11] in terms of peak 
stop-band ripple of H0(z) (PSR), the maximal variation of 
pass-band group delay of H0(z) (MVPGD), the maximal 
variation of the group delay (MVGD) and maximum variation 
of the phase response (MVPR) of the designed filter bank 

T̂ (ejω), and the maximal variation of the filter-bank response 
(MVFBR). They are defined as follows: 
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Example: We use the same specifications as those of [11] for 

this design: the real IIR DAFs A1(z) and A2(z) with orders N1 
and N2 equal to 9 and 8, respectively, the low-pass analysis 
filter H0(z) with a passband edge frequency ωp = 0.4π and a 
stopband edge frequency ωs = 0.6π. The spacing between two 
adjacent frequency grid points is set to π/(8N1+1) =π/73. 
Moreover, the parameters ε = 0.001, η1 = η2 = 0.00001, and α = 
300. These parameters are selected by experiment. Table I lists 
the significant design results for comparison and Table II 
shows the resulting filter coefficients designed by using the 
proposed method. Figs. 4 ~ 9 plot the frequency responses 
associated with the design results of using the proposed method 
and the method of [11]. From the simulation results, we observe 
that the proposed method can provide much better phase 
response and more equiripple magnitude response of the QMF 
bank, though its PSR is about 4 dB higher than that of [11]. 

V.  CONCLUSION 
This paper has presented a method for the minimax design of 

two-channel linear-phase (LP) quadrature mirror filter (QMF) 
banks. The QMF bank is constructed by using infinite impulse 
response (IIR) digital all-pass filters (DAFs). Utilizing the 
theory of two-channel QMF banks with two IIR DAFs, the 
design problem is appropriately formulated in an appropriate 
Chebyshev approximation for the desired group delay 
responses of the IIR DAFs and the magnitude response of the 
low-pass analysis filter. As a result, the design problem can be 
solved by using a well-known weighted least squares algorithm. 
Simulation results have confirmed the effectiveness of the 
proposed method. 

 
TABLE I 

THE SIGNIFICANT DESIGN RESULTS 
 α=300 Method of [11] 

PSR(dB) －50.6398 －54.7222 
MVPGD 0.0535 0.1359 
MVPR 0.0093 0.1366 

MVFBR(dB) －46.6620 －23.3214 
MVFBR 0.0046 0.0682 
MVGD 0.1069 2.0120 

Number of Iterations 5 4, 4 
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TABLE II 
THE RESULTING FILTER COEFFICIENTS 

n a1(n) a2(n) 
0 1.000000000000000 1.000000000000000 
1 0.241863193218369 -0.240227789564765 
2 -0.078478266139255 0.136706003937396 
3 0.035637365828341 -0.087478032820367 
4 -0.016300710495321 0.056618413232281 
5 0.006203534762817 -0.035675609568455 
6 -0.001458305138989 0.020861719906423 
7 -0.000920400535139 -0.011193882146515 
8 0.001975443673669 0.006005740894830 
9 -0.001261582024461  

 

 

Fig. 1 The two-channel QMF bank 
 

 

Fig. 2 The analysis system of the DC-based QMF bank 
 

 

Fig. 3 The synthesis system of the DC-based QMF bank 

 

Fig. 4 The magnitude responses of H0(z) (Low-pass Response Curve) 
and H1(z) (High-pass Response Curve) using the proposed method 

 

 

Fig. 5 Phase error of the filter bank using the proposed method 
 

 

Fig. 6 Group delay error of the filter bank using the proposed method 
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Fig. 7 The magnitude responses of H0(z) (Low-pass Response Curve) 
and H1(z) (High-pass Response Curve) using the method of [11] 

 

 

Fig. 8 Phase error of the filter bank using the method of [11] 
 

 

Fig. 9 Group delay error of the filter bank using the method of [11] 
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